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Question
How many lines meet for general lines L1, L2, L3, L4 in R3?
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Answer 1: Consider the surface of lines meeting L1, L2, L3.
Go to each point on L1 and draw a line through the point
where L2 and L3 appear to meet.
The resulting collection of lines is a quadric surface.
Intersecting that surface with L4 gives 2 points.
These two points correspond to the 2 solutions.

Exercise
Show that each point on the saddle surface, z = xy , is
contained in exactly two lines lying on the surface.
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Answer 2: Specialize.
Suppose L1 meets L2 and L3 meets L4.

One solution is the line through the points L1 ∩ L2 and
L3 ∩ L4.
The other solution is the line of intersection between the
two planes spanned by L1, L2 and L3, L4.
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Answer 3: Intersection theory.

{lines meeting Li} = G1P3 ∩ Hi

for some hyperplane Hi ⊂ P5.

{lines meeting L1, L2, L3, L4} = ∩i

(
G1P3 ∩ Hi

)
= G1P3 ∩ (∩iHi)

How many times does the line ∩iHi meet G1P3 ⊂ P5?

Answer: 2 (by Bezout).
More simply, parametrize the line:

t 7→ (a0t + b0, . . . , a5t + b5)

then plug it in to the equation x0x5 − x1x4 + x2x3 = 0 defining
G1P3 ⊂ P5. Solve the resulting quadratic equation in t .
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Goal

Generalize these arguments.
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The Chow Ring

X a variety of dimension n.

Definition
An r -cycle is a finite formal sum,

∑
i ni Vi where each ni ∈ Z

and each Vi is an r -dimensional subvariety of X .

Notation:
Zr (X ) = {all r -cycles of X}

Definition
V has codimension r in X if dim V = n − r .
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Definition
Subvarieties V , W ⊆ X of dimension r are rationally equivalent
if W is a continuous deformation of V .

Notation:
V ∼ W

Definition

Ar (X ) = Zn−r (X )/ ∼

The Chow ring of X is

A∗(X ) = ⊕n
i=0Ar (X ).
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Ring structure on A∗(X )

Definition
For [V ] ∈ Ar (X ) and [W ] ∈ As(X ), define

[V ] · [W ] = [V ∩W ] ∈ Ar+s(X )

after deforming V and W so that they meet transversally.

Definition
V and W meet transversally at p ∈ V ∩W if the tangent spaces
for V and W at p together span the tangent space of X .

V and W meet transversally if they meet transversally at each
point p ∈ V ∩W .
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Example

A∗(Pn) ≈ Z[t ]/(tn+1)

[V ] 7→ deg(V ) t codim(V )

n=2
p, q points in P2, X = Z (yz − x2), Y = Z (zy2 − x3 − zx2)

• 2[p] + 3[q]− [X ] + 5[Y ] + 4[P2] 7→ 2t2 + 3t2 − 2t + 15t + 4
= 5t2 + 13t + 4.

• [X ] · [Y ] 7→ (2t)(3t) = 6t2 (X , Y meet in 6 points).
• (2[p] + [X ] + [P2])2 7→ (2t2 + 2t + 1)2 = 8t2 + 4t + 1.
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Goal

Describe the Chow ring A∗(Gr Pn).

Note: Ar (Gr Pn) = H2r (Gr Pn, Z).
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Schubert Varieties

Definition
A sequence

A0 ( · · · ( Ar

where each Ai is a linear subspace of Pn is called a flag.

Definition
Fixing a flag as above, define the corresponding Schubert
variety by

S(A0, . . . , Ar ) = {L ∈ Gr Pn : dim(L ∩ Ai) ≥ i for all i}



Introduction Chow ring Schubert Varieties

Proposition

S(A0, . . . , Ar ) = Gr Pn ∩M

for some linear subspace M ⊂ PN .

M is a hyperplane iff dim A0 = n − r − 1 and dim Ai = n − r + i
for i = 1, . . . , r .
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Proposition
If A0 ( · · · ( Ar and B0 ( · · · ( Br are flags with
dim Ai = dim Bi for all i , then

[S(A0, . . . , Ar )] = [S(B0, . . . , Br )] ∈ A∗(Gr Pn).

Notation
Letting ai = dim Ai , we write

S(a0, . . . , ar ) or (a0, . . . , ar )

for the cycle class [S(A0, . . . , Ar )].
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Theorem
A∗(Gr Pn) is a free abelian group on

{(a0, . . . , ar ) : 0 ≤ a0 < · · · < ar ≤ n}.

(a0, . . . , ar ) ∈ A`(Gr Pn) where ` = (r + 1)(n− r)−
∑r

i=0(ai − i).

Next time
Describe the multiplication in A∗(Gr Pn).
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