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Abstract

We consider a category called POLY whose objects are polytopes and whose arrows
are affine mappings. In Chapter 1 we introduce this category and another category
consisting of “cones” and linear mappings, which proves to be useful in studying
POLY. In Chapter 2 we give a construction providing a tensor product for polytopes.
Additionally, we present a right adjoint to this tensor product, which gives us a
natural way of indentifying the hom-sets of POLY with polytopes. We then proceed
to describe the facets and some of the vertices of these “internal homs”. In Chapter 3
the limits and colimits of POLY are discussed. The main thrust of Chapter 4 is
towards examining the categorical properties of simplices. After a detour involving
the characterization of when monos and epis split in POLY, we prove that the
simplices are the regular projectives of POLY. From there we use simplices to define
the notion of a “kernel-polytope”, and we examine its properties. Chapter 5 presents
a couple of negative results. We find that taking the polar of a polytope does not
yield a functor “in a natural way”. We also show that the polar is not a dual in the
categorical sense, at least with respect to the tensor product.





Chapter 1

Introduction to POLY and CONE

1.1 Categories

A category consists of the following things:

• a collection of objects

• a collection of arrows

• two operations, dom and cod, that assign to each arrow an object, called the
domain and codomain, respectively

• an operation, ◦, that assigns to each pair of arrows (f, g) for which dom(f) =
cod(g) an arrow f ◦ g, whose domain is dom(g) and whose codomain is cod(f)

Further, these things must satisfy the following two properties to be considered a
category:

• Associativity. For any three arrows f, g, h (which have appropriate domains
and codomains), f ◦ (g ◦ h) = (f ◦ g) ◦ h.

• Identity arrows. For each object A there is an arrow 1A with domain and
codomain both A such that 1) f ◦ 1A = f for any arrow f with dom(f) = A,
and 2) 1A ◦ g = g for any arrow g with cod(g) = A.

Notation. We often write A ∈ C if A is an object in some category C, while we
write f in C if f is an arrow in C.

Examples. An example of a category is SET whose objects are sets and whose
arrows are just mappings between them. The composition of the arrows is the usual
composition of mappings, and the identity arrows are the usual identity mappings.

Another example is the category whose objects are again sets, but whose arrows
are relations. In detail, if A and B are sets, then an arrow between them would be
a subset of A× B. Composition can then be defined as follows. Given R ⊆ A× B
and S ⊆ B × C,
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S ◦R := {(a, c) | ∃ b s.t. (a, b) ∈ R and (b, c) ∈ S}.

Associativity does indeed follow, and identity arrows are given by the diagonal,
{(a, a) | a ∈ A}.

A third example is one whose objects are finite-dimensional vector spaces over
R, and whose arrows are linear maps. We shall call this category VEC.

1.2 A category of polytopes

1.2.1 Affine mappings

An element x ∈ Rn is said to be an affine combination of p1, . . . , pk ∈ Rn if there
exist real numbers r1, . . . , rk such that

k∑
i=1

ri = 1 and
k∑

i=1

ripi = x

A subset P ⊆ Rn is called an affine subspace if all affine combinations of elements
from P are actually in P . It can easily be seen that P is an affine subspace iff P − p
is a linear subspace of Rn for some (hence, any) p ∈ P .

The affine span of a subset P of Rn, denoted affspan(P ), is the smallest affine
subspace that contains P . For example, the affine span of a line segment in R2 is
given by extending the line segment into a line (which does not have to go through
the origin). The dimension of affspan(P ) is given by the dimension of the linear
subspace affspan(P )− a for any a ∈ affspan(P ) (this is well-defined).

Let P and Q be subsets of Rn and Rm, respectively. Let f : P → Q be a mapping.
A mapping f is called an affine mapping if it preserves affine combinations, i.e., for
every affine combination

∑k
i=1 ripi of elements of P that is in P , we have

f(
k∑

i=1

ripi) =
k∑

i=1

rif(pi)

It can be shown that a mapping f : P → Q is affine iff there exists a linear mapping
` : Rn → Rm and an element y ∈ Rm such that f(p) = `(p) + y for p ∈ P .

A set of vectors vi is said to be affinely independent if for any scalars βi with∑
βi = 0 and

∑
βivi = 0, it follows that βi = 0. It can be shown that vi are

affinely independent iff {vi−v1 | i ≥ 2} is linearly independent. Thus, for any affine
subspace P , the largest affinely independent subset of P has size s + 1 iff P has
dimension s. Also, an affine map f : P → Q is determined by where it sends any
largest affinely independent set.

A convex combination is the same thing as an affine combination, except that
we require the scalars to be non-negative. I.e., if

∑k
i=1 ri = 1 and ri ≥ 0 for each

i, then
∑k

i=1 ripi is a convex combination of P . A subset of a real coordinate space
is called convex if it is closed under taking convex combinations. The convex hull
of A, denoted conv(A), is the smallest convex set containing A. In fact, conv(A) =
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{
∑

riai |
∑

ri = 1, ri ≥ 0, ai ∈ A}. We may speak of a map preserving convex
combinations, as we did with affine combinations.

It turns out that for any convex set P , a mapping f : P → Q, where Q is a
subset of some real coordinate space, preserves convex combinations iff it preserves
affine combinations. One direction of this is trivial. The other direction, in which
we are given a map f that preserves convex combinations, can be proven by showing
that there exists a (unique) affine extension of f to the affine span of P . Further,
one can prove by induction that a map f with a convex domain P preserves convex
combinations iff it preserves “binary convex combinations” — i.e., for any r ∈ [0, 1]
and p, p′ ∈ P we have f(rp + (1− r)p′) = rf(p) + (1− r)f(p′). As we shall mainly
be dealing with convex sets, these results simplify the calculations in proving a map
is affine, and are used implicitly in what follows.

1.2.2 Polytopes

A subset P ⊆ Rn is called a polytope if there exists a finite subset A of Rn such
that conv(A) = P . The dimension of a polytope is given by the dimension of the
affine span of the polytope.

Another characterization of the polytope involves considering intersections of
halfspaces. A subset S of Rn is called a closed halfspace if there exists an element y
in Rn and a real number r such that S = {x ∈ Rn | y · x ≤ r}. A finite intersection
of closed halfspaces is described by a system of inequalities. Such systems will be
denoted by using matrices. E.g.,{

(a1, b1) · ~x ≤ r1

(a2, b2) · ~x ≤ r2

becomes B~x ≤ ~r where

B =

(
a1 b1

a2 b2

)
and

~r =

(
r1

r2

)
.

Theorem 1. A subset P ⊆ Rn is a polytope iff P is a bounded finite intersection
of closed halfspaces.

proof. See Ziegler pp. 29–32. 2

Let y ∈ Rn and let r be a real number. Then the inequality y · x ≤ r is called
valid for a polytope P ⊆ Rn if all x ∈ P satisfy the inequality. The faces of a
polytope P are then defined as P ∩ {x ∈ Rn | y · x = r} where y · x ≤ r is any valid
inequality. It follows immediately that P and ∅ are faces of any polytope P . Also,
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a face is necessarily a subpolytope, since it is a bounded finite intersection of closed
halfspaces. The faces of dimension 0 are called vertices, those of dimension 1, edges,
and those of dimension dim(P ) − 1, facets. The vertices are particularly useful, as
one can prove the following. Let V be the set of vertices of some polytope P . Then
conv(V ) = P , and if conv(A) = P , then V ⊆ A (see Ziegler p. 52). The barycenter
of a polytope is the average of its vertices: v1+···+vk

k
. The barycenter is always in the

polytope, because it is a convex combination of points in the polytope. The relative
interior of a polytope P is defined as the points in P that are not on any of the
faces of P , except for the face P itself. The n-simplex, ∆n, is defined as follows:

∆n := conv({e1, . . . , en+1}) ⊆ Rn+1

where ei denotes the ith standard basis vector. It is called the “n”-simplex because
it is n-dimensional.

Finally we define a category of polytopes called POLY. The objects are poly-
topes in any real coordinate space, and the arrows are affine mappings between the
polytopes. Verifying that this is a category is straightforward. E.g., since identity
mappings are affine, we have identity arrows. Though this is the category we shall
be most concerned with in what follows, other categories of polytopes are possible.
For instance we could require that each polytope’s barycenter be at the origin, and
that the arrows be linear maps (maps that preserve barycenters). Although this
category seems to be too limited in the number of possible maps, there is a benefit
in the maps being linear. However, we can in a way get the best of both worlds
by considering a new category called CONE. Although its arrows are linear maps,
CONE’s structure closely resembles POLY’s. The relationship between these two
categories provides much of the substance for this thesis.

1.3 A category of cones

A cone is a set C supplied with addition and a scalar multiplication by elements of
R≥0, satisfying the following axioms:

• Addition is associative, commutative, and there is an additive identity

• Scalar multiplication is associative and 1 is a multiplicative identity

• Two distributive laws hold: (r + s)c = rc + sc and r(c + d) = rc + rd for all
r, s ∈ R≥0 and c, d ∈ C

• There is a cancellation law: if a + c = b + c for some a, b, c ∈ C, then a = b.

• There is a finite subset A ⊆ C with span(A) = C.

One should note that there are just two differences from the axioms for a finite-
dimensional vector space. First, for cones we drop the requirement that there be
additive inverses. And second, we add the cancellation law. This cancellation law
indeed does not follow from the other axioms, because one can form a structure that
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satisfies all the regular vector space axioms except the existence of additive inverses,
yet still does not abide by this cancellation law.

Example: The Quasicone. Let D and D′ be two distinct copies of R≥0. Let us
agree that a, b, 5, . . . designate elements of D, while a′, b′, 5′, . . . designate elements
of D′. Now we define a binary operation +̃ on D ∪D′. For a, b ∈ D and a′, b′ ∈ D′,
we say

a +̃ b := a + b
a′ +̃ b := a + b
a +̃ b′ := a + b
a′ +̃ b′ := (a + b)′

We define scalar multiplication, ·, as follows. For a ∈ D, a′ ∈ D′ and r ∈ R≥0, we
say

r · a := ra
r · a′ := (ra)′

It is easily verified that these operations satisfy all the axioms for a cone except the
cancellation law. E.g., if x and y are any elements in D ∪D′ and r is an element of
R≥0, then

r · (x +̃ y) = r · x +̃ r · y

since both sides are clearly “numerically” equal, and the LHS is in D iff one of x
or y is in D iff the RHS is in D. Finally, here is an example that shows that this
structure fails the cancellation law: 5 + 3 = 5′ + 3, but 5 6= 5′.

The objects of the category CONE are cones, while the arrows are the linear
maps between the cones. The next section provides a way of relating POLY and
CONE.

1.4 A functor from POLY to CONE.

Let A and B be categories. A functor F from A to B consists of an operation that
takes each object A ∈ A to an object F (A) ∈ B, and an operation that takes each
arrow f : A → A′ in A to an arrow F (f) : F (A) → F (A′) in B, which satisfy the
following two properties:

• For each object A ∈ A, F (1A) = 1F (A).

• For each composable pair of arrows f and g in A, F (f ◦ g) = F (f) ◦ F (g).

We now define a functor C from POLY to CONE: for any non-empty polytopes
P ⊆ Rn and Q ⊆ Rn, and for any arrow f : P → Q in POLY, we define

C(P ) := R≥0{(p, 1) ∈ Rn+1 | p ∈ P}
C(f)(α(p, 1)) := α(f(p), 1)
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(For P = ∅ we must stipulate that C(P ) := {~0}.) C(P ) is indeed a cone. This
is all straightforward, but I will verify here that C(P ) is closed under addition.
Let α(p1, 1) and β(p2, 1) be elements of C(P ). If α + β = 0, then α = β = 0,
and so α(p1, 1) + β(p2, 1) = (~0, 0) ∈ C(P ). If α + β 6= 0, then αp1+βp2

α+β
∈ P , so

α(p1, 1) + β(p2, 1) = (α + β)(αp1+βp2

α+β
, 1) ∈ C(P ). C(f) is in fact the unique linear

extension of (f × 1) to C(P ).
Here are some examples of the effect of this functor on objects:

C(P )

P



Chapter 2

Tensor product, Internal hom

2.1 Hom-sets

A hom-set is a set whose elements are all the arrows between two objects of a
category. For instance, for polytopes P and Q, hom(P, Q) is the set of all affine
mappings from P to Q. In some categories this set can be given structure in a
natural way so as to make it an object of the category. This is in particular true
for POLY, CONE, and VEC. In this chapter, as we outline how an “internal hom”
can be defined as a right adjoint to a monoidal product, we specifically exhibit the
constructions that work in our categories.

Let C be a category. We define the representable functors : for each object C ∈ C
we define a functor hom(C, •) : C → SET. Explicitly, for D ∈ C and f : D → D′

in C

hom(C, •)(D) := hom(C, D)
hom(C, •)(f) := f∗ : hom(C, D) → hom(C, D′)

Similarly, we can define the contravariant representable functors by hom(•, C). Con-
travariant functors are the same as covariant (regular) functors except that they
reverse the direction of the arrows. For example, for f : D → D′, hom(•, C)(f) is an
arrow from hom(•, C)(D′) to hom(•, C)(D). A contravariant functor F : C → D is
a covariant functor from Cop to D, where Cop is the category obtained by reversing
all the arrows in C (this results in a well-defined category).

