PCMI 2008 Undergraduate Summer School Lecture 12: Schubert Calculus II

David Perkinson

Reed College
Portland, OR

Summer 2008

Review

- cycles

$$
\sum n_{i} V_{i} \in Z_{r}(X)
$$

- rational equivalence

$$
V \sim W
$$

- codimension r cycles modulo rational equivalence

$$
A^{r}(X)=Z_{n-r}(X) / \sim
$$

- Chow ring

$$
\begin{gathered}
A^{*}(X)=\oplus_{r=0}^{n} A^{r}(X) \\
{[V] \cdot[W]=[V \cap W]}
\end{gathered}
$$

- flag

$$
A_{0} \subsetneq \cdots \subsetneq A_{r}
$$

- Schubert variety

$$
\mathfrak{S}\left(A_{0}, \ldots, A_{r}\right)=\left\{L \in \mathbb{G}_{r} \mathbb{P}^{n}: \operatorname{dim}\left(L \cap A_{i}\right) \geq i \text { for all } i\right\}
$$

- Schubert class

$$
\left(a_{0}, \ldots, a_{r}\right)=\left[\mathfrak{S}\left(A_{0}, \ldots, A_{r}\right)\right] \in A^{*}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)
$$

- depends only on the dimensions, $a_{i}=\operatorname{dim} A_{i}$.
- $\operatorname{codim}\left(a_{0}, \ldots, a_{r}\right)=(r+1)(n-r)-\sum_{i=0}^{r}\left(a_{i}-i\right)$.
- $A^{*}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)$ is free abelian on the Schubert classes.

Example

$$
\mathbb{G}_{1} \mathbb{P}^{3} \quad \text { dimension }=4, \quad 0 \leq a_{0}<a_{1} \leq 3 .
$$

Schubert classes

codimension	class	condition
0	$(2,3)$	no condition
1	$(1,3)$	meet a line
2	$(0,3)$	pass through a point
2	$(1,2)$	lie in a plane
3	$(0,2)$	pass through a point and lie in a plane
4	$(0,1)$	be a certain line

Goal

Describe multiplication in $A^{*}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)$.

Change of notation

Given the class $\left(a_{0}, \ldots, a_{r}\right)$, let $\lambda_{i}=n-r-\left(a_{i}-i\right)$ for all i.
We write $\left\{\lambda_{0}, \ldots, \lambda_{r}\right\}=\left(a_{0}, \ldots, a_{r}\right) \in A^{*}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)$.

- $n-r \geq \lambda_{0} \geq \cdots \geq \lambda_{r} \geq 0$
- $\operatorname{codim}\left\{\lambda_{0}, \ldots, \lambda_{r}\right\}=|\lambda|=\sum_{i} \lambda_{i}$

codim	class	condition
0	$(2,3),\{0,0\}$	no condition
1	$(1,3),\{1,0\}$	meet a line
2	$(0,3),\{2,0\}$	pass through a point
2	$(1,2),\{1,1\}$	lie in a plane
3	$(0,2),\{2,1\}$	pass through a point and lie in a plane
4	$(0,1),\{2,2\}$	be a certain line

Young diagrams

For each $\lambda: \lambda_{0} \geq \cdots \geq \lambda_{r} \geq 0$, there is an associated Young diagram

Example
$\{4,2,2,1\}$

Multiplication

Theorem
For $\{\lambda\},\{\mu\} \in A^{*}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)$,

$$
\{\lambda\} \cdot\{\mu\}=\sum_{\nu} N_{\lambda \mu \nu}\{\nu\}
$$

the sum over $\{\nu\} \in A^{*}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)$.

The Littlewood-Richardson number, $N_{\lambda \mu \nu}$, is the number of strict μ-expansions of λ giving ν.

Definition

A μ-expansion of λ is a Young diagram obtained inductively. Start with the Young diagram for λ. At the i-step:

- Add μ_{i} boxes (to existing rows or to the bottom).
- No two added boxes allowed in the same column.
- The result must be a valid Young diagram.
- Write the number i in each of the boxes.

A μ-expansion is strict if when reading off the integers in the boxes right-to-left, starting with the top row and working down, at no time is a number read more times than a smaller number has already been read.

Example

Some $\{2,1\}$-expansions of $\{3,1\}$

strict

strict

not strict

Multiplication table for $A^{*}\left(\mathbb{G}_{1} \mathbb{P}^{3}\right)$

codim	$*$	\circ	\square	\square	\square	\square	\square
0	\circ						
1	\square						
2	\square						
2	\square						
3	\square						
4	\square						

Tips for calculating products

$$
\{\lambda\} \cdot\{\mu\}=\sum_{\nu} N_{\lambda \mu \nu}\{\nu\}
$$

- If $\operatorname{codim}\{\lambda\}+\operatorname{codim}\{\mu\}>\operatorname{dim} \mathbb{G}_{r} \mathbb{P}^{n}$, then $\{\lambda\} \cdot\{\mu\}=0$.
- $\{\nu\}=0$ if $\nu_{0}>n-r$ or the number of rows in its Young diagram is greater than $r+1$.
- If the Young diagram for $\{\nu\}$ has fewer than r rows, remember to pad $\{\nu\}$ with trailing 0 s to express its class in the Chow ring.

