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Abstract

The Turing machine is an abstraction of what is needed to build a computing ma-
chine. Circuits are based in logic but are often applied in the construction of comput-
ers. Sandpiles are dynamical systems that can model circuits, as described by Goles
and Margenstern [GM96]. The construction of a Turing machine from sandpiles is
described herein.





Chapter 1

Machine

First described by Alan Turing in 1936, the Turing machine is a simple-to-visualize
symbol-manipulating device. The physical machinery includes a semi-infinite tape
divided into cells and a read/write tape head that moves either left or right one
cell. Additionally, there is a finite set of symbols; a set of machine states; and a
program that determines the next symbol of the cell, the next state of the machine,
and whether the tape head moves left or right depending on the current symbol of
the cell and state of the machine.

This simple construction is incredibly versatile in its applications. Turing ma-
chines can decide whether an input satisfies some condition, e.g. whether a number
is even. Alternatively, we can use a Turing machine to mechanize the computation
of a desired function; for instance, we can construct a Turing machine that computes
the sum of two numbers.

Definition 1. A Turing machine is denoted

M = (Q,Γ,Σ, B, δ, q1, halt),

where

Q is the finite set of transition states,

Γ is the finite set of allowable tape symbols,

Σ ⊆ Γ is the set of input symbols,

B ∈ Γ is the blank symbol, B /∈ Σ,

σ
1 2

σ σ
i

σ
3

start

σ
n

. . .. . .

Figure 1.1: An arbitrary Turing machine with an input string σ1σ2 . . . σn.
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δ, the next move function, is a mapping:

δ : I → O,

where I ⊆ Q× Γ and O ⊆ (Q ∪ {halt})× Γ× {L,R},

q1 ∈ Q is the initial state,

halt is a distinguished final state, and halt /∈ Q.

The δ-function describes transitions of the machine; if the machine is in a state q
and the tape head reads a symbol σ, then the machine transitions to a state q′ and
the tape head writes a symbol σ′ and moves to the next cell (either one to the left
or to the right).

Example 2. Decision machine: Is this number odd?
Let i ∈ N. Is i odd? Consider the function: parity : N→ {0, 1}, where

i 7→
{

halt if i mod 2 = 1
fail to halt if i mod 2 = 0

Let us consider the image of the parity function to be the boolean set, where we
identify “halt” with true and “fail to halt” with false. Then it is natural to extend
this interpretation to the function itself; the parity function decides the truth value
of the statement, “The number i is odd.”

We can construct a Turing machine, Modd, that decides the parity of the unary
representation of i as follows:

Modd = ({even, odd, fail}, {1, B}, {1}, B, δ, even, halt),

where

δ(even, 1) = (odd, B,R)

δ(odd, 1) = (even, B,R)

δ(even, B) = (fail, B,R)

δ(odd, B) = (halt, 1, R)

δ(fail, B) = (fail, B,R).

We can also describe the next-move function, δ, using the state diagram of Modd

(see Figure 1.2). In a state diagram, each state is depicted as a circle. Machine
transitions are depicted as arrows; if δ(q, σ) = (q′, σ′,∆), then there is an arrow
from state q to q′ labeled “σ → σ′,∆”. The start state is the distinguished state
taking an arrow from nowhere.

For example, Modd starts in the even state and so there is an arrow pointing to
the circle labeled “even” that does not originate at another circle. Also, we see that
there is an arrow from “odd” to “halt” labeled “B → 1, R”, matching the next move
function δ(odd, B) = (halt, 1, R).
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even

halt

odd

1−−> B, R

1−−> B, R
B
−−> 0, R B

−−> 1
, R

Figure 1.2: The state diagram of the Turing machine Modd

Definition 3. A Turing machine configuration is an element

(`, q, r) ∈ Γ∗ × (Q ∪ halt)× Γ∗,

where Γ∗ is the set of all strings, or finite sequences, of symbols in Γ. The initial
configuration of the Turing machine is (ε, q1, r), where ε denotes the empty string
and r ∈ Σ∗.