Given categories C and D, one may form the product category C ×D, whose
objects are pairs (c, d) where c ∈ C and d ∈ D, and whose arrows are pairs (f, g)
where f is an arrow in C and g is an arrow in D. Composition is defined component-
wise. In particular, we may now speak of the representable bifunctor for any category
C: hom(•, •) : Cop ×C → SET.

2.2 Isomorphism and adjunction

Two objects A and B in a category are isomorphic if there exist arrows f : A → B
and g : B → A such that f ◦ g = idB and g ◦ f = idA. In this case f and g are
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called isomorphisms. With category theory we may additionally capture how two
different constructions can yield “naturally” isomorphic objects.

Let F, G : C → D be functors. A natural transformation from F to G is a
collection of arrows αC : F (C) → G(C) for each object C ∈ C, with the property
that for each arrow f : C → C ′ in C, the following diagram commutes:

F (C)
αC //

F (f)

��

G(C)

G(f)

��
F (C ′) αC′

// G(C ′)

A natural transformation α is called a natural isomorphism if each arrow αC is
an isomorphism. Given any categories C and D one may form a new category
Fun(C,D) whose objects are functors from C to D and whose arrows are natural
transformations. The isomorphisms of objects in this category are just the natural
isomorphisms.

Example. In VEC, there is a natural isomorphism between IdVEC, the identity
functor on VEC, and •∗∗, the double-dual functor. However, •∗ is not naturally
isomorphic to IdVEC.1

Two categories C and D are said to be isomorphic if there are some functors
F : C → D and G : D → C such that F ◦G = IdD and G◦F = IdC. The categories
C and D are said to be equivalent if the weaker condition holds that F ◦G ∼= IdD and
G ◦F ∼= IdC (i.e., these functors are naturally isomorphic). A still weaker condition
is that F and G are adjoints of each other. Although any two functors that form
an equivalence of categories will be adjoints of each other, an adjunction in general
says more about the nature of the functors than the underlying categories.

A functor F : C → D is a left adjoint of a functor G : D → C (equivalently, G
is a right adjoint of F ) if there exists a natural isomorphism between the functors

hom(F (•), •) : Cop ×D → SET

and

hom(•, G(•)) : Cop ×D → SET.

Equivalently we can say: there is a collection of bijections

ϕC,D : hom(F (C), D) → hom(C, G(D))

that is “natural in C and D”. This means that for any two arrows f : C → C ′ in C
and g : D → D′ in D, the following diagrams commute:

1Strictly speaking it does not make sense to speak of a natural isomorphism between a con-
travariant functor (•∗) and a covariant one (IdVEC), but a dinatural isomorphism — a more
general notion — makes sense, but still is not satisfied here. See MacLane pp. 214-6.
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hom(F (C ′), D)
ϕC,D //

hom(F (f),IdD)

��

hom(C ′, G(D))

hom(f,IdG(D))

��
hom(F (C), D) ϕC′,D

// hom(C, G(D))

hom(F (C), D)
ϕC,D //

hom(IdF (C),g)

��

hom(C, G(D))

hom(IdC ,G(g))

��
hom(F (C), D′) ϕC,D′

// hom(C, G(D′))

One can show that any two left adjoints of the same functor are naturally isomorphic,
and similarly for right adjoints.

Example. Many “forgetful” functors have left adjoints. For instance, let Grp
be the category whose objects are groups and whose arrows are homomorphisms,
and let G : Grp → SET be the functor that takes a group to the set consisting
of its elements: G forgets about the structure of the group. Then define a functor
F : SET → Grp that takes a set X to the free group generated by X. It follows that
F is a left adjoint of G, because of the correspondence between maps F (A) → B
and A → G(B), where A is a set and B is a group.

2.3 Monoidal products

A monoidal product on a category C consists of the following data:

1. a functor ⊗ : C×C → C

2. a natural isomorphism αABC : (A⊗B)⊗ C → A⊗ (B ⊗ C)

3. a designated “unit object” I ∈ C, with two natural isomorphisms λA : I⊗A →
A and ρA : A⊗ I → A

This data must satisfy the following:

• Associativity axiom. For any objects C1, . . . , Cn, if we are given two objects
E1 and E2 obtained by adding parentheses and (possibly) I’s to the expression
C1 ⊗ · · · ⊗Cn, then any two isomorphisms of E1 and E2 composed of α’s, λ’s,
ρ’s, and their inverses, are equal.

The associativity axiom ensures that there is a canonical isomorphism between any
such objects E1 and E2. The following theorem provides a way of checking whether
this axiom is satisfied.

Theorem 2. [Coherence] Let a category be supplied with the data 1–3 above. Then
⊗ is a monoidal product, i.e. it satisfies the associativity axiom, iff the following three
properties hold:
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1. λI = ρI : I ⊗ I → I
2. For all objects A and B, this “triangle diagram” commutes:

(A⊗ I)⊗B
α //

ρA⊗IdB ''NNNNNNNNNNN
A⊗ (I ⊗B)

IdA⊗λBwwppppppppppp

A⊗B

3. For all objects A, B, C, and D, this “pentagon diagram” commutes:

((A⊗B)⊗ C)⊗D
α //

α⊗IdD

��

(A⊗B)⊗ (C ⊗D) α // A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D α
// A⊗ ((B ⊗ C)⊗D)

IdA⊗α

OO

proof. See MacLane pp. 161-166. 2

Examples. Define a functor × : SET × SET → SET by saying that for sets A, B
and mappings f : A → B and g : A′ → B′

A×B := the regular cartesian product
(f × g)(a, a′) := (f(a), g(a′))

Then ×, supplied with a one-element set I and the obvious natural isomorphisms
α, λ, and ρ, is a monoidal product for SET. The disjoint union of sets, with I := ∅,
gives another monoidal product for SET. The usual tensor product ⊗ on VEC is
another example.

A monoidal category (a category with a given monoidal product) is called sym-
metric if it is supplied with isomorphisms γAB : A⊗B → B⊗A so that the associa-
tivity axiom, when enhanced with γ and its inverse, is still satisfied. The relevant
coherence theorem asserts that only the following three diagrams are required to
commute for all objects A, B, and C:

A⊗B

IdA⊗B

77
γ // B ⊗ A

γ // A⊗B

I ⊗ A
γ //

λA ""F
FF

FF
FF

FF
A⊗ I

ρA
||xx

xx
xx

xx
x

A

(A⊗B)⊗ C
α //

γ⊗IdC

��

A⊗ (B ⊗ C)
γ // (B ⊗ C)⊗ A

α

��
(B ⊗ A)⊗ C α

// B ⊗ (A⊗ C)
IdB⊗γ

// B ⊗ (C ⊗ A)

For a proof of this coherence theorem see MacLane “Natural associativity and com-
mutativity” pp. 28-46.
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2.4 Tensor products for cones

In this section we develop the notion of the tensor product for cones, and we show
that it gives us a monoidal product on CONE.

2.4.1 Congruence relations on cones

Let C be a cone. A congruence relation on C is an equivalence relation ∼ on C
with two additional properties:

1. For any a, b ∈ C and r ∈ R≥0, a ∼ b =⇒ ra ∼ rb, and

2. For any a, b, c ∈ C, a ∼ b ⇐⇒ a + c ∼ b + c.

Let ∼ be a congruence relation on C. Now we define a new cone C /∼ that consists
of the equivalence classes of ∼. Addition and scalar multiplication are defined as
expected using representative elements. That this works is ensured by 1 and the
right implication-direction of 2. For instance, we must verify that if a ∼ a′ and
b ∼ b′, then a + b ∼ a′ + b′. Here we apply 2 twice to obtain a + b ∼ a′ + b ∼ a′ + b′.
All of the cone axioms are satisfied by inheritance except the cancellation law, which
in this case says that for all ā, b̄, c̄ ∈ C /∼, ā+ c̄ = b̄+ c̄ ⇒ ā = b̄. But this statement
is exactly the left implication-direction of 2. This additional assumption on the
equivalence relation is indeed necessary, for one can otherwise obtain a quotient
that is not actually a cone, as the following example illustrates.

Example. Define an equivalence relation on R2
≥0 by saying that for every element

(x, y) and (x′, y′) in R2
≥0,

(x, y) ∼ (x′, y′) ⇐⇒
{

(x, y) = (x′, y′), or
y, y′ 6= 0 and x + y = x′ + y′

It is easily verified that ∼ is an equivalence relation, and that it satisfies 1 and the
right implication-direction of 2. However, we have (1, 0) + (0, 1) = (1, 1) ∼ (0, 2) =
(0, 1) + (0, 1), but (1, 0) 6∼ (0, 1), so it doesn’t satisfy the left implication-direction.
It still makes sense to speak of R2

≥0 /∼, but it is not a cone. In fact, it is isomorphic
to the Quasicone defined earlier.

Let C ′ be a subcone of C. Define a cone equivalence relation RC ′ on C by saying
that for all a, b ∈ C,

RC ′(a, b) ⇐⇒ there exist c, d ∈ C ′ such that a + c = b + d.

That this is a congruence relation on C is easily verified. Thus, for any subcone C ′ of
a cone C, we may form the quotient C/C ′ := C/RC ′. There is an obvious mapping
φ : C → C/C ′ that takes each element to its equivalence class. This quotient has
the following property: given a linear mapping f : C → X with f(C ′) = 0, there is
a unique mapping u : C/C ′ → X such that u ◦ φ = f , as suggested by the following
diagram:
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C
f //

φ
��

X

C/C ′
∃!u

<<

Given any relation X ⊆ C2 on a cone C, one may form the congruence relation
E(X) generated by X, which is defined by

E(X) :=
⋂
{Y ⊆ C2 | X ⊆ Y and Y is a congruence relation on C}

This is well-defined, since the intersection of congruence relations is a congruence
relation, and the intersection will never be empty (let Y = C2).

2.4.2 Definition of tensor product for cones

Let C and D be cones. We now define C ⊗D, the tensor product of C and D. Let
A := {f ∈ (R≥0)

C×D | f = 0 almost everywhere}. I.e., A is the set of mappings
from the cartesian product of C and D to R≥0 that send all but a finite number of
points to zero. There is an obvious way to supply A with the structure of a cone:
for f, g ∈ A and r ∈ R≥0, (f +g)(c, d) := f(c, d)+g(c, d), and (rf)(c, d) := rf(c, d).
Temporarily let us write

∑
αi(ci � di) for the mapping f ∈ A that takes (ci, di) to

αi and is zero elsewhere.
Let X be the subset of A2 that contains, for each c, c′ ∈ C, d, d′ ∈ D, and

α ∈ R≥0, all of the following pairs:

((c + c′)� d, (c� d) + (c′ � d)) (1)

(c� (d + d′), (c� d) + (c� d′)) (2)

(α(c� d), (αc)� d) (3)

(α(c� d), c� (αd)) (4)

Finally, C ⊗D := A/E(X). We use
∑

αi(ci ⊗ di) to denote the equivalence class of∑
αi(ci � di).
A mapping of the form f : C ×D → H between cones is called bilinear if for all

c, c′ ∈ C, d, d′ ∈ D, and α ∈ R≥0,

f(c + c′, d) = f(c, d) + f(c′, d)
f(c, d + d′) = f(c, d) + f(c, d′)
f(αc, d) = αf(c, d)

= f(c, αd)

There is a standard bilinear mapping φ : C×D → C⊗D defined by φ(c, d) = c⊗d.

Proposition 3. For any bilinear mapping f : C ×D → H between cones, there is
a unique linear mapping g : C ⊗D → H such that f = g ◦ φ.

proof. Define g : C ⊗D → H by g(c⊗ d) = f(c, d). Is g well-defined? Let
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n∑
i=1

αi(ci ⊗ di) =
k∑

i=1

βi(ei ⊗ fi)

I wish to show that

g(
n∑

i=1

αi(ci ⊗ di)) = g(
k∑

i=1

βi(ei ⊗ fi))

To this end, define

f̃ : A → H

a 7→
∑
(c,d)

a(c, d)f(c, d)

Define a congruence relation Y on A by saying that (a, a′) ∈ Y iff f̃(a) = f̃(a′). It
is easily checked that Y contains all of the pairs designated by items (1) through
(4) above due to f being bilinear. This means that Y ⊇ X. Thus, Y ⊇ E(X). In
other words, if a ≈E(X) a′, then a ≈Y a′. Returning to our original problem, then:

g(
n∑

i=1

αi(ci ⊗ di)) =
n∑

i=1

αig(ci ⊗ di)

=
n∑

i=1

αif(ci, di)

= f̃(
n∑

i=1

αi(ci � di))

= f̃(
k∑

i=1

βi(ei � fi)) [
n∑

i=1

αi(ci, di) ≈E(X)

k∑
i=1

βi(ei, fi)]

=
k∑

i=1

βif(ei, fi)

= g(
k∑

i=1

βi(ei ⊗ fi))

So g is well-defined. Clearly g ◦ φ = f , and there can be no other linear mappings
with this property. 2

In fact, the property of C ⊗ D stated in the proposition completely describes
C⊗D. That is, for any cone L, if there is a bilinear map λ : C×D → L such that for
any cone H and bilinear map f : C×D → H there is a unique linear map g : L → H
for which g ◦ λ = f , then L ∼= C ⊗D. Indeed, we could have used this property to
define the tensor product of cones. Also, since a bilinear map C×D → H gives rise
to a unique linear map C ⊗ D → H in this way, I will often “define” a map from
C ⊗D → H by what it does to elements c⊗ d, omitting the obvious argument that
the map extends uniquely to all of C ⊗D.
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2.4.3 Tensor products for cones and vector spaces related

A tensor product of two vector spaces V and W is a vector space L for which there
exists a bilinear map λ : V ×W → L (bilinear here means the obvious thing) such
that for any vector space H and bilinear map f : V × W → H there is a unique
linear map g : L → H for which g ◦ λ = f . It is easily shown that any two tensor
products are isomorphic, so the tensor product is denoted V ⊗W . We can construct
V ⊗W in the same way that we constructed C ⊗D; the only difference is that we
tensor over R instead of R≥0. One can easily show that if δi is a basis for V and εi

is a basis for W , then δi ⊗ εj is a basis for V ⊗W .
Cones are sometimes vector spaces. Thus there may seem to be some ambiguity

when we consider C ⊗ D as to whether we mean the tensor product as cones or
as vector spaces. However this is not the case, as for any vector spaces C and D,
C ⊗R≥0

D and C ⊗R D are essentially the same thing. The difference lies only in
what scalar multiplication technically means in each case. If one of C or D is not a
vector space, it does not make sense to speak of C ⊗R D.

