PCMI 2008 Undergraduate Summer School

Lecture 11: Schubert Calculus I

David Perkinson

Reed College
Portland, OR

Summer 2008

Question

How many lines meet for general lines $L_{1}, L_{2}, L_{3}, L_{4}$ in \mathbb{R}^{3} ?

Answer 1: Consider the surface of lines meeting L_{1}, L_{2}, L_{3}.

- Go to each point on L_{1} and draw a line through the point where L_{2} and L_{3} appear to meet.
- The resulting collection of lines is a quadric surface.
- Intersecting that surface with L_{4} gives 2 points.
- These two points correspond to the 2 solutions.

Exercise

Show that each point on the saddle surface, $z=x y$, is contained in exactly two lines lying on the surface.

Answer 2: Specialize.

Suppose L_{1} meets L_{2} and L_{3} meets L_{4}.

- One solution is the line through the points $L_{1} \cap L_{2}$ and $L_{3} \cap L_{4}$.
- The other solution is the line of intersection between the two planes spanned by L_{1}, L_{2} and L_{3}, L_{4}.

Answer 3: Intersection theory.

$$
\left\{\text { lines meeting } L_{i}\right\}=\mathbb{G}_{1} \mathbb{P}^{3} \cap H_{i}
$$

for some hyperplane $H_{i} \subset \mathbb{P}^{5}$.

$$
\left\{\text { lines meeting } \begin{array}{rl}
\left.L_{1}, L_{2}, L_{3}, L_{4}\right\} & =\cap_{i}\left(\mathbb{G}_{1} \mathbb{P}^{3} \cap H_{i}\right) \\
& =\mathbb{G}_{1} \mathbb{P}^{3} \cap\left(\cap_{i} H_{i}\right)
\end{array}\right.
$$

How many times does the line $\cap_{i} H_{i}$ meet $\mathbb{G}_{1} \mathbb{P}^{3} \subset \mathbb{P}^{5}$?
Answer: 2 (by Bezout).
More simply, parametrize the line:

$$
t \mapsto\left(a_{0} t+b_{0}, \ldots, a_{5} t+b_{5}\right)
$$

then plug it in to the equation $x_{0} x_{5}-x_{1} x_{4}+x_{2} x_{3}=0$ defining $\mathbb{G}_{1} \mathbb{P}^{3} \subset \mathbb{P}^{5}$. Solve the resulting quadratic equation in t.

Goal

Generalize these arguments.

The Chow Ring

X a variety of dimension n.
Definition
An r-cycle is a finite formal sum, $\sum_{i} n_{i} V_{i}$ where each $n_{i} \in \mathbb{Z}$ and each V_{i} is an r-dimensional subvariety of X.

Notation:

$$
Z_{r}(X)=\{\text { all } r \text {-cycles of } X\}
$$

Definition
V has codimension r in X if $\operatorname{dim} V=n-r$.

Definition

Subvarieties $V, W \subseteq X$ of dimension r are rationally equivalent if W is a continuous deformation of V.

Notation:

$$
V \sim W
$$

Definition

$$
A^{r}(X)=Z_{n-r}(X) / \sim
$$

The Chow ring of X is

$$
A^{*}(X)=\oplus_{i=0}^{n} A^{r}(X) .
$$

Ring structure on $A^{*}(X)$

Definition
For $[V] \in A^{r}(X)$ and $[W] \in A^{s}(X)$, define

$$
[V] \cdot[W]=[V \cap W] \in A^{r+s}(X)
$$

after deforming V and W so that they meet transversally.

Definition

V and W meet transversally at $p \in V \cap W$ if the tangent spaces for V and W at p together span the tangent space of X.
V and W meet transversally if they meet transversally at each point $p \in V \cap W$.

Example

$$
\begin{aligned}
A^{*}\left(\mathbb{P}^{n}\right) & \approx \mathbb{Z}[t] /\left(t^{n+1}\right) \\
{[V] } & \mapsto \operatorname{deg}(V) t^{\operatorname{codim}(V)}
\end{aligned}
$$

$\mathrm{n}=2$
p, q points in $\mathbb{P}^{2}, X=Z\left(y z-x^{2}\right), Y=Z\left(z y^{2}-x^{3}-z x^{2}\right)$

- $2[p]+3[q]-[X]+5[Y]+4\left[\mathbb{P}^{2}\right] \mapsto 2 t^{2}+3 t^{2}-2 t+15 t+4$ $=5 t^{2}+13 t+4$.
- $[X] \cdot[Y] \mapsto(2 t)(3 t)=6 t^{2} \quad(X, Y$ meet in 6 points $)$.
- $\left(2[p]+[X]+\left[\mathbb{P}^{2}\right]\right)^{2} \mapsto\left(2 t^{2}+2 t+1\right)^{2}=8 t^{2}+4 t+1$.

Goal

Describe the Chow ring $A^{*}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)$.

Note: $A^{r}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)=H^{2 r}\left(\mathbb{G}_{r} \mathbb{P}^{n}, \mathbb{Z}\right)$.

Schubert Varieties

Definition
A sequence

$$
A_{0} \subsetneq \cdots \subsetneq A_{r}
$$

where each A_{i} is a linear subspace of \mathbb{P}^{n} is called a flag.
Definition
Fixing a flag as above, define the corresponding Schubert variety by

$$
\mathfrak{S}\left(A_{0}, \ldots, A_{r}\right)=\left\{L \in \mathbb{G}_{r} \mathbb{P}^{n}: \operatorname{dim}\left(L \cap A_{i}\right) \geq i \text { for all } i\right\}
$$

Proposition

$$
\mathfrak{S}\left(A_{0}, \ldots, A_{r}\right)=\mathbb{G}_{r} \mathbb{P}^{n} \cap M
$$

for some linear subspace $M \subset \mathbb{P}^{N}$.
M is a hyperplane iff dim $A_{0}=n-r-1$ and $\operatorname{dim} A_{i}=n-r+i$ for $i=1, \ldots, r$.

Proposition
If $A_{0} \subsetneq \cdots \subsetneq A_{r}$ and $B_{0} \subsetneq \cdots \subsetneq B_{r}$ are flags with $\operatorname{dim} A_{i}=\operatorname{dim} B_{i}$ for all i, then

$$
\left[\mathfrak{S}\left(A_{0}, \ldots, A_{r}\right)\right]=\left[\mathfrak{S}\left(B_{0}, \ldots, B_{r}\right)\right] \in A^{*}\left(\mathbb{G}_{r} \mathbb{P}^{\eta}\right) .
$$

Notation
Letting $a_{i}=\operatorname{dim} A_{i}$, we write

$$
\mathfrak{S}\left(a_{0}, \ldots, a_{r}\right) \quad \text { or } \quad\left(a_{0}, \ldots, a_{r}\right)
$$

for the cycle class $\left[\mathfrak{S}\left(A_{0}, \ldots, A_{r}\right)\right]$.

Theorem
$A^{*}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)$ is a free abelian group on

$$
\left\{\left(a_{0}, \ldots, a_{r}\right): 0 \leq a_{0}<\cdots<a_{r} \leq n\right\} .
$$

$\left(a_{0}, \ldots, a_{r}\right) \in A^{\ell}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)$ where $\ell=(r+1)(n-r)-\sum_{i=0}^{r}\left(a_{i}-i\right)$.
Next time
Describe the multiplication in $A^{*}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)$.