Let c1, c2, and cn be machine configurations. Then c1 ` c2 denotes the one-step
transition from c1 to c2. Analogously, c1 `∗ cn denotes the transition from c1 to cn
in zero or more steps.

From a given configuration (`, p, r), where ` = `1`2 . . . `m ∈ Γm and r = r1r2 . . . rn ∈
Γn, the Turing machine transitions to the next configuration as follows:

if δ(p, r1) = (q, σ, L), then (`, p, r) ` (`1`2 . . . `m−1, q, `mσr2 . . . rn),

if δ(p, r1) = (q, σ, R), then (`, p, r) ` (`1`2 . . . `mσ, q, r2r3 . . . rn).

For example, let us return to the Turing machine Modd described in Exam-
ple 2. Consider the transitions of the configurations of Modd given the input string
5=11111:

(ε, even, 11111) `(ε, odd, 1111)

`(ε, even, 111)

`(ε, odd, 11)

`(ε, even, 1)

`(ε, odd, ε)

`(1, halt, ε).

Then (ε, even, 11111) `∗ (1, halt, ε) and so we can conclude that 5 is odd. Figure 1.3
depicts the transitions of the physical machine tape and head given the input 11111.

Definition 4. The language of a decision Turing machine, L (M), is the set of all
input strings such that the Turing machine transitions into the final configuration
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1 1 1 . . .1 1

1 1 1 . . .1

1 1 . . .1

1 . . .1

1 . . .

. . .

. . .1

halt

odd

even

odd

even

odd

even

Figure 1.3: Configurations of the parity-decision machine on a string 11111
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(1, halt, ε), i.e.,
L (M) = {x ∈ Σ∗|(ε, q1, x) `∗ (1, halt, ε)}.

A string in the language of the machine is called an accepted string.

Example 5. Parity decision (continued)
We know that Modd accepts 11111, the number equivalent to 5 in unary notation.

Figure 1.4 shows that the machine transitions into the fail state given the input
1111. Modd will not transition out of the fail state (see Figure 1.2) and so it is clear
that 1111 is not in the language of the machine.

Earlier we associated the boolean values 1 and 0 with true and false, respectively.
We can also choose to interpret 1 to mean accepts and 0 to mean fails to accept.
Then the parity-deciding machine Modd accepts the string of 1s of length i if i is
odd and fails to accept i if i is even, or

L (Modd) = {1n | n mod 2 = 1}.

Let us examine a more complicated example of a decision-type Turing machine.

Example 6. Decision machine: Is this number a power of 2?
Let i ∈ N. Is i a power of 2? Consider a function defined as follows:

i 7→
{

1 if i is a power of 2
0 otherwise

Similar to Example 2, let us consider the image of the function to be the boolean set,
{0, 1}. We can then say that the function decides the truth value of the statement,
“The number i is a power of 2.”

We can construct a Turing machine Mpow that decides, given the unary repre-
sentation of i, if i a power of 2:

Mpow = ({q1, q2, q3, q4, q5, q6, q7, fail}, {0, 1, x, B}, {1}, B, δ, q1, halt),

where the next move function is described by the state diagram in Figure 1.5. The
language of Mpow is the set of all i-length strings of 1s, where i is a power of two,
i.e.,

L (Mpow) = {1n | n = 2k for k ∈ N}.

For decision-type Turing machines, the output of the machine is fairly uninter-
esting because every accepted string has the same output, namely 1. However, for
function-computing Turing machines the output string is desired because it is the
result of the computation for a given input.

Let M be a computation-type Turing machine. Then for an input x ∈ Σ∗, M
computes y ∈ Γ∗, denoted x M

7−→ y, whenever (ε, q1, x) `∗ (y, halt, ε).