The tensor product of two cones is sometimes a vector space. For instance,
C ⊗R, all of whose elements can be expressed as c⊗ 1 + c′⊗−1 for some c, c′ ∈ C,
is indeed a vector space (the inverse of c⊗ 1 + c′ ⊗−1 is c′ ⊗ 1 + c⊗−1). In fact,
this construction provides the substance for a useful functor V between CONE and
VEC. But before we define V it will be helpful to note some of the structure of
C ⊗R first.

Lemma 4. Let C be a cone. Let ∆ := {(c, c) ∈ C×C | c ∈ C}. Then (C×C)/∆ ∼=
C ⊗R.

proof. Define

φ : C ×R → (C × C)/∆

(c, r) 7→
{

(rc, 0) if r ≥ 0
(0,−rc) otherwise

Now we show by cases that φ is bilinear. I will only consider one case, since the
rest are similar. Let r ≥ 0, s < 0, and r + s ≥ 0. We need that φ(c, r + s) =
φ(c, r) + φ(c, s). It suffices to show that (rc + sc, 0) = (rc,−sc) in (C × C)/∆.
This, in turn, is true because (0, 0), (−sc,−sc) ∈ ∆, and (rc + sc, 0) + (−sc,−sc) =
(rc,−sc) + (0, 0) in C × C. Now, since we know φ is bilinear we have a linear map
ρ : C ⊗R → (C × C)/∆ with ρ(c⊗ 1) = (c, 0).

Now define

g : C × C → C ⊗R
(c, d) 7→ c⊗ 1 + d⊗−1

Since g is linear and g(∆) = 0, we get a linear map h : (C × C)/∆ → C ⊗R with
h(c, d) = c ⊗ 1 + d ⊗ −1. Since h and ρ are clearly inverses of each other, we have
that (C × C)/∆ ∼= C ⊗R. 2

Proposition 5. The map i : C → C⊗R defined by i(c) = c⊗1 is a linear injection.
Hence, C is a subcone of C ⊗R.



2.4. TENSOR PRODUCTS FOR CONES 15

proof. Define j : C → (C × C)/∆ by j(c) := (c, 0). Recalling the isomorphism
h : (C×C)/∆ → C⊗R defined in the proof of Lemma 4, I note that i = h ◦ j, so it
suffices to show that j is a linear injection. Clearly it is linear. Assume that (c, 0) =
(d, 0) in (C × C)/∆. Then there are e, f ∈ C with (c, 0) + (e, e) = (d, 0) + (f, f)
holding in C×C. Thus, e = f and c+ e = d+ f . By the cancellation law, c = d. 2

As a corollary, I note that C ⊗R is the smallest vector space containing C. By
this I mean that given any vector space V with an injection C ↪→ V , there exists a
linear injection of C ⊗R into V so that the following diagram commutes:

C
� � i //� q

##G
GG

GG
GG

GG
G C ⊗R� _

∃!
��

V

The map ϕ : C ⊗R → V defined by ϕ(c⊗ 1 + d⊗−1) := c− d can be shown to be
well-defined using Proposition 5. That ϕ is linear and injective is clear.

Definition. [V: CONE → VEC] For any cones C and C ′, and for any linear map
f : C → C ′ define

V(C) := C ⊗R
V(f)(c1 ⊗ 1 + c2 ⊗−1) := f(c1)⊗ 1 + f(c2)⊗−1

I will often denote V(C) by CR. The map V(f) is in fact the unique linear extension
of f to CR.

A nice property of V is that it preserves injections. Let f : C → D be an injection
between cones. Now suppose that V(f)(c⊗ 1 + c′ ⊗−1) = 0. By the linearity and
definition of V(f) we have f(c)⊗1 = f(c′)⊗1. Thus, f(c) = f(c′) by Proposition 5.
Since f is injective we have that c = c′, from which it follows that c⊗1+c′⊗−1 = 0.
Thus, V(f) is injective.

This functor V is actually just one example of a number of functors given by
tensoring by a cone. Let D be cone. Then given any arrow f : C → C ′ in CONE,
there exists a unique arrow f̃ : C ⊗D → C ′ ⊗D such that f̃(c⊗ d) = f(c)⊗ d for
each c ∈ C and d ∈ D. Thus we may define a functor • ⊗D : CONE → CONE as
follows:

(• ⊗D)(C) := C ⊗D

(• ⊗D)(f) := f̃

Proposition 6. Let C and D be cones, and V and W be vector spaces such that
C ⊆ V and D ⊆ W . Then C ⊗D ⊆ V ⊗W . Specifically,

C ⊗D ∼= {
∑

i

αi(ci ⊗ di) ∈ V ⊗W | αi ∈ R≥0, ci ∈ C, and di ∈ D}.
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proof. Since CR and DR are the smallest vector spaces containing C and D, we
have injections v : CR ↪→ V and w : DR ↪→ W . It is easily shown that tensoring
vector spaces by a vector space preserves injections. So we have injections ṽ : CR ⊗
DR ↪→ V ⊗DR and w̃ : DR ⊗ V ↪→ W ⊗ V . Since tensoring is commutative we get
the injection w̃ ◦ ṽ : CR ⊗DR ↪→ V ⊗W .

By Proposition 5 we have injections iC : C ↪→ CR and iD : D ↪→ DR. We may
form the map iC⊗ iD : C⊗D → CR⊗DR that takes c⊗d to (c⊗1)⊗ (d⊗1). There
is an obvious isomorphism χ : (C ⊗ D)R → CR ⊗ DR defined by χ(c ⊗ d ⊗ 1) : =
(c⊗ 1)⊗ (d⊗ 1). In fact, the following diagram commutes:

C ⊗D
� � iC⊗D//

iC⊗iD &&MMMMMMMMMMM (C ⊗D)R

χ

��
CR ⊗DR

So, iC ⊗ iD is an injection. A trivial calculation shows that w̃ ◦ ṽ ◦ (iC ⊗ iD) is the
desired injection. 2

2.4.4 Tensor product is a monoidal product for cones

We’ve seen how • ⊗D is a functor for any cone D. In fact, • ⊗ • is a functor from
CONE × CONE to CONE. It takes mappings f : C → C ′ and g : D → D′ to the
mapping f ⊗ g defined by (f ⊗ g)(c ⊗ d) := f(c) ⊗ g(d). This bifunctor can be
made into a monoidal product. Define I := R≥0. Let the associative isomorphism
αCDE : (C ⊗D) ⊗ E → C ⊗ (D ⊗ E) be the map defined by αCDE((c ⊗ d) ⊗ e) :=
c ⊗ (d ⊗ e). Trivially this is a natural isomorphism. Define λC : I ⊗ C → C by
λC(r ⊗ c) := rc. This map has as inverse c 7→ 1⊗ c, and is natural in C. Likewise,
define ρC : C ⊗ I → C by ρC(c ⊗ r) := rc. One can easily verify that the three
coherence conditions of Theorem 2 are satisfied, so ⊗, supplied with I, α, λ, and ρ,
is indeed a monoidal product. Further, ⊗ can be made into a symmetric monoidal
product by specifying the natural isomorphism γCD : C ⊗ D → D ⊗ C defined by
γCD(c⊗ d) := d⊗ c. The relevant coherence conditions are satisfied.

2.5 The tensor product for polytopes

It makes sense to speak of biaffine maps (maps that preserve affine combinations
in both coordinates) because for any two polytopes P and Q, P × Q is indeed a
polytope. Thus, it makes sense to speak of a tensor product of polytopes. In this
section we give the construction and show it satisfies the regular tensor product
property. Also, we note how it gives a monoidal product for POLY.

Let P ⊆ Rn and Q ⊆ Rm be polytopes. Then P ⊗Q is defined to be

{
∑

i

αi(pi, 1)⊗ (qi, 1) ∈ Rn+1 ⊗Rm+1 | αi ∈ R≥0 and
∑

i

αi = 1}

Given the isomorphism Rn+1 ⊗Rm+1 ∼= Rnm+n+m+1, this is equivalent to the set of
convex combinations of elements of the form
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(p1q1, . . . , piqj, . . . , pnqm, p1, . . . , pn, q1, . . . , qm, 1)

where (p1, . . . , pn) ∈ P and (q1, . . . , qm) ∈ Q.
By Proposition 6, C(P )⊗ C(Q) is given by

{
∑

αi(pi, 1)⊗ (qi, 1) ∈ Rn+1 ⊗Rm+1 | αi ∈ R≥0}

Thus, it follows that P ⊗Q is a subset of this cone. Further, P ⊗Q is a “slice” of
C(P )⊗C(Q) in the following sense. Let ei be the standard basis for Rn+1 and let fi

be the standard basis for Rm+1. For any x ∈ Rn+1 ⊗Rm+1 let us use x(n+1)(m+1) to
denote the coefficient of en+1 ⊗ fm+1 in the representation of x by the basis ei ⊗ fj.
Then

P ⊗Q = {x ∈ C(P )⊗ C(Q) | x(n+1)(m+1) = 1}.

Clearly, P ⊗ Q is a polytope in Rn+1 ⊗ Rm+1 since it is generated by a finite
set, namely {(p, 1) ⊗ (q, 1) | p ∈ vert(P ) and q ∈ vert(Q)}. However, it remains
to be seen that P ⊗ Q is indeed a tensor product. To this end, define the obvious
biaffine map λ : P ×Q → P ⊗Q by λ(p, q) := (p, 1)⊗ (q, 1), and let f : P ×Q → H
be a biaffine mapping. We need to show that there exists a unique affine map
g : P ⊗ Q → H such that g ◦ λ = f . Define a map f̃ : C(P ) × C(Q) → C(H) by
saying f̃(r(p, 1), s(q, 1)) := rs(f(p, q), 1). This is indeed well-defined and, in fact,
bilinear. Thus, by Proposition 3 we get a linear map g′ : C(P )⊗C(Q) → C(H) with
g′ ◦ φ = f̃ , where φ is the standard map from C(P ) × C(Q) to C(P ) ⊗ C(Q). In
particular, we have

g′((p, 1)⊗ (q, 1)) = (f(p, q), 1)

Using the isomorphism {(h, 1) ∈ C(H)} ∼= H, and restricting g′ to P ⊗Q, we obtain
an affine map g : P ⊗Q → H with g(λ(p, q)) = f(p, q), as desired. Clearly g is the
unique affine map with this property.

This tensor product provides a symmetric monoidal product for POLY. We may
define the functor • ⊗ • : POLY × POLY → POLY on arrows by letting f ⊗ g be
defined by (p, 1) ⊗ (q, 1) 7→ (f(p), 1) ⊗ (g(q), 1) for affine maps f : P → P ′ and
g : Q → Q′. We let I := R0, a polytope of one element. And we let α, λ, ρ, and γ
be the obvious natural isomorphisms. The coherence conditions are indeed satisfied.
Thus we have

Proposition 7. POLY, supplied with ⊗, is a symmetric monoidal category.

2.6 Internal hom

Let C be a category with a monoidal product ⊗. Then for each object B ∈ C there
is a functor • ⊗ B. An internal hom for C is a collection of functors [B, •], one for
each object B, such that [B, •] is a right adjoint of • ⊗ B. A symmetric monoidal
category is called closed if such an internal hom exists. Given an internal hom [B, •],
there is a unique way to make [•, •] into a functor from Cop×C to C such that the
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isomorphism ϕ : hom(A⊗B, C) → hom(A, [B, C]) becomes natural in A, C, and B.
This is the “adjunctions with a parameter” theorem in MacLane p. 100.

We now define a functor [•, •] : CONEop × CONE → CONE. For cones C and
D, [C, D] is defined as hom(C, D) supplied with cone structure in the obvious way.
For instance, for f, g : C → D, f + g : C → D is defined by (f + g)(c) := f(c)+ g(c).
All the axioms for a cone are satisfied, including the cancellation law. For maps
f : C ′ → C and g : D → D′, [f, g] := f ∗ ◦ g∗. One can easily verify that f ∗ ◦ g∗ is
linear, [IdC , IdD] = Id[C,D], and that [f ′, g′] ◦ [f, g] = [f ◦ f ′, g′ ◦ g] for appropriate
maps f , f ′, g, and g′. Thus, [•, •] is indeed a functor.

