Chow ring

Schubert Varieties

PCMI 2008 Undergraduate Summer School Lecture 11: Schubert Calculus I

David Perkinson

Reed College Portland, OR

Summer 2008

Question

How many lines meet for general lines L_1, L_2, L_3, L_4 in \mathbb{R}^3 ?

Answer 1: Consider the surface of lines meeting L_1, L_2, L_3 .

- Go to each point on L₁ and draw a line through the point where L₂ and L₃ appear to meet.
- The resulting collection of lines is a quadric surface.
- Intersecting that surface with *L*₄ gives 2 points.
- These two points correspond to the 2 solutions.

Exercise

Show that each point on the saddle surface, z = xy, is contained in exactly two lines lying on the surface.

Answer 2: Specialize.

Suppose L_1 meets L_2 and L_3 meets L_4 .

- One solution is the line through the points $L_1 \cap L_2$ and $L_3 \cap L_4$.
- The other solution is the line of intersection between the two planes spanned by *L*₁, *L*₂ and *L*₃, *L*₄.

Answer 3: Intersection theory.

$$\{\text{lines meeting } L_i\} = \mathbb{G}_1 \mathbb{P}^3 \cap H_i$$

for some hyperplane $H_i \subset \mathbb{P}^5$.

{lines meeting
$$L_1, L_2, L_3, L_4$$
} = $\cap_i \left(\mathbb{G}_1 \mathbb{P}^3 \cap H_i \right)$
= $\mathbb{G}_1 \mathbb{P}^3 \cap (\cap_i H_i)$

How many times does the line $\cap_i H_i$ meet $\mathbb{G}_1 \mathbb{P}^3 \subset \mathbb{P}^5$?

Answer: 2 (by Bezout). More simply, parametrize the line:

$$t\mapsto (a_0t+b_0,\ldots,a_5t+b_5)$$

then plug it in to the equation $x_0x_5 - x_1x_4 + x_2x_3 = 0$ defining $\mathbb{G}_1\mathbb{P}^3 \subset \mathbb{P}^5$. Solve the resulting quadratic equation in *t*.

Chow ring

Schubert Varieties

Generalize these arguments.

Chow ring

Schubert Varieties

The Chow Ring

X a variety of dimension n.

Definition

An *r*-cycle is a finite formal sum, $\sum_i n_i V_i$ where each $n_i \in \mathbb{Z}$ and each V_i is an *r*-dimensional subvariety of *X*.

Notation:

$$Z_r(X) = \{ all r - cycles of X \}$$

Definition

V has codimension *r* in *X* if dim V = n - r.

Definition

Subvarieties $V, W \subseteq X$ of dimension r are rationally equivalent if W is a continuous deformation of V.

Notation:

$$V \sim W$$

Definition

$$A^r(X) = Z_{n-r}(X)/\sim$$

The Chow ring of X is

$$A^*(X) = \oplus_{i=0}^n A^r(X).$$

Chow ring

Schubert Varieties

Ring structure on $A^*(X)$

Definition

For $[V] \in A^{r}(X)$ and $[W] \in A^{s}(X)$, define

$$[V] \cdot [W] = [V \cap W] \in A^{r+s}(X)$$

after deforming V and W so that they meet *transversally*.

Definition

V and *W* meet transversally at $p \in V \cap W$ if the tangent spaces for *V* and *W* at *p* together span the tangent space of *X*.

V and *W* meet transversally if they meet transversally at each point $p \in V \cap W$.

Chow ring

Schubert Varieties

Example

$$egin{array}{rcl} \mathcal{A}^*(\mathbb{P}^n) &pprox & \mathbb{Z}[t]/(t^{n+1}) \ & [V] &\mapsto & \deg(V) \, t^{\operatorname{codim}(V)} \end{array}$$

n=2

p, q points in \mathbb{P}^2 , $X = Z(yz - x^2)$, $Y = Z(zy^2 - x^3 - zx^2)$

- $2[p] + 3[q] [X] + 5[Y] + 4[\mathbb{P}^2] \quad \mapsto \quad 2t^2 + 3t^2 2t + 15t + 4$ = $5t^2 + 13t + 4$.
- $[X] \cdot [Y] \mapsto (2t)(3t) = 6t^2$ (X, Y meet in 6 points).
- $(2[p] + [X] + [\mathbb{P}^2])^2 \mapsto (2t^2 + 2t + 1)^2 = 8t^2 + 4t + 1.$

Chow ring

Schubert Varieties

Describe the Chow ring $A^*(\mathbb{G}_r\mathbb{P}^n)$.

Note:
$$A^{r}(\mathbb{G}_{r}\mathbb{P}^{n}) = H^{2r}(\mathbb{G}_{r}\mathbb{P}^{n},\mathbb{Z}).$$

Chow ring

Schubert Varieties

Schubert Varieties

Definition

A sequence

$$A_0 \subsetneq \cdots \subsetneq A_r$$

where each A_i is a linear subspace of \mathbb{P}^n is called a flag.

Definition

Fixing a flag as above, define the corresponding Schubert variety by

$$\mathfrak{S}(A_0,\ldots,A_r) = \{L \in \mathbb{G}_r \mathbb{P}^n : \dim(L \cap A_i) \ge i \text{ for all } i\}$$

Proposition

$$\mathfrak{S}(A_0,\ldots,A_r)=\mathbb{G}_r\mathbb{P}^n\cap M$$

for some linear subspace $M \subset \mathbb{P}^N$.

M is a hyperplane iff dim $A_0 = n - r - 1$ and dim $A_i = n - r + i$ for i = 1, ..., r.

Proposition

If $A_0 \subsetneq \cdots \subsetneq A_r$ and $B_0 \subsetneq \cdots \subsetneq B_r$ are flags with dim $A_i = \dim B_i$ for all *i*, then

$$[\mathfrak{S}(A_0,\ldots,A_r)]=[\mathfrak{S}(B_0,\ldots,B_r)]\in A^*(\mathbb{G}_r\mathbb{P}^n).$$

Notation

Letting $a_i = \dim A_i$, we write

$$\mathfrak{S}(a_0,\ldots,a_r)$$
 or (a_0,\ldots,a_r)

for the cycle class $[\mathfrak{S}(A_0, \ldots, A_r)]$.

Theorem $A^*(\mathbb{G}_r\mathbb{P}^n)$ is a free abelian group on $\{(a_0, \dots, a_r) : 0 \le a_0 < \dots < a_r \le n\}.$ $(a_0, \dots, a_r) \in A^{\ell}(\mathbb{G}_r\mathbb{P}^n)$ where $\ell = (r+1)(n-r) - \sum_{i=0}^r (a_i - i).$

Next time

Describe the multiplication in $A^*(\mathbb{G}_r\mathbb{P}^n)$.