Example 7. Computation machine: What is the sum of i and j?
Let i, j ∈ N. Consider the following Turing machine:

Msum = ({q1, q2, q3, q4}, {0, 1, B}, B, δ, sum},
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1 11 1

1 1 1

1 1

1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

fail

odd

even

odd

even

even

fail

Figure 1.4: Configurations of Modd on a string 1111
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41 6 halt

5

2

7

3

1−−> x, R

B
−−> B

, L

x−−> B
, R

x−−> 0, R

0−−> B, R

1−−> 1, L

0−−> 0, L

0−−> 0, R

1−−> 0, R

1−−> 1, R

B−−> B, L

0−−> 0, R0−−> 0, R

1−−> B, L

0−−> B, L

B
−−> B

, L

x−−> 1
, R

1−−> 1
, R

Figure 1.5: The state diagram of the power-of-2 decision Turing machine Mpow

1

2

4

3 sum
0−−> B, R

1−−> 1, R

1
−

−
>

 0
, L

0−
−> 0

, R

0−−> 1, R

B
−−> B

, L

Figure 1.6: The state diagram of the sum-computing Turing machine Msum
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where δ is described according to the state diagram depicted in Figure 1.6. Then
1i01j Msum

7−→ 1i+j, i.e., Msum computes the sum (in unary notation) of two numbers in
unary notation separated by 0.

Let us observe the transitions of Msum given the input string 110111:

(ε, q1, 110111) `(1, q1, 10111)

`(11, q1, 0111)

`(110, q2, 111)

`(11, q4, 0011)

`(111, q1, 011)

`(1110, q2, 11)

`(111, q4, 001)

`(1111, q1, 01)

`(11110, q2, 1)

`(1111, q4, 00)

`(11111, q1, 0)

`(111110, q2, ε)

`(11111, q3, 0)

`(1111, q4, 1)

`(11111, sum, ε)

Then (ε, q1, 110111) `∗ (11111, sum, ε). Figure 1.7 depicts the physical machine tape
and head in the computation of the sum of 2 and 3.

Example 8. Computation machine: What is the product of i and j?
Let i, j ∈ N. Consider the following Turing machine:

Mmult = ({qk | k ∈ {1, 2, . . . , 16}}, {0, 1, x, y, B}, {0, 1}, B, δ, q1, halt),

where δ is defined according to the state diagram in Figure 1.8. Mmult computes
the product of two unary numbers separated by 0, i.e.,

1i01j Mmult
7−→ 1i·j.

For a machine with so many states, it becomes tedious to represent the steps
of the computation. Instead, we can give a general description of the behavior of
Mmult:

1. Decrement i.

2. Write a 0 at the end of the input string; move to the right and write j 1s.

3. Repeat steps (1) and (2) i− 1 times.

4. Remove the 0s separating the i groups of j ones.

We are left with i · j 1s, the product of i and j in unary notation.
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1 0 1 . . .1 1 1

1 0 1 . . .1 1 1

1 0 1 . . .1 1 1

1 0 1 . . .1 1 1
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4

4

4

4

2
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2

3

1
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1

1

2

1

Figure 1.7: Configurations of the Turing machine Msum on a string 110111
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Figure 1.8: The state diagram of the Turing machine Mmult



Chapter 2

Circuit

2.1 Boolean operations

We are interested in the Boolean algebra over the set {0, 1} having the following
three operations:

1. Conjunction, also expressed as ∧ and AND, is a commutative binary operation
that evaluates to 1 only when both arguments are 1:

0 ∧ 0 = 0

0 ∧ 1 = 0

1 ∧ 0 = 0

1 ∧ 1 = 1

2. Disjunction (∨ and OR) is a commutative binary operation that evaluates to
0 only when both arguments are 0:

0 ∨ 0 = 0

0 ∨ 1 = 1

1 ∨ 0 = 1

1 ∨ 1 = 1

3. Negation (¬ and NOT) is a unary operation that evaluates the complementary
element of the set:

¬0 = 1

¬1 = 0

2.2 Logic gates

A logic gate computes a Boolean operation on one or more inputs, producing one
output. Inputs and outputs are Boolean variables, i.e., elements of the set {0, 1}.