Now we verify that for any cone D, the functor [D, •] is a right adjoint of •⊗D.
We need a collection of bijections ϕCE : hom(C ⊗D, E) → hom(C, [D, E]) natural
in C and E. Define ϕ by ϕCE(x)(c)(d) = x(c⊗ d). We wish to show that ϕ has an
inverse. Let y be a linear map from C to [D, E]. Since the map η : C×D → E defined
by η(c, d) := y(c)(d) is bilinear, there is a map x : C⊗D → E with x(c⊗d) = y(c)(d).
Clearly, this mapping y 7→ x is an inverse of ϕ. Let f : C ′ → C be linear. To verify
that ϕ is natural in C, one must verify that the following diagram commutes.

hom(C ⊗D, E)
ϕCE //

(f⊗IdD)∗

��

hom(C, [D, E])

f∗

��
hom(C ′ ⊗D, E) ϕC′E

// hom(C ′, [D, E])

I omit the easy diagram chase. Now let f : E → E ′. Naturality in E amounts to
this diagram commuting:

hom(C ⊗D, E)
ϕCE //

f∗
��

hom(C, [D, E])

[IdD,f ]∗
��

hom(C ⊗D, E ′) ϕCE′
// hom(C, [D, E ′])

Again, I omit the diagram chase. One may verify that ϕ is also natural in D,
demonstrating that the functor [•, •] we defined is the functor we would get if we
applied the “adjunctions with a parameter” thereom to [D, •].

To form an internal hom for POLY, we use the same procedure as we did for cones,
except here we must make the identification of affine maps with matrices and hence
real coordinates. Let P be a polytope of dimension s, and let Q ⊆ Rm be a polytope
defined by the l inequalities Bx ≤ z. First let φP : affspan(P ) → Rs be an affine
isomorphism. The affine maps from Rs to Rm can be identified with matrices in the
usual way. Explicitly, an m× (s + 1) matrix A takes a point ~x = (x1, . . . , xs) ∈ Rs

to

A

(
~x
1

)
=

 a11 · · · a1s c1
...

...
...

am1 · · · ams cm




x1
...
xs

1


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Further, via φP , each affine map f : P → Q may be identified with a unique map
Rs → Rm. To summarize this identification, let MPQ : hom(P, Q) → [P, Q] ⊆
Rm(s+1) be the bijective map that takes each affine map to its matrix representation;
[P, Q] is defined simply as the image of this map. Explicitly,

[P, Q] := {A ∈ Rm(s+1) | A
(

φP (p)
1

)
∈ Q, ∀p ∈ P}

We wish to show that [P, Q] is indeed a polytope. Let v1, . . . , vs+1 be s + 1 affinely
independent vertices of P . Then

[P, Q] = {A ∈ Rm(s+1) | A
(

φP (v)
1

)
∈ Q, ∀v ∈ vert(P )}

⊆ {A ∈ Rm(s+1) | A
(

φP (vi)
1

)
∈ Q, ∀i with 1 ≤ i ≤ s + 1}

∼= Qs+1

So [P, Q] is bounded. Further, we shall presently show that the inequalities in

[P, Q] = {A ∈ Rm(s+1) | BA

(
φP (v)

1

)
≤ z, ∀v ∈ vert(P )}

can be rearranged to obtain an intersection of half-spaces, thereby ensuring that
[P, Q] is a polytope. To this end, let us make the following definitions. Assume P
has k vertices, and let us consider them (via φP ) as elements ~vi of Rs. Let us use
(vi1, . . . , vis) to denote the representation of ~vi by the standard basis. Define

V̄ :=

 v11 · · · v1s 1
...

...
...

vk1 · · · vks 1

 =

 ~v1 1
...

...
~vk 1



B ⊗ V̄ :=

 b11V̄ · · · b1mV̄
...

...
bl1V̄ · · · blmV̄



~z := z ⊗

 1
...
1

 k times

 :=



z1
...
z1

...

zl
...
zl


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and note that an element

A =

 a11 · · · a1s c1
...

...
...

am1 · · · ams cm

 ∈ Rm(s+1)

may be considered a column vector 

a11

a12
...
c1

...

am1
...
c1


Then it is easily verified that

[P, Q] = {A ∈ Rm(s+1) | (B ⊗ V̄ )A ≤ ~z}

Given affine mappings f : P ′ → P and g : Q → Q′, we may form a mapping
[f, g] : [P, Q] → [P ′, Q′] by A 7→ MP ′Q′(g ◦M−1

PQ(A)◦f). This mapping can be shown
to be affine because M and its inverse are themselves “affine”. I.e.,

MPQ(rf + (1− r)f ′) = rMPQ(f) + (1− r)MPQ(f ′)

and similarly for the inverse. Since it can be shown that [IdP , IdQ] = Id[P,Q], and
that [f ′, g′] ◦ [f, g] = [f ◦ f ′, g′ ◦ g] for appropriate maps f , f ′, g, and g′, we have a
functor [•, •] : POLYop × POLY → POLY.

The verification that [Q, •] is a right adjoint of •⊗Q for any polytope Q, is very
similar to how we did it for cones. We need a collection of bijections ϕPR natural
in P and R: define

ϕPR : hom(P ⊗Q, R) → hom(P, [Q,R])
x : P ⊗Q → R 7→ p 7→ MQR(q 7→ x(p⊗ q))

This mapping is well-defined in the sense that ϕPR(x) is indeed affine. Further, ϕPR

has a well-defined inverse, namely

ηPR : hom(P, [Q,R]) → hom(P ⊗Q,R)
y : P → [Q,R] 7→ p⊗ q 7→ M−1

QR(y(p))(q)

The argument for naturality in P and R resembles closely the one given for the
naturality of C and E above, and is omitted. Also one can show that ϕ is natural
in Q as well. The above discussion gives us the following proposition:
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Proposition 8. POLY, supplied with ⊗, is a symmetric monoidal closed category.

Let C be a category with monoidal product ⊗. Intuitively, it makes sense to
call a right adjoint [B, •] an “internal hom” because in this case there is a functor
F : C → SET such that there is an isomorphism F [B, C] ∼= hom(B, C) natural in
B and C. Define F := hom(I, •). Then by adjointness there is an isomorphism
ϕ : hom(I ⊗B, C) → hom(I, [B, C]) natural in C and, as per the adjunction with a
parameter theorem, in B. Since we have the natural isomorphism λ : I ⊗ B → B,
we can obtain a natural isomorphism hom(B, C) ∼= hom(I ⊗ B, C). Putting these
two natural isomorphisms together we get

hom(B, C) ∼= hom(I, [B, C])

In the case of CONE and POLY this returns the isomorphisms hom(R≥0, [C, D]) ∼=
hom(C, D) and hom(R0, [P, Q]) ∼= hom(P, Q).

Now that we have been explicit about how hom(•, •) and [•, •] are related, I will
be more care-free with notation by saying, for instance, “hom(P, Q)” when I mean
“[P, Q]”.

2.7 Some properties of hom(P, Q)

2.7.1 Dimension of hom(P, Q)

Proposition 9. Let P and Q be polytopes of dimension s and t, respectively. Then
dim(hom(P, Q)) = (s + 1)t.

proof. Since the dimension of P is s, there is an injection P ↪→ ∆s. By way
of this injection, we may identify hom(∆s, Q) with a subset of hom(P, Q). Since
hom(∆s, Q) ∼= Qs+1 and so hom(∆s, Q) has dimension (s + 1)t, we conclude that
the dimension of hom(P, Q) is at least this amount. Yet it cannot be more, since
the linear space of all affine mappings from Rs to Rt has dimension (s + 1)t and
hom(P, Q) can be identified with a subset of this space. 2

2.7.2 Facets of hom(P, Q)

In this section we prove that the facets of hom(P, Q) are given by selecting a vertex
of P and a facet of Q. Explicitly, if v is a vertex of P and L is a facet of Q, then
{f ∈ hom(P, Q) | f(v) ∈ L} is a facet of hom(P, Q), and each facet of hom(P, Q)
arises in this way. And, in particular, if there are k vertices of P and l facets of Q,
then there are kl facets of hom(P, Q).

Recall that a polytope Q ∈ Rm may be written as a bounded, finite intersection
of closed half-spaces, where each half-space is represented by an inequality bi ·x ≤ zi.
It can be shown that such a collection of inequalities can always be reduced to obtain
a collection that gives the same intersection but is not redundant. (A collection of
inequalities is redundant if there is some inequality that is satisfied whenever the
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other inequalities are satisfied, i.e., this inequality is unnecessary, or redundant.)
Further, the facets of a full-dimensional polytope are given by the inequalities of
any non-redundant collection of inequalities defining the polytope. I.e., if Q = {x ∈
Rm | B · x ≤ z} is full-dimensional and B · x ≤ z is not redundant, then for each
row bi of B, we get a unique facet {x ∈ Rm | bi · x = zi}, and all the facets of Q
arise in this way. (For justification cf. Brøndsted pp. 52-53)

Let P ⊆ Rn and Q ⊆ Rm be full-dimensional polytopes, and let Q = {x ∈ Rm |
B · x ≤ z} for some non-redundant collection of inequalities B · x ≤ z. It follows
from Proposition 9 that hom(P, Q) is full-dimensional. In section 2.6 we presented
hom(P, Q) as an intersection of half-spaces:

hom(P, Q) = {A ∈ Rm(n+1) | (B ⊗ V̄ )A ≤ ~z}.

Note that each inequality of (B⊗V̄ )A ≤ ~z may be rearranged to obtain an inequality
of the form

bi · A


v1
...

vn

1

 ≤ zi

where bi · x ≤ zi represents a facet of Q, and v is a vertex of P . Thus, if we show
that (B ⊗ V̄ )A ≤ ~z is not redundant, then it follows that the facets of hom(P, Q)
are exactly given by {A ∈ Rm(s+1) | bi · (Av) = zi} = {f ∈ hom(P, Q) | f(v) ∈ L}
where the L is the facet defined by an inequality bi · x ≤ zi, and v is a vertex of P .

We will prove that the collection (B ⊗ V̄ )A ≤ ~z of inequalities is not redun-
dant, but first we need to make a couple of observations. First, even though we
are assuming that P and Q are full-dimensional, our results actually apply to all
hom-polytopes, because the properties we are interested in are preserved by affine
isomorphism. Likewise, we may assume that 0 is in the relative interior of Q. In this
case, the column vector z consists only of positive numbers, since for each inequality
bi · x ≤ zi we must have 0 = bi · 0 < zi (otherwise 0 would be in some facet). Thus,
we may further assume that z consists only of 1’s, as the inequality bi · x ≤ zi is
equivalent to bi

zi
· x ≤ 1.

Second, we will make use of the Farkas Lemma. One of the forms of this lemma
states that a collection C · x ≤ y of w inequalities is redundant iff one of these
inequalities, say ci · x ≤ yi, has the property that

1. there is a non-negative row vector d = (d1, . . . , dw−1) with d · C̃ = ci and
d · ỹ ≤ yi, or

2. there is a non-negative row vector d = (d1, . . . , dw−1) with d · C̃ = 0 and
d · ỹ < 0

where C̃ is the matrix C with the row ci removed, and ỹ is y with yi removed (see
Ziegler p. 41). We will in fact use this lemma twice in our proof, once for B · x ≤ z
and once for (B ⊗ V̄ )A ≤ ~z.
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Lemma 10. Let P ⊆ Rn be a full-dimensional polytope with k vertices ~v1, . . . , ~vk.
Define the matrix

V̄ :=

 ~v1 1
...

...
~vk 1


Let Q ⊆ Rm be a full-dimensional polytope with l facets. Let Q = {x ∈ Rm | B ·x ≤
z} for some non-redundant collection of inequalities B ·x ≤ z, with z consisting only
of 1’s. Let ~z be the matrix consisting of kl 1’s in one column. Then the collection
of inequalities (B ⊗ V̄ )A ≤ ~z is not redundant.

proof. Suppose, to get a contradiction that (B ⊗ V̄ )A ≤ ~z is redundant. Let
C = B ⊗ V̄ . The Farkas Lemma says that either condition 1 or 2 above is met.
Since ~z consists only of 1’s, condition 2 would imply that

∑
di < 0, so it cannot

be met. Thus there is a non-negative row vector d = (d2, . . . , dlk) with d · C̃ = c
and

∑lk
i=2 di ≤ 1, for some row c of C. However, we might as well assume that c is

the first row of C. Here is a representation of C with the first row removed (the k
vertices of P are written as (v11, . . . , v1n), . . . , (vk1, . . . , vkn)):

b11v11 b11v12 · · · b11v1n b11 · · · b1mv11 b1mv12 · · · b1mv1n b1m

b11v21 b11v22 · · · b11v2n b11 b1mv21 b1mv22 · · · b1mv2n b1m

...
...

...
... · · · ...

...
...

