PCMI USS 2008

* 1. Consider \mathbb{P}^5 as parametrizing plane conics with $(a_0, \ldots, a_5) \in \mathbb{P}^5$ corresponding to

$$a_0x^2 + a_1xy + a_2xz + a_3y^2 + a_4yz + a_5z^2.$$

In problem set 5, you calculated that the set of conics tangent to $\{x = 0\}$ is given by the quadric $a_4^2 - 4a_3a_5 = 0$. You also saw that the set of conics passing through a given point forms a hyperplane in \mathbb{P}^5 . What is the number *m* such that there is a finite number of conics tangent to $\{x = 0\}$ and passing through *m* general points? Fixing *m* such points, how many conics will there be meeting the given conditions? **Challenge:** give a concrete example of *m* points so that over the real numbers you get the expected number of conics meeting the conditions.

- 2. In the lecture, we saw that the Chow variety for cubics in \mathbb{P}^3 is a subset of \mathbb{P}^{49} , and we essentially calculated the point on the Chow variety corresponding to the twisted cubic. Use CoCoA to answer the following questions.
 - (a) What is the point on the Chow variety for the cubic that is the projective closure of image of the mapping $t \mapsto (t^2 1, t(t^2 1), 0) \in \mathbb{A}^3 \subset \mathbb{P}^3$?
 - (b) In what size projective space does the Chow variety for curves of degree 2 in \mathbb{P}^3 sit, according to our construction? (This problem is easily done by hand, without the help of a computer.)
 - (c) In what size projective space does the Chow variety for cubic surfaces in \mathbb{P}^4 sit? (Note: "surface" means "2-dimensional variety".)
- * 3. Here is another version of Bezout's theorem. Let X and Y be subvarieties of \mathbb{P}^n such that dim $X + \dim Y = n$. If $X \cap Y$ is a finite set, then the number of points in $X \cap Y$, counting multiplicities (at points of tangency) is the product $(\deg X)(\deg Y)$.
 - (a) Use Bezout's theorem to show that a curve of degree 2 in \mathbb{P}^3 must lie in a plane.
 - (b) Generalize the previous result: what is the largest degree d such that a curve of degree d in \mathbb{P}^n must sit in a hyperplane?
 - (c) Why should the Chow variety of curves of degree 2 in \mathbb{P}^3 be 8-dimensional?
 - 4. A variety in \mathbb{P}^n with Hilbert polynomial P(t) = 1 is a variety of degree 1 (from the leading coefficient of the Hilbert polynomial) and dimension $0 = \deg P$. Varieties in \mathbb{P}^n with this Hilbert polynomial are exactly single points of \mathbb{P}^n . It seems that the Hilbert variety parametrizing the collection of single points should just be \mathbb{P}^n , itself. Follow the construction of the Hilbert variety given in the lecture notes to show in what sense this turns out to be true. Some hints: (1) the ideal for a point $p = (1, a_1, \ldots, a_n) \in \mathbb{P}^n$ is

gotten by homogenizing the ideal for the corresponding point in affine space; (2) using the notation from the lecture, the smallest value for d_0 is 1 (it can't be zero because the ideals $I(X)_{d>d_0}$ will not be generated by $I(X)_0 = \{0\}$).

5. Let V be a vector space. Given $v \in V$, we get a linear function

$$v^* \colon V^* \to k$$
$$L \mapsto L(v)$$

This defines a linear mapping of V to its double-dual (the dual of its dual space)

$$\begin{array}{rcccc} \iota \colon V & \to & V^{**} \\ v & \mapsto & v^* \end{array}$$

Show ι is one-to-one. Show that ι is an isomorphism if dim $V < \infty$.

 \star 6. Show that if

$$0 \to V' \to V \to V'' \to 0$$

is an exact sequence of vector spaces, then the induced sequence

$$0 \to (V'')^* \to V^* \to (V')^* \to 0$$

is exact.

7. In $\Lambda^r V$, show that the relation

$$v_1 \wedge \cdots \wedge v_r = 0$$
, if $v_i = v_j$ for some $i \neq j$

implies that swapping v_i for v_j introduces a minus sign:

$$v_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge v_j \wedge \ldots v_r = -v_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge v_i \wedge \ldots v_r.$$

(Hint: in $v_1 \wedge \cdots \wedge v_r$, replace both v_i and v_j by $v_i + v_j$ to get a wedge product that is zero. Expand.) Conversely, show that the second relation implies the first when working over a field of characteristic not equal to 2.

- 8. Generalization of the cross product.
 - (a) Consider the vector space $\Lambda^2 k^3$ with ordered basis $e_2 \wedge e_3$, $-e_1 \wedge e_3$, $e_1 \wedge e_2$ where $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$ is the standard basis for k^3 . Let $v = (v_1, v_2, v_2)$ and $w = (w_1, w_2, w_3)$ be elements of k^3 . Show that $v \wedge w$ written with respect to the given coordinates is the cross-product

$$v \times w = \det \left(\begin{array}{ccc} e_1 & e_2 & e_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{array} \right)$$

(b) To generalize the cross-product, choose the ordered basis

$$(-1)^i e_1 \wedge \cdots \wedge \widehat{e_i} \wedge \cdots \wedge e_n$$
, for $i = 1, \dots, n$

for $\Lambda^{n-1}k^n$ where $\hat{e_i}$ denotes omitting e_i . Define the cross-product of vectors v_1, \ldots, v_{n-1} as the vector whose coordinates are those of $v_1 \wedge \cdots \wedge v_{n-1}$ with respect to the given basis for $\Lambda^{n-1}k$. Note that these coordinates are, up to sign, the $(n-1) \times (n-1)$ minors of the matrix whose rows are the v_i . Show that this cross-product is perpendicular to each v_i (and hence to the linear space spanned by v_1, \ldots, v_{n-1}). (Hint: consider the $n \times n$ matrix whose rows are v_1, \ldots, v_{n-1} and v_i . Having a repeated row, its determinant is 0. Compute the determinant be expanding along the last row.)

* 9. Let e_1, \ldots, e_n be the standard basis for k^n , and let $v_1, \ldots, v_n \in k^n$. Show that

$$v_1 \wedge \cdots \wedge v_n = \det(v_1, \ldots, v_n) e_1 \wedge \cdots \wedge e_n.$$

(Hint: how does one characterize the determinant?)