Let x and y be Boolean variables. Consider the following three logic gates:
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0 10 0 1 1

100

inputs:

outputs: 0

1 0

Figure 2.1: The AND gate computes x ∧ y

0 10 0 1 1

110outputs:

inputs:

1

1 0

Figure 2.2: The OR gate computes x ∨ y

1. an AND gate computes x ∧ y,

2. an OR gate computes x ∨ y, and

3. a NOT gate computes ¬x.

Figures 2.1 and 2.2 depict the AND and OR gates, respectively, with the inputs
(x, y) = (0, 0), (0, 1) and (1, 1). Figure 2.3 depicts the NOT gate with the inputs 0
and 1.

Because the output of a logic gate is a boolean variable, we are able to con-
nect logic gates together, where the output of one logic gate connects to the input
of another logic gate. Then it is possible to compute more complicated Boolean

0 1

01

inputs:

outputs:

Figure 2.3: The NOT gate computes ¬x
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x(      ) y

y

x

Figure 2.4: Connecting two logic gates to compute (¬x) ∧ y

y

x

 
x y(         )

Figure 2.5: Connecting two logic gates to compute ¬(x ∧ y)

expressions; for example, given the boolean variables x and y, we can compute
(¬x)∧ y by connecting the output of a NOT gate to the input of an AND gate (see
Figure 2.4). Figure 2.5 shows an alternative connection of a NOT gate and an AND
gate that computes ¬(x ∧ y).

We can think of logic gates as directed graphs, where the vertices are either
Boolean operations or variables and the edges act as wires, carrying the values of
the variables to logical gates to be evaluated, forming boolean expressions.

Consider connecting n AND gates (see Figure 2.6). If any of the n input Boolean
variables is 0, then the output of the connected AND gates is 0. For example, if
n− 1 inputs are 1 and one input is 0, then:

(0 ∧ (1 ∧ (· · · ∧ (1 ∧ (1 ∧ 1)) · · · ))) = (0 ∧ (1 ∧ (· · · ∧ (1 ∧ 1) · · · )))
...

= (0 ∧ 1)

= 0

Then we can define an n-AND gate to be the logic gate with a vertex having n
in-edges and one out-edge where the value of the output is 1 if and only if all the
inputs have value 1. Similarly, an n-OR gate is a logic gate having n in-edges and

.

.

.

.

.

.

Figure 2.6: A connection of n AND gates
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. . .

0 1

1 1 1 1 100outputs:

inputs:

Figure 2.7: A 2-splitter and an n-splitter

0
I

0
s

1
I

O

Figure 2.8: A 2:1-multiplexer circuit

one out-edge where the value of the output is 0 if and only if all the inputs have
value 0.

An n-splitter is a directed graph with a vertex having one in-edge and n out-
edges where the value of every output is equal to the value of the input. For example,
Figure 2.7 shows that a 2-splitter with a 0-valued input has two 0-valued outputs
and an n-splitter with a 1-valued input has n 1-valued outputs.

A circuit is any acyclic directed graph composed of some combination of inputs,
outputs, logic gates, and splitters.

Example 9. Multiplexer
An n:1-multiplexer is a circuit having n+k+1 inputs, I0, I1, . . . , In−1 and s0, s1, . . . , sk,
where 2k < n ≤ 2k+1, and one output. The s inputs are called selector bits because
we output the value of Ip, where

∑k
i=0 si2

i = p.
Figure 2.8 shows the construction of a 2:1-multiplexer, a circuit with three inputs,

I0, I1 and s1, and an output O. The circuit outputs O = I0 when s0 = 0 and O = I1

when s0 = 1.



Chapter 3

Circuit machine

3.1 Preparation for circuit construction

If we are to emulate a Turing machine with circuits, then we will first need to
establish a convention of encoding states, symbols, and the directions left and right.
We will also develop an alternative understanding of how a Turing machine can be
“built” in such a way that transitions do not rely on a tape head.