...

b11vk1 b11vk2 · · · b11vkn b11 b1mvk1 b1mvk2 · · · b1mvkn b1m

b21V̄ · · · b2mV̄

...
...

bl1V̄ · · · blmV̄

Notice how we organized the rows of C̃ into l blocks. For each 2 ≤ i ≤ l, define

ei :=
ik∑

j=(i−1)k+1

dj

and define e1 :=
∑k

j=2 dj. Let e := (e1, e2, ..., el). We have grouped the elements

of d based on what block they multiply in d · C̃, and have taken the sum of each
group. Now restrict your attention to the i(n + 1)th columns for 1 ≤ i ≤ m. Since
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d · C̃ = c, it follows that e1b1i + e2b2i + · · · + elbli = b1i for each 1 ≤ i ≤ m. I.e.,
e1b1 + e2b2 + · · ·+ embm = b1, where bi denotes the ith row of B. I wish to show that
e1 = 1 (and hence ei = 0 for i ≥ 2). Suppose, to get a contradiction, that e1 6= 1.
Then e1 < 1 since

∑l
i=1 ei =

∑lk
i=2 di ≤ 1, and e consists of non-negative numbers.

It follows that

E := (
e2

1− e1

, . . . ,
em

1− e1

)

is a non-negative row vector with the property that E · B̃ = b1 and E · z̃ =
P

i≥2 ei

1−e1
≤

1. Thus, by the Farkas Lemma, B is redundant — a contradiction. So we have
established that e1 = 1 and ei = 0 for i ≥ 2. In particular we learn that di = 0 for
i ≥ k + 1, and

∑k
i=2 di = 1. Since B is not redundant, it contains no row consisting

entirely of zeroes. Hence, we may assume that b11 6= 0. Now restrict your attention
to the first n columns of C̃. Since, d · C̃ = c, it follows that d2b11v2i +d3b11v3i + · · ·+
dkb11vki = b11v1i for 1 ≤ i ≤ n. Since b11 6= 0, we have d2v2i +d3v3i + · · ·+dkvki = v1i

for 1 ≤ i ≤ n. In other words,
∑k

i=2 di~vi = ~v1. Thus, we have a convex combination
of vertices giving another, different vertex. This is a contradiction. 2

Theorem 11. Let P and Q be polytopes. If v is a vertex of P and L is a facet
of Q, then {f ∈ hom(P, Q) | f(v) ∈ L} is a facet of hom(P, Q), and each facet of
hom(P, Q) arises in this way. In particular, if there are k vertices of P and l facets
of Q, then there are kl facets of hom(P, Q).

2.7.3 Some vertices of hom(P, Q)

In this section we prove that a mapping that sends all of P to a vertex q0 ∈ Q is a
vertex of hom(P, Q).

Lemma 12. Let P ⊆ Rn be a full-dimensional polytope with ~0 in the relative
interior of P . Let Q ⊆ Rm be a polytope with a vertex q0. Then the mapping
π : P → Q defined by π(p) := q0 is a vertex of hom(P, Q).

proof. Let v0 · x ≤ r0 be a face-defining inequality for the vertex q0 ∈ Q. Now let
0̄ be the m×n matrix consisting entirely of zeroes. We may adjoin v0 to 0̄ to obtain
an m × (n + 1) matrix, which we will denote 0̄ ∨ v0. Now consider the inequality
0̄ ∨ v0 · x ≤ r0. I claim that it is a valid inequality for hom(P, Q) ⊆ Rm(n+1). Let
ρ ∈ hom(P, Q). Since ~0 ∈ P , ρ may be written in the form A ∨ q for some q ∈ Q
and some m × n matrix A. Now, 0̄ ∨ v0 · A ∨ q = v0 · q ≤ r0, since v0 · x ≤ r0 is
valid for all q ∈ Q. Thus, 0̄ ∨ v0 · x ≤ r0 is valid for hom(P, Q). So it defines a face
of hom(P, Q), but we need make sure that it defines a vertex. I.e., we need to show
that π = 0̄ ∨ q0 is the only element of {A ∨ q ∈ hom(P, Q) | 0̄ ∨ v0 · A ∨ q = r0}.
Since 0̄ ∨ v0 · A ∨ q = r0 implies that q = q0, we know that ~0 ∈ P maps to q0 under
any element of this face. Yet, since ~0 is in the relative interior of P , ~0 is a strictly
positive convex combination of n + 1 affinely independent points in P ; i.e., there
exists λi > 0 and xi ∈ P with

∑
λi = 1 and ~0 =

∑n+1
i=0 λixi (see Ziegler p. 60). So

for a map ρ in this face, ρ(~0) = ρ(
∑n+1

i=0 λixi) =
∑n+1

i=0 λiρ(xi) = q0. But there are



2.7. SOME PROPERTIES OF HOM(P, Q) 25

only trivial convex combinations yielding q0 since q0 is a vertex. Thus, ρ(xi) = q0

for each i, and hence ρ = π. 2

Theorem 13. Let P ⊆ Rn and Q ⊆ Rm be polytopes. Then the map π : P → Q
defined by π(p) := q0, where q0 is a vertex of Q, is itself a vertex in hom(P, Q).

proof. Let dim(P ) = s, and let b denote the barycenter of P . Since b can be
represented by a strictly positive convex combination of s + 1 affinely independent
points in P , b is in the relative interior of P (see Ziegler p. 60). Hence, P̃ :=
P − b has ~0 in its relative interior. We may also assume that P̃ is full-dimensional.
Using the obvious isomorphism θ : P − b → P defined by addition by b, we obtain
an isomorphism hom(θ, IdQ) between hom(P, Q) and hom(P̃ , Q). Since polytope
isomorphisms take vertices to vertices, and hom(θ, IdQ)(π) = π ◦ θ is a vertex in
hom(P̃ , Q) (by Lemma 8), π is a vertex in hom(P, Q). 2





Chapter 3

Limits and Colimits

In this chapter we present categorical constructions called finite limits and the cor-
responding colimits obtained by reversing the arrows involved. The preservation of
these (co)limits by a (co)continuous functor is also discussed.

3.1 Limits

3.1.1 Products

In any category, a product of two objects A and B is an object A×B supplied with
arrows pA : A×B → A and pB : A×B → B such that for any object X and arrows
f : X → A and g : X → B there exists a unique arrow h from X to A×B such that
pA ◦ h = f and pB ◦ h = g. This condition can be presented graphically as:

X
g

##G
GGGGGGGG

f

{{wwwwwwwww
∃!h
��

A A×BpA

oo
pB

// B

In any category, any two products are isomorphic, so one speaks of “the” product.
A category is said to have binary products if for any two objects there is a product.
The categories SET, VEC, CONE, and POLY all have binary products. The regular
cartesian product works in each case.

A terminal object in a category is an object 1 such that for any object A there
exists exactly one arrow from A to 1. A terminal object can be thought of as
a product of no objects. A category is said to have all finite products if it has
binary products and a terminal object. SET, VEC, CONE, and POLY have all
finite products. In SET and POLY any singleton is a terminal object. In VEC and
CONE, {~0} is a terminal object.

3.1.2 Equalizers

In any category, an equalizer of two arrows f, g : A → B is an object E supplied
with an arrow e : E → A such that f ◦ e = g ◦ e, and for any x : X → A with
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f ◦ x = g ◦ x there exists a unique arrow l : X → E such that e ◦ l = x. Here is a
picture summarizing this situation:

E
e // A

f //

g
// B

X

∃!l

OO

x

>>~~~~~~~

It is clear that if E1 and E2 are both equalizers for the same pair of arrows, then
E1

∼= E2. In SET an equalizer for any two functions f, g : A → B is the inclusion of
{a ∈ A | f(a) = g(a)} into A. In POLY the same construction works because this
set is indeed a polytope. In VEC and CONE as well the same construction yields
an equalizer.

3.1.3 Continuity

A functor F : C → D is said to be finitely continuous if it preserves all finite products
and all equalizers. This means three things:

1. Given a terminal object 1 ∈ C, F (1) is a terminal object in D

2. Given a product C × C ′ ∈ C, F (C × C ′) ∼= F (C)× F (C ′)

3. Given an equalizer of any two arrows f, g : C → C ′, F (equalizer(f, g)) ∼=
equalizer(F (f), F (g)).

Neither C nor V is a continuous functor. To see this, let P be a line segment and
let Q be a point. Then P ×Q ∼= P , but C(P )×C(Q) is not isomorphic to C(P ), as
can be seen in the following picture:

C(P )× C(Q)

C(P )

P

C(Q)

Q

Thus, C does not preserve products. Even easier, C(R0) ∼= R≥0 is not isomorphic
to {~0}, so C does not preserve terminal objects. Meanwhile, V does not preserve
equalizers. Let C := {(x, y) ∈ R2 | x ≥ y ≥ −x}. Define f : C → R≥0 by
f(x, y) = x. Then the equalizer of f and 0̃ is {~0}, and V({~0}) ∼= {~0}. However, the
equalizer of V(f) and V(0̃) is a line.
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V(0̃)

V(f)

V(C)

C

f

R≥0

0̃

eq(V(f), V(0̃))

eq(f, 0̃)

V(R≥0)

3.2 Colimits

3.2.1 Coproducts

The coproduct is defined in the same way as the product except that we reverse the
direction of the arrows involved. A coproduct of two objects A and B is an object
A⊕B supplied with arrows pA : A → A⊕B and pB : B → A⊕B such that for any
object X and arrows f : A → X and g : B → X there exists a unique arrow h from
A⊕B to X such that h ◦ pA = f and h ◦ pB = g.

X

A

f
;;wwwwwwwww

pA

// A⊕B

∃!h

OO

B

g
ccGGGGGGGGG

pB

oo

In SET the disjoint union gives the coproduct. In VEC and CONE the coproduct
is actually the same as the product. In POLY, a construction called the “join”
provides a coproduct. Given two polytopes P ⊆ Rn and Q ⊆ Rm we may form a
new polytope called the join of P and Q, which I will denote by P ⊕Q (for obvious
reasons), though it is sometimes denoted P ./ Q, or P ∗Q. Let P ′ := {(p,~0Rm , 0) ∈
Rn ×Rm ×R | p ∈ P}, and let Q′ := {(~0Rn , q, 1) ∈ Rn ×Rm ×R | q ∈ Q}. Then

P ⊕Q := conv(P ′ ∪Q′).

This construction is a coproduct because each element of P ⊕Q is uniquely express-
ible in the form s(p,~0W , 0) + (1− s)(~0V , q, 1) for some s ∈ [0, 1].

An initial object is an object 0 such that for any object A there is a unique
arrow from 0 to A. An initial object can be thought of as a coproduct of no objects.
Initial objects for POLY, SET, CONE, and VEC are ∅, ∅, {~0}, and {~0}, respectively.

3.2.2 Coequalizers

A coequalizer of two arrows f, g : A → B is an object E supplied with an arrow
e : B → E such that e ◦ f = e ◦ g and for any x : B → X with x ◦ f = x ◦ g there
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exists a unique arrow l : E → X such that l ◦ e = x.

A
f //

g
// B

e //

x
  A

AA
AA

AA
E

∃!l
��

X

In SET a coequalizer of two arrows f, g : A → B is given by the smallest equivalence
relation containing {(f(a), g(a)) ∈ B2 | a ∈ A}. I.e., we let D be the set of
equivalence classes of this equivalence relation and we let d : B → D be the mapping
that assigns each element of B to its equivalence class. In the category of vector
spaces a coequalizer of two linear maps f, g : V → W is obtained in a similar way. In
this case W/im(f − g) supplied with the representative mapping is the coequalizer.

To obtain a coequalizer of two arrows in CONE, we make use of the functor V. Let
f, g : C → D be linear maps between cones. Then let v : DR → X be a coequalizer
of V(f), V(g) : CR → DR. Now I claim that v|D : D → v(D) is a coequalizer of
f and g. First, v(D) is certainly a cone. Second, since v ◦ f = v ◦ g, we have
v|D ◦ f = v|D ◦ g. Third, consider an arbitrary arrow h : D → H. There certainly
exists a map u : X → HR such that u ◦ v = V(h). I claim that u(v(D)) ⊆ H,
so that u|v(D) is a map from v(D) to H such that u|v(D) ◦ v|D = h. Well, let
v(d) ∈ v(D). Then u(v(d)) = V(h)(d) = h(d) ∈ H. Further, this map u is unique in
its commuting property since v|D is surjective. I’ve now shown that v|D : D → v(D)
is the desired coequalizer.

CR

V(f) //

V(g)
// DR

v //

V(h) ##F
FFFFFFF X

∃!u
��

HROO
O�
O�
O�
O�

C
f //

g
// D

v|D //

h ##F
FFFFFFFF v(D)

u|v(D)

��
H

The same process using C obtains a coequalizer of any two affine maps f, g : P →
Q between polytopes. Let v : C(Q) → E be a coequalizer of C(f) and C(g). I claim
that v|Q : Q → v(Q) is a coequalizer of f and g (we identify, of course, Q and
{(q, 1) ∈ C(Q) | q ∈ Q}.) So we ask the question: Is v(Q) a polytope? Note first
that v(Q) may be identified with a subset of the vector space ER and hence with
some Rl. Now, is v(Q) convex? Well, since v is linear it is affine, so it preserves all
affine combinations, including convex combinations. It follows that v(Q) is convex.
Is it finitely generated? Take vertices qi for Q. I claim that v(qi, 1) generates v(Q).
This follows easily since v is affine. The rest of the properties of the coequalizer can
be verified just as they were for cones.
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Example. We present an example of a coequalizer in POLY. Let P := [0, 1], let
Q := ∆3, and let E := conv{(0, 0), (1, 0), (0, 1), (1, 1)}. Thus, P is a line segment,
Q is a tetrahedron, and E is a square. Now define the following affine maps:

f : P → Q
0 7→ (1

2
, 1

2
, 0, 0)

1 7→ (0, 0, 1
2
, 1

2
)

g : P → Q
0 7→ (0, 0, 1

2
, 1

2
)

1 7→ (1
2
, 1

2
, 0, 0)

e : Q → E
(1, 0, 0, 0) 7→ (0, 0)
(0, 1, 0, 0) 7→ (1, 1)
(0, 0, 1, 0) 7→ (1, 0)
(0, 0, 0, 1) 7→ (0, 1)

Results from section 4.3 can be used to verify that e is indeed the coequalizer of f
and g.

