Multiplication

PCMI 2008 Undergraduate Summer School Lecture 12: Schubert Calculus II

David Perkinson

Reed College Portland, OR

Summer 2008

o cycles

$$\sum n_i V_i \in Z_r(X)$$

rational equivalence

 $V \sim W$

• codimension r cycles modulo rational equivalence

$$A^r(X) = Z_{n-r}(X)/\sim$$

Chow ring

$$A^*(X) = \bigoplus_{r=0}^n A^r(X)$$
$$[V] \cdot [W] = [V \cap W]$$

• flag

$$A_0 \subsetneq \cdots \subsetneq A_r$$

• Schubert variety

$$\mathfrak{S}(A_0,\ldots,A_r) = \{L \in \mathbb{G}_r \mathbb{P}^n : \dim(L \cap A_i) \ge i \text{ for all } i\}$$

Schubert class

$$(a_0,\ldots,a_r)=[\mathfrak{S}(A_0,\ldots,A_r)]\in A^*(\mathbb{G}_r\mathbb{P}^n)$$

- depends only on the dimensions, $a_i = \dim A_i$.
- codim $(a_0, \ldots, a_r) = (r+1)(n-r) \sum_{i=0}^r (a_i i).$
- $A^*(\mathbb{G}_r\mathbb{P}^n)$ is free abelian on the Schubert classes.

Multiplication

$\mathbb{G}_1 \mathbb{P}^3$ dimension = 4, $0 \le a_0 < a_1 \le 3$.

Schubert classes

codimension	class	condition
0	(2,3)	no condition
1	(1,3)	meet a line
2	(0,3)	pass through a point
2	(1,2)	lie in a plane
3	(0,2)	pass through a point and lie in a plane
4	(0,1)	be a certain line

Multiplication

Describe multiplication in $A^*(\mathbb{G}_r\mathbb{P}^n)$.

Change of notation

Given the class (a_0, \ldots, a_r) , let $\lambda_i = n - r - (a_i - i)$ for all *i*. We write $\{\lambda_0, \ldots, \lambda_r\} = (a_0, \ldots, a_r) \in A^*(\mathbb{G}_r \mathbb{P}^n)$. • $n - r \ge \lambda_0 \ge \cdots \ge \lambda_r \ge 0$ • $\operatorname{codim}\{\lambda_0, \ldots, \lambda_r\} = |\lambda| = \sum_i \lambda_i$

codim	class	condition
0	(2,3), {0,0}	no condition
1	(1,3), {1,0}	meet a line
2	(0,3), {2,0}	pass through a point
2	(1,2), {1,1}	lie in a plane
3	(0,2), {2,1}	pass through a point and lie in a plane
4	(0,1), {2,2}	be a certain line

Young diagrams

For each $\lambda: \ \lambda_0 \geq \cdots \geq \lambda_r \geq 0$, there is an associated Young diagram

Example

$$\{4, 2, 2, 1\}$$

Multiplication

Theorem For $\{\lambda\}, \{\mu\} \in A^*(\mathbb{G}_r \mathbb{P}^n)$, $\{\lambda\} \cdot \{\mu\} = \sum_{\nu} N_{\lambda\mu\nu} \{\nu\}$

the sum over $\{\nu\} \in A^*(\mathbb{G}_r\mathbb{P}^n)$.

The Littlewood-Richardson number, $N_{\lambda\mu\nu}$, is the number of strict μ -expansions of λ giving ν .

Definition

A μ -expansion of λ is a Young diagram obtained inductively. Start with the Young diagram for λ . At the *i*-step:

- Add μ_i boxes (to existing rows or to the bottom).
- No two added boxes allowed in the same column.
- The result must be a valid Young diagram.
- Write the number *i* in each of the boxes.

A μ -expansion is strict if when reading off the integers in the boxes right-to-left, starting with the top row and working down, at no time is a number read more times than a smaller number has already been read.

Multiplication

Example

Some $\{2,1\}$ -expansions of $\{3,1\}$

Multiplication

Multiplication table for $A^*(\mathbb{G}_1\mathbb{P}^3)$

Tips for calculating products

$$\{\lambda\}\cdot\{\mu\}=\sum_{\nu}\mathbf{N}_{\lambda\mu\nu}\{\nu\}$$

- If $\operatorname{codim} \{\lambda\} + \operatorname{codim} \{\mu\} > \operatorname{dim} \mathbb{G}_r \mathbb{P}^n$, then $\{\lambda\} \cdot \{\mu\} = 0$.
- {*v*} = 0 if *v*₀ > *n* − *r* or the number of rows in its Young diagram is greater than *r* + 1.
- If the Young diagram for {ν} has fewer than r rows, remember to pad {ν} with trailing 0s to express its class in the Chow ring.