3.1.1 Encoding the machine

We will encode symbols as boolean values as follows:

1. Index the set ΓB = Γ \ {B}, i.e., ΓB = {σ1, σ2, . . . , σm}.

2. Define the set βΓ of m + 1 vectors of boolean values of length m such that
there is at most one 1 in any vector.

3. We will identify ΓB with the subset βΓ of vectors having exactly one 1 as
follows:

σi = (0, 0, 0, . . . , 0, 1, 0, . . . , 0),

where the ith boolean value of the vector is 1.

We will identify the blank symbol B with the zero vector in βΓ:

B = (0, 0, . . . , 0).

Then for every tape symbol there is a corresponding encoding of the symbol
as a vector of boolean variables of length m, which we will call the symbol
vector.

We will encode machine states as boolean values similarly:

1. Index the set of transition states Q, i.e., Q = {q1, q2, . . . , qn}.

2. Define a set βQ of n+ 1 vectors of boolean values of length n such that there
is at most one 1 in any vector.
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3. We will identify Q with the subset of vectors of βQ having exactly one 1 as
follows:

qi = (0, 0, 0, . . . , 0, 1, 0, . . . , 0),

where the ith boolean value in the vector is 1.

We will identify the halt state with the zero vector in βQ:

halt = (0, 0, . . . , 0).

Then for every state of the machine there is a corresponding encoding of the
state as a vector of n boolean variables, which we will call the state vector.

To encode the directions the tape head moves as boolean values, we will identify
L with 1 and R with 0.

3.1.2 Reinterpreting machine transitions

Let each cell of a Turing machine have both a written symbol σ ∈ Γ and a written
state p ∈ Q∪{halt}. At most one cell of the Turing machine is in a transition state,
but it is possible that every cell is in the halt state.

Let c be a configuration having a cell with a transition state q and a tape symbol
σ such that δ(q, σ) = (q′, σ′,∆), where ∆ ∈ {L,R}. Then in the next configuration
c′, the cell is in the halt state and has symbol σ′ and the ∆-side neighboring cell is
in state q′. If a cell is in the halt state with symbol σ in configuration c, then the
cell has symbol σ in the next configuration c′.

3.2 Circuit of cell components

We will begin with a cell-state vector and a cell-symbol vector that encode the state
q and symbol σ of the kth cell in a configuration c, which we denote vq(c)(k) and
vσ(c)(k), respectively. For the moment, our discussion is limited to the configuration
c and the kth cell and so we will abridge our notation to vq and vσ.

In order to emulate a tape cell of the Turing machine, we will need four main
components:

1. a transition circuit that decides if the cell is in a transition state,

2. a δ-circuit based on the next move function,

3. a symbol circuit that computes the symbol of the cell in the next configuration,
and

4. a state circuit that computes directed state vectors.
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v
q

cell−state vector

.    .    .

transition circuit

τ

Figure 3.1: The transition circuit for an arbitrary Turing machine

3.2.1 Transition circuit

The transition circuit takes the cell-state vector and produces a single boolean vari-
able output τ . The component computes a 1 if the cell-state vector is non-zero;
otherwise the transition circuit computes 0. Then we say either:

• the cell is in a transition state if τ = 1, or

• the cell is in the halt state if τ = 0.

Figure 3.1 depicts the transition circuit for an arbitrary Turing machine.

3.2.2 δ-circuit

The δ-circuit takes the cell-state and -symbol vectors and computes a boolean di-
rection variable d and state and symbol vectors, denoted the δ-state vector dq and
the δ-symbol vector dσ, respectively (see Figure 3.2).

If the cell is in a transition state q and reads a symbol σ, then the component
computes (q′, σ′,∆) = δ(q, σ). If the cell is in the halt state and reads σ, then the
component computes (halt, σ, R).

3.2.3 Symbol circuit

The symbol circuit takes as inputs:

• the cell-symbol vector,

• the δ-symbol vector dσ of the δ-circuit, and

• τ , the boolean variable output of the state circuit.