3.2.3 Cocontinuity

A functor F : C → D is said to be finitely cocontinuous if it preserves all finite
coproducts (this means initial objects and binary coproducts) and all coequalizers.
The functors C and V are both cocontinuous. Let us now see that C is cocontinuous.
First note that trivially C(∅) = {~0}, so C takes initial objects to initial objects.
Next, let P ⊕ Q be the join of two polytopes. We need to show that C(P ⊕ Q) ∼=
C(P )× C(Q). First I note that

C(P )× C(Q) = R≥0{(αp, α, (1− α)q, 1− α) | α ∈ [0, 1], p ∈ P , and q ∈ Q}

Then we may define the mapping φ : C(P )× C(Q) → C(P ⊕Q) by stating that

φ(r(αp, α, (1− α)q, 1− α)) = r(α(p,~0W , 0) + (1− α)(~0V , q, 1), 1)

One can easily verify that this map is well-defined, bijective, and linear. Thus,
C takes binary coproducts to binary coproducts. Finally, consider a coequalizer
h : Q → S of a pair of maps f : P → Q and g : P → Q. We want to show that
C(S) is a coequalizer of C(f) and C(g). Well, let e : C(Q) → E be a coequalizer of
C(f) and C(g). It suffices to show that E ∼= C(S). From section 3.5 we know that
e |Q : Q → e(Q) is a coequalizer of f and g. Thus, e(Q) ∼= S. Further, we have
C(e(Q)) ∼= E since r(e(q), 1) 7→ re(q) is a linear bijection. Finally, since functors
respect isomorphisms, we get E ∼= C(S).

Now we show that V is cocontinuous. Clearly, {~0}R = {~0}, so initial objects get
sent to initial objects. Further we may define a linear isomorphism from (C ×D)R
to CR × DR by sending (c, d) × 1 to (c ⊗ 1, d ⊗ 1). Thus, coproducts are sent to



32 CHAPTER 3. LIMITS AND COLIMITS

coproducts. Now let e : D → E be a coequalizer of f : C → D and g : C → D.
We need to show that ER is a coequalizer of V(f) and V(g). Let h : DR → H be
a coequalizer of V(f) and V(g). It is obvious that h(D) ∼= E, since they are both
coequalizers of f and g. So we just need to show that h(D)R ∼= H. Since h(D)R is
the “smallest vector space containing h(D)”, as discussed in Section 2.4.3, we obtain
an injective linear mapping ζ : h(D)R → H with h(d) ⊗ 1 7→ h(d). Since h(DR) =
span(h(D)), and since h is surjective, as any coequalizer in VEC is surjective, we
obtain that H = span(h(D)). Since the image of ζ is span(h(D)), we know that
ζ is surjective. Thus, ζ is an isomorphism, and so h(D)R ∼= H. Hence, V(E) ∼=
V(h(D)) ∼= H, so V(E) is a coequalizer of V(f) and V(g).

3.3 Pullbacks

There is a rigorous definition of what “limits” (and “colimits”) are, but for our
purposes here it is sufficient just to mention that any finite limit (colimit) may
expressed by using combinations of finite products and equalizers (coproducts and
coequalizers).1 Thus, it is natural to just concern ourselves with (co)products and
(co)equalizers. However, in Chapter 4, we make use of the pullback limit, and it is
convenient to give a thorough treatment now.

A pullback of arrows

B

g

��
A

f
// C

is an object P supplied with arrows p1 : P → A and p2 : P → B such that the square

P
p2 //

p1

��

B

g

��
A

f
// C

commutes, and, further, given any arrows x1 : X → A and x2 : X → B that make
this diagram below commute

X
x2 //

x1

��

B

g

��
A

f
// C

1For a discussion of limits, see, e.g., MacLane pp. 62-74.
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there is a unique arrow u : X → P that makes the following diagram commute:

X x2

��

x1

$$

∃!u

  
P

p2 //

p1

��

B

g

��
A

f
// C

Any category that has products and equalizers also has pullbacks. In detail, to
form the pullback of arrows

B

g

��
A

f
// C

in a category with products and equalizers, first let π1 : A×B → A and π2 : A×B →
B be the product projections, and then let e : E → A × B be the equalizer of the
arrows f ◦ π1 and g ◦ π2. Then E supplied with π1 ◦ e : E → A and π2 ◦ e : E → B
is the desired pullback.

E
π2◦e //

π1◦e

��

e

##G
GG

GG
GG

GG B

g

��

A×B

π2

;;wwwwwwwww

π1

{{ww
ww

ww
ww

w

A
f

// C

This argument shows us that in particular POLY has pullbacks. Explicitly, a pull-
back of affine maps f : P → S and g : Q → S is {(p, q) ∈ P × Q | f(p) = g(q)}
supplied with the evident inclusions (p, q) 7→ p and (p, q) 7→ q. In the case where
f = g, we call the pullback Kf := {(p, p′) ∈ P 2 | f(p) = f(p′)} the kernel pair of f .





Chapter 4

Splitting, Simplices, the
Kernel-polytope

4.1 Monos, epis, splitting

Let C be a category. Let f : A → B be in C. The arrow f is a monomorphism
(mono) if for any object X ∈ C and arrows g1, g2 : X → A we have

f ◦ g1 = f ◦ g2 =⇒ g1 = g2

In SET an arrow is mono iff it is injective. In POLY the same characterization holds.
An arrow f : A → B in C is called an epimorphism (epi) if for any object X ∈ C

and arrows g1, g2 : B → X we have

g1 ◦ f = g2 ◦ f =⇒ g1 = g2

We note that epi is the dual of mono in the sense that an arrow f is a mono in
C iff f is an epi in Cop. In SET an arrow is epi iff it is surjective. In POLY, on
the other hand, the same characterization does not hold. Only the weaker condition
that the affine span of the image of f should cover its codomain is required. In
symbols,

f : A → B in POLY is epi ⇐⇒ affspan(im(f)) ⊇ B

A mono f : A → B is called regular if it is an equalizer of some arrows, i.e., there
exists arrows g, h : B → X such that f is an equalizer of g and h. An epi is regular
if it is a coequalizer of some arrows.

A mono f : A → B in C is said to split if there exists an arrow g : B → A in C
such that g ◦ f = 1A. Similarly, an epi f : A → B is said to split if there exists an
arrow g : B → A such that f ◦ g = 1B. In either case, g is called a splitting. One
may note that for two objects A, B ∈ C, there exists a split mono from A to B iff
there exists a split epi from B to A. This follows from the fact that each statement
is the dual of the other. In SET every mono and every epi splits. However, this is
not the case in POLY; we now proceed to present a characterization of when monos
and epis split in POLY.
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First note that the property of whether a mono splits is preserved by isomor-
phisms. By this we mean that if s : Ã → A and t : B → B̃ are isomorphisms, then
any arrow f : A → B in POLY is a mono that splits iff f̃ : Ã → B̃ is a mono that
splits, where f̃ is defined by f̃(x) = (t ◦ f ◦ s)(x) for all x ∈ Ã.

Let f : A → B be mono. We are interested in whether f splits. Since f is
injective we have that A ∼= im(f), so, by the foregoing observation, we might as well
assume that A ⊆ B and that f is the inclusion of A into B. Furthermore, we may
assume that ~0 ∈ A (and hence that f is linear) since translations are isomorphisms.

In Proposition 13 below we present a characterization of when such an inclusion
splits. Intuitively, it states that there is a splitting iff there is some way in which
we may flatten B to get A. For example, the inclusion of a triangle as a face of a
triangular prism splits, because we may squash the prism down onto the triangle:

Proposition 13. Let A and B be polytopes. Assume ~0 ∈ A, A ⊆ B. Let f : A → B
be the inclusion of A into B. Then f splits iff there exists a linear subspace K such
that B ⊆ K + A and span(B) = K ⊕ span(A), where a splitting is given by the
restriction to B of the projection span(A) ⊕K → span(A) (here “⊕” means direct
sum).

proof. Suppose f splits. Let g : B → A be an affine mapping such that g ◦f = idA

(g is in fact linear). Let g̃ : span(B) → span(A) be the unique linear extension of g to
span(B). Then let K = ker(g̃). To the end of showing that span(B) = K⊕span(A),

let
∑

i

λibi ∈ span(B). Since for any b ∈ B, g2(b) = g(b), we have b− g(b) ∈ ker(g̃).

Thus, ∑
i

λibi =
∑

i

λi[(bi − g(bi)) + g(bi)]

=
∑

i

λi(bi − g(bi)) +
∑

i

λig(bi)

∈ K + span(A)

Now I must show that this is the unique decomposition of an element of span(B)

into its K- and span(A)-parts. Let
∑

i

λibi = k +
∑

i

κiai for some k ∈ K and some
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∑
i

κiai ∈ span(A). Then

g̃(
∑

i

λibi) =
∑

i

λig(bi) = g̃(k +
∑

i

κiai)

=
∑

i

κig(ai)

=
∑

i

κiai

Thus, the span(A)-part must be
∑

i

λig(bi). Immediately it follows that the K-part

must be
∑

i

λi(bi−g(bi)). To show that B ⊆ K+A, let b ∈ B. Since b−g(b) ∈ ker(g̃)

and g(b) ∈ A, we have b = (b− g(b)) + g(b) ∈ K + A.
Now suppose that there exists a linear subspace K with the properties described

in the statement of the proposition. Then for each element b ∈ B there is a unique
element in A, call it g(b), for which there exists an element k ∈ K such that
b = k + g(b). In fact, this mapping g : B → A is the desired left inverse of f . First,
this mapping g is clearly affine. Second, for any a ∈ A, (g ◦ f)(a) = g(a) = a. 2

Now we turn to when epis split in POLY. It is a necessary condition that an epi
be surjective in order to split, but this is not a sufficient condition, as demonstrated
by the following diagram. It depicts the projection of a triangular prism onto a
plane, so that the image is a quadrilateral. To say that this projection splits would
be to say that there exists a plane on which all the vertices of the prism lie. This is
indeed not the case.

Proposition 14. Let P and Q be polytopes. A surjective epi f : P → Q splits iff
there is a selection A of one element from each pre-image f−1(v) where v ∈ vert(Q)
such that dim(conv(A)) = dim(Q).

proof. Suppose that f splits. Then let g : Q → P be an affine map, with f ◦ g =
IdQ. Define the selection A by choosing g(v) ∈ f−1(v) for each vertex v ∈ Q. Since
IdQ is injective, g must be injective, so we have im(g) ∼= Q. Clearly,

im(g) = conv({g(v) | v ∈ vert(Q)}) = conv(A),

so in particular we may conclude that the dimensions of Q ∼= im(g) and conv(A)
are the same.

Suppose that we have a selection A with the required property. Let h : conv(A) →
Q be the restriction of f to conv(A). Clearly h is surjective, since h maps onto all
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the vertices of Q. If we can show that h is also injective, then it will follow that
h’s inverse is a splitting for f . Let a ∈ A, and define linear subspaces Lconv(A) :=

affspan(conv(A)) − a and LQ := affspan(Q) − h(a). Then let h̃ : Lconv(A) → LQ be

the unique linear extension of h. It follows that h̃ is surjective, and that h is injective
iff h̃ is injective. Since dim(conv(A)) = dim(Q), we know, by the definition of the
dimension of a polytope, that dim(Lconv(A)) = dim(LQ). Thus, the linear map h̃
must be injective (by the rank-nullity theorem). Therefore, h is injective. 2

One would like to be able to say something about this selection, but there seems
to be no easy selection that always works. For instance selecting the barycenters of
the pre-images does not work in the following case:

Although this epi — the projection straight downwards — does split, the “barycenter
selection” does not give us a splitting.

4.2 Simplices

Recall that the n-simplex, ∆n, is given by:

∆n := conv({e1, . . . , en+1}) ⊆ Rn+1

An object P in a category C is called a projective if for all objects E, X and for
every arrow f : P → X and epi e : E → X there exists an arrow g : P → E such
that e ◦ g = f , as suggested by the diagram:

E

e

��
P

∃g
>>

f
// X

Let P be a non-empty polytope. Then P is not a projective in POLY. To see this,
note that we can ensure that im(f) is not a subset of im(e).

Regular projectives are defined in the same way as projectives except that we
replace “epi” by “regular epi”. Thus, an object P is called a regular projective if for
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all objects E, X and for every arrow f : P → X and regular epi e : E → X there
exists an arrow g : C → E such that e ◦ g = f . In fact, POLY has a number of
regular projectives, since, as we prove below, the regular projectives are exactly the
simplices (up to isomorphism).