The component computes the next cell-symbol vector v′σ, i.e., the symbol vector in
the configuration c′ where c ` c′. If τ = 1, then the next cell-symbol vector is equal
to dσ; if τ = 0, then the next symbol vector is equal to vσ. Figure 3.3 depicts the
symbol circuit for an arbitrary Turing machine.
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Figure 3.2: The δ-circuit for an arbitrary Turing machine
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Figure 3.3: The symbol component for an arbitrary Turing machine
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.    .    ..    .    .

.    .    .

d

v’ v’
L R

state circuit

d

q

Figure 3.4: The state component for an arbitrary Turing machine

3.2.4 State circuit

The state circuit takes the δ-state vector dq and the direction variable output, d, of
the δ-circuit and computes the left-state vector v′L and the right-state vector v′R.

If d=1, then the component computes the left-state vector equal to the δ-state
vector and the right-state vector encodes the halt state. If d = 0, the direction-
state vectors are switched, i.e., the left-state vector encodes the halt state and the
right-state vector equals the δ-state vector.

Figure 3.4 depicts the state circuit for an arbitrary Turing machine.

3.3 The cell components of the Turing Machine

Modd

Before we describe the construction of circuit components for arbitrary Turing ma-
chines, we will examine the circuit components for the decision-style Turing machine
Modd.

• Let q1 = even, which we will encode as (1,0,0).

• Let q2 = odd, which we will encode as (0,1,0).

• Let q3 = fail, which we will encode as (0,0,1).

• The halt state is encoded as (0,0,0).

Let γ1 = 1, which we will encode as 1. The blank symbol B is encoded as 0.
Figure 3.5 depicts the transition circuit.

Consider the δ-circuit, pictured in Figure 3.6. For example, given state and
symbol inputs we can compute the outputs:

• If vq = (1, 0, 0) and vσ = 1, then d = 0, dq = (0, 1, 0), and dσ = 0.
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transition circuit

even odd fail

Figure 3.5: The transition circuit for Modd

−circuitδ

d
σ

q
d

σ
v

d

even odd fail

q
v

1

Figure 3.6: The δ-circuit for Modd

• If vq = (0, 1, 0) and vσ = 1, then d = 0, dq = (1, 0, 0), and dσ = 0.

• If vq = (0, 0, 0) and vσ = 1, then d = 0, dq = (0, 0, 0), and dσ = 1.

Recall the state diagram of Modd (Figure 1.2); the tape head of the machine moves
right in every transition and so the circuit ouputs d = 0 when a cell is in a transition
state. The general description of a δ-circuit requires that d = 0 if the cell is in the
halt state. Therefore, the δ-circuit for the cell of the Turing machine Modd always
outputs d = 0.

Consider the symbol circuit. Given sample inputs dσ, τ , and vσ, we can compute
the output v′σ:

• If dσ = 0, τ = 1, and vσ = 1, then v′σ = 0.

• If dσ = 0, τ = 0, and vσ = 1, then v′σ = 1.

Figure 3.7 depicts the symbol circuit.
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symbol circuit

τd
σ

v
σ
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Figure 3.7: The symbol circuit for Modd

state circuit

d

d
q

v’
L

v’
R

Figure 3.8: The state circuit for Modd

Consider the state circuit for Modd, depicted in Figure 3.8. The left-state vector
v′L always encodes the halt state because the δ-circuit always outputs d = 0, for
example:

• If dq = (1, 0, 0), d = 0, then v′L = (0, 0, 0) and v′R = (1, 0, 0).

• If dq = (0, 0, 0), d = 0, then v′L = (0, 0, 0) and v′R = (0, 0, 0).

We can then wire the components together to build the cell circuit; given the
state q and a symbol σ of a cell in a configuration c, the circuit will compute left-
and right-state vectors for the neighboring cells and the symbol of the cell in the
next configuration (see Figure 3.9).