Lemma 15. The regular epis in POLY are exactly the surjections.

proof. Let f : P → Q be an affine surjection of polytopes. Clearly f is epi. We
show that f is the coequalizer of its kernel pair, Kf = {(p, p′) ∈ P 2 | f(p) = f(p′)},
supplied with the evident projections π1 : (p, p′) 7→ p and π2 : (p, p′) 7→ p′. Clearly
we have f ◦ π1 = f ◦ π2. Let x : P → X be an affine map with x ◦ π1 = x ◦ π2. Then
if f(p) = f(p′), certainly x(p) = x(p′). Thus we may define a mapping u : Q → X
by u(f(p)) : = x(p). This map is easily shown to be affine since f and x are affine.
Thus, f is a coequalizer.

Now suppose that f : P → Q is an epi that is also the coequalizer of some arrows
g and h. Then the mapping f̃ : P → im(f) obtained by restricting the codomain
of f has the property f̃ ◦ g = f̃ ◦ h, so since f is a coequalizer, there is a (unique)
map u : Q → im(f) with u ◦ f = f̃ . Let x be a point in Q. We wish to show that
x ∈ im(f). Since f is epi, we may express x as an affine combination of points in
im(f): let x =

∑
αif(pi) for some pi ∈ P and some αi ∈ R with

∑
αi = 1. Since

u ◦ f = f̃ , we have u(x) = u(
∑

αif(pi)) =
∑

αiu(f(pi)) =
∑

αif̃(pi) =
∑

αif(pi).
I.e., u(x) = x, so x ∈ im(f). 2

Proposition 16. Any regular projective in POLY is isomorphic to some simplex,
and every simplex is a regular projective.

proof. First we shall show that ∆n is a regular projective. Let f : ∆n → X be
affine, and let e : E → X be a regular epi. By the lemma we know that e is surjective.
Thus, each of e−1(f(ei)) is non-empty, so from each pick a point vi. Then we may
define an affine map g : ∆n → E by g(ei) := vi. Clearly we have e ◦ g = f .

Now we show that any regular projective is isomorphic to some ∆n. Let P
be a regular projective with n + 1 vertices v1, . . . , vn+1. Let e : ∆n → P be the
affine surjection that takes ei to vi. Then by the lemma, e is a coequalizer, so let
g : P → ∆n be an affine map that commutes in

∆n

e

��
P

g
>>

IdP

// P

We obviously have e ◦ g = IdP ; moreover, since e−1(vi) = {ei} for each i, we have
that g(e(ei)) = g(vi) = ei, so g ◦ e = Id∆n . Thus, P ∼= ∆n. 2

Let P be a polytope with t vertices v1, . . . , vt. Let us agree that ∆(P ) denotes
the simplex that has the same number of vertices as P . We may then obtain an
affine surjection e : ∆(P ) → P that sends ei to vi for each i (e is determined up
to the ordering of the vertices of P ). Now, let us in general denote the kernel pair
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Ke = {(x, y) ∈ ∆(P )2 | e(x) = e(y)} by K(P ), and let us call it the kernel-polytope.
Let f : K(P ) → ∆(P ) and g : K(P ) → ∆(P ) be the evident projections. Since e is
surjective, e is in fact the coequalizer of f and g (cf. the argument of Lemma 11).

K(P )
f //

g
// ∆(P ) e // P

We will call this sequence the standard presentation of P . It is determined up to the
ordering of the vertices of P . A reordering gives the same sequence up to a linear
change of coordinates.

Let P and Q be polytopes and let

K(Q)
fQ //

gQ

// ∆(Q)
eQ // Q

and

K(P )
fP //

gP

// ∆(P )
eP // P

be their respective standard presentations. There is a close relationship between
the arrows a : P → Q and the arrows v : ∆(P ) → ∆(Q) that “respect the kernel-
polytopes”. We will say an arrow v : ∆(P ) → ∆(Q) respects the kernel-polytopes if
there exists an arrow w : K(P ) → K(Q) such that the following diagram commutes:

∆(Q) K(Q)
fQ //

gQoo ∆(Q)

∆(P )

v

OO

K(P )
fP //gPoo

w

OO

∆(P )

v

OO

First note that given any arrow v : ∆(P ) → ∆(Q) that respects the kernel-polytopes,
we may obtain a unique arrow a : P → Q that commutes in this diagram:

∆(Q)
eQ // Q

∆(P )
eP //

v

OO

P

a

OO

This property follows just from the fact that the standard presentation is a co-
equalizer diagram. Indeed, any “coequalizer presentations” A ////B //P and
A′ ////B′ //Q of P and Q will share this property that any arrow between B
and B′ that respects A and A′ will yield a unique arrow a from P to Q. The special
property that the standard presentation has is that, conversely, any arrow a : P → Q
gives rise to some arrow between the presentations. I.e., for any arrow a : P → Q,
there is some arrow v : ∆(P ) → ∆(Q) that respects the kernel-polytopes, and that
commutes in the following diagram:

∆(Q)
eQ // Q

∆(P )
eP //

v

OO

P

a

OO
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To see this, note that since ∆(P ) is a regular projective, and since eQ is a regular
epi, there is some arrow v : ∆(P ) → ∆(Q) that commutes in the above diagram.
Since eP ◦ fP = eP ◦ gP , it follows that eQ ◦ v ◦ fP = eQ ◦ v ◦ gP . Thus, since K(Q)
is a pullback, we have a (unique) arrow w : K(P ) → K(Q) that commutes in the
following diagram:

K(P ) v◦fP

""

v◦gP

$$

∃!w

$$
K(Q)

fQ //

gQ

��

∆(Q)

eQ

��
∆(Q) eQ

// Q

This w ensures that v respects the kernel-polytopes.
In section 4.3 we study the kernel-polytope in more detail, but first we conclude

this section by noting a special property of simplices involving the tensor product
and the join.

Proposition 17. For any polytope P , P ⊗∆n
∼= P⊕(n+1).

proof. I will prove that there is a bijection between the hom-sets hom(P ⊗∆n, X)
and hom(P⊕(n+1), X) that is natural in X. The Yoneda Lemma from category
theory then implies that P ⊗∆n

∼= P⊕(n+1) in POLY. The argument runs as follows:

hom(P ⊗∆n, X) ∼= hom(P, [∆n, X])
∼= hom(P, Xn+1)
∼= hom(P⊕(n+1), X)

where each ∼= represents a set of bijections that is natural in X. The first bijection
is given simply by the fact that the tensor product is the left adjoint of the internal
hom (cf. section 2.6). The second natural bijection can be verified using the bijection
ϕ : hom(P, [∆n, X]) → hom(P, Xn+1) defined by

f : P → [∆n, X] 7→ p 7→ (f(p)(e1), . . . , f(p)(en+1))

The third natural bijection can in fact easily be shown to hold in any category that
has products and coproducts. 2

Remark. In particular, this proposition shows that ∆n
∼= (R0)⊕(n+1). Actually, if

one showed this statement independently, one would obtain an alternative proof of
the proposition. A basic fact from category theory is that right adjoints preserve
limits, and left adjoints preserve colimits (see MacLane pp. 114-115). Thus, since
P ⊗ • is a left adjoint (to the internal hom functor), it preserves coproducts. The
alternative proof would then be:

P ⊗∆n
∼= P ⊗ (R0)⊕(n+1)

∼= (P ⊗R0)⊕(n+1)

∼= P⊕(n+1)
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4.3 The kernel-polytope

Let P ⊆ Rn be a polytope with t vertices v1, . . . , vt. Recall from section 4.2 that
the K(P ) is the kernel-pair of the mapping e : ∆(P ) → P that takes ei to vi. In
Theorem 18 we present the dimension, facets, and vertices of the kernel-polytope
K(P ) in terms of the dimension and vertices of P . It turns out that there is a close
connection between the structure of K(P ) and the affine dependencies among the
vertices of P .

An affine dependency among the vertices of P is a vector a = (a1, . . . , at) ∈ Rt

such that
t∑

i=1

aivi = 0 and
t∑

i=1

ai = 0.

For any vector w ∈ Rn, let w̃ := (w1, . . . , wn, 1). Then the affine dependencies
on the vertices of P are elements of the kernel of the matrix whose columns are
ṽ1, . . . , ṽt.

For any vector x in a real coordinate space, the support of x, supp(x), is defined
as the non-zero coordinates of x. I.e., if x = (1, 1,−1,−1, 0), then supp(x) =
{1, 2, 3, 4}. A minimal affine dependency on the vertices of P is a non-zero affine
dependency a with minimal support, meaning that there is no affine dependency b
on the vertices of P with supp(b) ( supp(a). A normalized affine dependency is a
non-zero affine dependency a with

∑
i:ai>0 ai = 1. Every affine dependency is given

by scaling some normalized affine dependency. Moreover, one can show that every
affine dependency is a sum of minimal dependencies, and hence every normalized
affine dependency is given by a convex combination of normalized minimal affine
dependencies. If you specify a support, there are in fact exactly two normalized
minimal affine dependencies (m and −m) with that given support, hence there is a
finite number of such dependencies.

Given any nonzero affine dependency a, let c =
∑

i:ai>0 ai and define vectors a+

and a− with respective coordinates

a+
i =

{
ai

c
if ai ≥ 0

0 if ai < 0
and a−i =

{
−ai

c
if ai ≤ 0

0 if ai > 0.

It follows that
∑

i a
+
i ei and

∑
i a

−
i ei are elements of ∆(P ) and

e(
∑

i a
+
i ei) =

∑
i a

+
i vi =

∑
i a

−
i vi = e(

∑
i a

−
i ei),

the common value being a point p ∈ P . We have written p as a convex combination
of vertices of P in two different ways. The supports of a+ and a− are disjoint, and so
we have found disjoint sets of vertices of P such that p is in the convex hull of each.
Furthermore, we see that (a+, a−) is an element of K(P ). We will call (a+, a−) the
point of K(P ) associated with the affine dependency a. However, not all points in
K(P ) arise in this way. Given a point (x, y) ∈ K(P ), we have

∑
i xivi =

∑
i yivi

and
∑

i xi =
∑

i yi = 1, so we are representing a point p :=
∑

i xivi ∈ P as a convex
combination of vertices of P in two (possibly) different ways. But the supports
of x and y need not be disjoint, so x and y may be reusing vertices. Regardless
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of whether the supports of x and y are in fact disjoint, we may obtain an affine
dependency x − y on the vertices of P . But (x, y) is the point in K(P ) associated
with the affine dependency x− y iff x and y have disjoint supports.

Theorem 18. The kernel-polytope K(P ) has dimension 2(t− 1)− d where t is the
number of vertices of P and d = dim P . There are 2t facets for K(P ), each defined
by setting a coordinate equal to zero. For i = 1, . . . , t, the point (ei, ei) is a vertex
of K(P ). The remaining vertices are (m+, m−), where m is a normalized minimal
affine dependency on the vertices of P .

proof. Let V be the matrix whose columns are the vertices of P , and let Ṽ be the
same matrix with a final row of 1s appended. Then d + 1 = rk(Ṽ ). Let 1 be the
vector of 1s in Rt, and define the matrix

M :=

 1 0 −1
0 1 −1
V −V 0


It follows that

K(P ) = {(x, y) ∈ (Rt)2 | M

 x
y
1

 = 0 and xi ≥ 0, yi ≥ 0 for i = 1, . . . , t}.

Consider the elements of the kernel of M with last coordinate equal to 1. Since
K(P ) is nonempty, these elements form an affine space of dimension one less than
the dimension of the kernel of M . Further, this affine space meets the set {(x, y, 1) ∈
R2t+1 | xi ≥ 0, yi ≥ 0 for i = 1, . . . , t} in its interior, for instance at (1

t
1, 1

t
1, 1).

Therefore,

dim K(P ) + 1 = dim ker

 1 0 −1
0 1 −1
V −V 0


= 2t + 1− dim rk

 1 0 −1
0 1 −1
V −V 0


= 2t + 1− dim rk

(
0 1

Ṽ 0

)
= 2t + 1− (d + 2).

Hence, dim K(P ) = 2(t− 1)− d, as claimed.
The inequalities defining K(P ) are xi ≥ 0 and yi ≥ 0 for i = 1, . . . , t (additionally

there are a number of equalities helping to define K(P ), but these cannot be facets).
These inequalities are affinely independent, hence each defines a facet of K(P ).

Now to describe the vertices of K(P ). Let (x, y) be an arbitrary point in ∆(P )2.
Thus, x =

∑
i xiei and y =

∑
i yiei with xi, yi ≥ 0 for i = 1, . . . , t and

∑
i xi =∑

i yi = 1. For (x, y) to lie in K(P ) requires that
∑

i xivi =
∑

i yivi.
For each i, the dot product of the vector (ei, ei) ∈ R2t with (x, y) ∈ K(P ) is

xi + yi. The maximum value of the dot product as (x, y) ranges over the points of
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K(P ) is 2, occurring precisely at (x, y) = (ei, ei). Thus, (ei, ei) is a vertex of K(P ).
Note that each of these vertices lies on all but two of the facets.

Since all the points (x, y) ∈ K(P ) with x = y are contained in conv{(ei, ei)},
any other vertices (x, y) must have x 6= y. Let (x, y) be any element of K(P ) with
x 6= y and suppose that x and y do not have disjoint supports. Let xj, yj > 0.
Then (1 − t)(x, y) + t(ej, ej) ∈ K(P ) for |t| sufficiently small (the requirement is
that |t| ≤ min{xj, yj}). Thus, (x, y) is contained in the interior of a line segment
contained in K(P ) and hence is not a vertex. So if (x, y) is a vertex with x 6= y,
(x, y) is the point in K(P ) associated with the affine dependency x − y. Suppose,
to get a contradiction, that x − y is not minimal. Then let m be a minimal affine
dependency with supp(m) ( supp(x− y). Then (m+, m−) is a point in K(P ) that
lies on all the facets that (x, y) lies on and then some, contradicting the fact that
(x, y) is a vertex.

Now we show that each normalized minimal affine dependency m does indeed
give rise to a vertex (m+, m−) by giving a face-defining direction c. Let

c =
∑

i∈supp(m+)

(ei, 0) +
∑

j∈supp(m−)

(0, ej).

The dot product of c with an arbitrary (x, y) ∈ K(P ) is

c · (x, y) =
∑

i∈supp(m+)

xi +
∑

j∈supp(m−)

yj ≤ 2

with equality iff supp(x) = supp(m+) and supp(y) = supp(m−). Thus, equality
implies (x, y) is the point in K(P ) associated with x− y. Also, since m is minimal,
any affine dependency with the same support as m must be ±m. Thus, equality
means x− y = m; so (x, y) = (m+, m−). 2

Remark 1. In the theorem we proved that the vertices of K(P ) are given by (ei, ei)
for each 1 ≤ i ≤ t, and (m+

j , m−
j ) for each normalized minimal affine dependency

mj. Thus, for any non-zero affine dependency a there is some convex combination
of these vertices yielding (a+, a−). Since all of the vertices consist only of positive
coordinates, and the supports of a+ and a− are disjoint, the vertices (ei, ei) cannot
contribute to this convex combination. Thus, we can express (a+, a−) as a convex
combination

∑
j αj(m

+
j , m−

j ) where each mj is a normalized minimal affine depen-

dency with supp(mj) ⊆ supp(a). Let K̃ := conv{(m+
j , m−

j )} ⊆ K(P ). Although

K(P ) is the kernel-pair, K̃ also has some noteworthy properties. As we have just
seen, K̃ in a sense contains all of the non-zero affine dependencies among the vertices
of P . Also, if we restrict the maps fP and gP to K̃, eP remains a coequalizer:

K̃

fP //

gP

// ∆(P )
eP // P

Thirdly, there is a close connection between affine dependencies among the vertices
of K̃ and linear dependencies among the affine dependencies mi. Notice that the
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vertices of K̃ come in pairs (m+
i , m−

i ), (m−
i , m+

i ) which correspond to pairs mi,−mi

of normalized minimal affine dependencies among the vertices of P . Given any affine
dependency

∑
αi(m

+
i , m−

i ) + βi(m
−
i , m+

i ) = ~0 among the vertices of K̃, we obtain
a linear dependence

∑
(αi − βi)mi = ~0 on (half of) the normalized minimal affine

dependencies mi of P . Conversely, given a linear dependence
∑

γimi, we obtain an
affine dependence

∑
γi(m

+
i , m−

i ) + (−γi)(m
−
i , m+

i ) = ~0.

Remark 2. From the standard presentation of P , we obtain K(P ). One may then,
in turn, find the standard presentation of K(P ), and obtain K(K(P )). One may
continue this process and obtain a sequence of simplices

(∆(P ), ∆(K(P )), ∆(K(K(P ))), . . .)

associated with P . Alternatively, one could use K̃ to obtain a sequence:

(∆(P ), ∆(K̃(P )), ∆(K̃(K̃(P ))), . . .).

These sequences should be seen as attempts to mimic the free resolutions of modules
in commutative algebra. Let us write ∆(n) for the simplex with n vertices. The
K̃-sequence for the square is (∆(4), ∆(2)), because the square has four vertices, and
there are two normalized minimal affine dependencies among the vertices of the
square (m and −m). The sequence terminates where it does because K̃(P ) is a
simplex. The K̃-sequence for the symmetric octahedron is (∆(6), ∆(6), ∆(2)).





Chapter 5

The Polar in Categorical Terms

In this chapter we show that taking the polar of a polytope cannot be made into a
functor in a natural way. Also, we show that the polar is not a dual in the categorical
sense. Nor, indeed, does the “dual” of a cone – a generalization of the polar of a
polytope – yield a dual in the categorical sense.

5.1 Duality in a monoidal category

A symmetric monoidal category (C,⊗, I) is called rigid if for every object V there
is an object V ∗ called the dual of V supplied with two arrows eV : V ∗ ⊗ V → I and
iV : I → V ⊗ V ∗ such that the following two diagrams commute:

V

IdV

55
iV ⊗IdV // V ⊗ V ∗ ⊗ V

IdV ⊗eV // V

V ∗

IdV ∗

55
IdV ∗⊗iV // V ∗ ⊗ V ⊗ V ∗ eV ⊗IdV ∗ // V ∗

(Note that in these pictures we have identified V with V ⊗R and R⊗V by the canon-
ical isomorphisms. We have also implicitly used the associative and commutative
isomorphisms.)

Example. The symmetric monoidal category (VEC,⊗,R) is rigid. Let V ∗ :=
hom(V,R). For any V ∈ VEC we may fix a basis αV = {v1, . . . , vn}. Then we
may obtain the dual basis βV ∗ = {v∗1, . . . , v∗n} = {vj 7→ δij | 1 ≤ i ≤ n} for V ∗.
Now define eV : V ∗ ⊗ V → R by v∗i ⊗ vj 7→ δij. And define iV : R → V ⊗ V ∗ by
1 7→

∑n
i=1 vi ⊗ v∗i . First, we need to show that (IdV ⊗ eV ) ◦ (iV ⊗ IdV ) = IdV . Let



48 CHAPTER 5. THE POLAR IN CATEGORICAL TERMS

1 ≤ j ≤ n, and consider the point 1⊗ vj ∈ R⊗ V . Then

[(IdV ⊗ eV ) ◦ (iV ⊗ IdV )](1⊗ vj) = IdV ⊗ eV [(
n∑

i=1

vi ⊗ v∗i )⊗ vj]

= IdV ⊗ eV [v1 ⊗ v∗1 ⊗ vj + · · ·+ vn ⊗ v∗n ⊗ vj]
= v1 ⊗ eV (v∗1 ⊗ vj) + · · ·+ vn ⊗ eV (v∗n ⊗ vj)
= vj ⊗ 1 (= 1⊗ vj)

Since {vi⊗1 | 1 ≤ i ≤ n} is a basis for V ⊗R, we have shown that (IdV ⊗eV )◦ (iV ⊗
IdV ) = IdV , as desired. In a similar way we can show that (eV ⊗IdV ∗)◦(IdV ∗⊗iV ) =
IdV ∗ .

Note that the choice of basis is arbitrary, but this does not matter here. The
basis αV ∗ we choose for V ∗ in finding V ∗∗ may very well be different from the basis
βV ∗ that comes from αV .

Proposition 19. In a rigid category (C,⊗, I) there is an internal hom, and it is
given by [B, •] := • ⊗B∗.

proof. See Bakalov p. 31. 2

5.2 The polar lacks certain categorical properties

The polar of a polytope P ⊆ Rn is given by

P∆ := {v ∈ Rn | v · p ≥ −1 ∀p ∈ P}

P∆ is not always a polytope. It is always a finite intersection of closed halfspaces,
but it is not necessarily bounded. If 0 is in the interior of P , then P∆ is a polytope.1

There is a closely related notion called the dual of a cone (though not, as we
shall see, a dual in the categorical sense). The dual of a cone C is defined as
C∗ := hom(C,R≥0). In fact, if C is a spanning subset of a finite-dimensional inner
product space V , then

C∗ ∼= {v ∈ V | 〈v, c〉 ≥ 0 ∀c ∈ C}

This isomorphism holds primarily because every linear mapping f : C → R≥0 is
actually a mapping of the form 〈v, •〉 for a unique v ∈ V .

Proposition 20. For any polytope P ⊆ Rn

P∆ = {v ∈ Rn | (v, 1) · c ≥ 0 ∀c ∈ C(P )}.

1For further discussion of the polar, see Ziegler ch. 3.
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proof. For v ∈ Rn we have

v ∈ P∆ ⇐⇒ v · p ≥ −1, ∀p ∈ P
⇐⇒ v · rp ≥ −r, ∀p ∈ P and ∀r > 0
⇐⇒ (v, 1) · (rp, r) ≥ 0, ∀p ∈ P and ∀r > 0
⇐⇒ (v, 1) · c ≥ 0, ∀c ∈ C(P ) 2

Remark. If P is full-dimensional, then C(P ) is full-dimensional in Rn+1, and so
C(P )∗ ∼= {v ∈ Rn+1 | v · c ≥ 0, ∀c ∈ C(P )}. Keeping this identification in mind,
we see that the proposition says that P∆ = {v ∈ Rn | (v, 1) ∈ C(P )∗}. Thus, in a
sense P∆ is a “slice” of C(P )∗.

Even though P∆ is not always a polytope, it is still conceivable that we would be
able to make •∆ into a functor, because we may use translation to our advantage.
For instance, we could define •∆ on objects by stating that •∆(P ) := (P−bP )∆+bP ,
where bP is the barycenter of P . (The set (P−bP )∆ is always a polytope since 0 is in
the relative interior of P −bP .) Nevertheless, a problem arises when we try to define
what •∆ should do to arrows. We would like a polar functor to be “compatible”
with the dual cone functor, hom(•,R≥0) : CONEop → CONE. By this we mean:

• The functor •∆ should be contravariant, i.e., •∆ : POLYop → POLY, and

• If f : P → Q is an affine map between two full-dimensional polytopes, then
the following diagram commutes:

C(Q)∗
C(f)∗ // C(P )∗

Q∆
?�

OO

f∆
// P∆

?�

OO

where the inclusion Q∆ ↪→ C(Q)∗ is given by v 7→ ((v, 1) · •) and similarly for
P∆ ↪→ C(P )∗.

But there is no such extension of •∆ to arrows with these properties, as can be seen
by the following argument by contradiction: Let P, Q := [−1, 1] ⊆ R and define
an affine map f : P → Q by f(−1) = 0 and f(1) = 1. We can easily calculate
that P∆ = Q∆ = [−1, 1]. By the second requirement for compatibility, for any
v ∈ Q∆ and for any p ∈ P , we have (f∆(v), 1) · (p, 1) = (v, 1) · C(f)(p, 1). Hence,
f∆(v) ·p = v ·f(p) for all v ∈ Q∆ and p ∈ P . However, f∆(1) ·0 = 0 6= 1/2 = 1 ·f(0).
This is a contradiction, so there can be no polar functor compatible with the dual
cone functor.

On the other hand, if we restrict POLY so that all the objects are full-dimensional
and centered at the origin, and all the arrows are linear, then we can obtain a
polar functor compatible with the dual cone functor. In this case, for any polytope
P , there is a natural identification of the points v ∈ P∆ with the linear maps
(v · •) = L : P → R for which L(p) ≥ −1 for all p ∈ P . In other words, to specify



50 CHAPTER 5. THE POLAR IN CATEGORICAL TERMS

a point in P∆, we need only specify a linear map L : P → R with L(p) ≥ −1 for
all p ∈ P . Thus, for a linear map f : P → Q, we may define f∆ : Q∆ → P∆ by
stating that an element v ∈ Q∆ is sent to the linear map (v · f(•)). That this gives
a functor compatible with the dual cone functor can be easily verified.

The polar does not give a dual in the categorical sense because Q ⊗ P∆ is not
isomorphic to hom(P, Q). As mentioned in Chapter 2, adjoints are unique up to
isomorphism, so any internal homs should be isomorphic. If •∆ provided a dual
for every polytope, then by Proposition 19 we would know that • ⊗ P∆ provided
an internal hom. Thus, for all polytopes P and Q, we would have Q ⊗ P∆ ∼=
hom(P, Q) where hom(P, Q) is the internal hom we already defined. However, a
simple dimension argument shows that this cannot hold. Let P = Q = [−1, 1] ⊆
R. Then both P and Q have dimension 1, so by Proposition 9, hom(P, Q) has
dimension (1 + 1)1 = 2. On the other hand, using Propostion 17 and the fact that
P∆ = P ∼= ∆1, we get Q⊗P∆ ∼= Q⊕(1+1) = Q⊕Q. Since Q⊕Q = [−1, 1]⊕ [−1, 1] =
conv({(−1, 0, 0), (1, 0, 0), (0,−1, 1), (0, 1, 1)}), it follows that Q ⊕ Q has dimension
3. Hence, hom(P, Q) and Q⊗P∆ do not share the same dimension, so they cannot
be isomorphic.

The dual of a cone also does not yield a dual in the categorical sense. Let D be
the cone over a square, i.e., D = C(P ) for some square P ⊆ R2. Then D ∼= D∗, so
both are minimally generated by four elements. Thus, D⊗D∗ is minimally generated
by at most sixteen elements. One can easily obtain an inequality description of an
embedding of hom(D, D) in R9. The program “Polymake” can then calculate a
minimal collection of generators for hom(D, D). The size of this collection turns
out to be twenty-four, so D ⊗D∗ � hom(D, D).
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