3.4 Component construction for the arbitrary ma-

chine

Let us consider the physical representation of an arbitrary Turing machine, M (see
Figure 3.10), and let c = (`, q, r) be a machine configuration where ` = (`1`2 . . . `k−1),
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Figure 3.9: The cell circuit for Modd
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Figure 3.10: The machine tape head at the kth cell

τ

v
q

Figure 3.11: Transition circuit for Msum

which is to say that the tape head is located at the kth cell of the tape. To better
illustrate the general circuit construction, we include component constructions for
the particular Turing machine, Msum.

3.4.1 Transition circuit

The transition circuit is an n-OR gate on the cell-state vector vq. We connect a wire
from each of the n boolean variable inputs composing vq to the n-OR gate.

The OR gate having a non-zero input computes 1, but if every input is 0 then
the OR gate computes 0.

Thus if we have a non-zero cell-state vector, the circuit component computes 1,
i.e., the cell is in a transition state, and if the cell-state vector encodes the halt state,
the component computes 0. Figure 3.11 depicts the transition circuit for Msum.

3.4.2 δ-circuit

Processing inputs

First we build a circuit that indicates whether the tape cell has the blank symbol.
Basing our construction on the transition circuit, if the symbol vector is non-zero
then the cell has a non-blank symbol. Lay out an m-OR gate connected to the
symbol vector input. The OR gate computes 0 if the cell reads the blank symbol.
Connect the input of a NOT gate to the output of the OR gate.
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Figure 3.12: The input for (qi, σp) ∈ I \I0

This subcomponent, composed of a m-OR gate and a NOT gate, computes 1
when the cell has the blank symbol and 0 otherwise. For the construction of the
δ-circuit only, we will consider the symbol vector to be a vector of length m + 1
having exactly one 1 as follows:

• for 1 ≤ i ≤ m, σi = (0, 0, . . . , 0, 1, 0, . . . , 0) where the ith boolean value of the
vector is 1, and

• B = (0, . . . , 0, 1).

Inputs

We want subcomponents that determine whether the current state and symbol of
the cell (qi, σp) should lead to the direction, state, and symbol (qj, σu,∆).

Recall that δ is defined over I , a set of transition state-and-symbol pairs. Define
a set I0 = {(q, σ) ∈ I | δ(q, σ) = (halt, B,R)} ⊆ I .

Lay out a 2-AND gate for each state and symbol pair (qi, σp) ∈ I \I0. Connect
wires from the ith boolean variable of the state vector and the pth boolean variable
of the symbol vector to the AND gate, which we will call the (qi, σp)-AND gate (see
Figure 3.12).

Outputs

Let k = |{(q, σ) ∈ I \ I0 | δ(q, σ) = (qi, σ
′,∆)}|. We lay out a k-OR gate (the

1-OR gate simply outputs the input variable) with its output wire connected to the
ith boolean variable of the δ-state vector. Similarly, let r = |{(q, σ) ∈ I \ I0 |
δ(q, σ) = (q′, σp,∆)}|. We lay out an r-OR gate with its output wire connected to
the jth boolean variable of the δ-symbol vector. We lay out an s-OR gate connected
to the direction variable, d, where s = |{(q, σ) ∈ I \I0 | δ(q, σ) = (q′, σ′, L)}|.



3.4. COMPONENT CONSTRUCTION FOR THE ARBITRARY MACHINE 25

q
i

σ
p

σ
1

σ
2

. . . . . . σ
m

σq(   ,    )

q
1

q
2

. . . . . . q
n

d

. . . . . . . . .

d
σ

d
q

−ORs k−OR r−OR

Figure 3.13: An output where δ(q, σ) = (qi, σp, L)

For each i, p, if δ(q, σ) = (qi, σp,∆), we connect one wire from the (q, σ)-AND
gate to the k-OR gate and another wire from the (q, σ)-AND gate to the r-OR gate.
Furthermore, if ∆ = L, we also connect a wire from the (q, σ)-AND gate to the
s-OR gate. This output is depicted in Figure 3.13.

Figure 3.14 depicts the δ-circuit for Msum.

3.4.3 Symbol circuit

The symbol circuit has m 2:1 multiplexers. The ith multiplexer has the selector bit
τ , computed in the transition circuit, and I0 is the ith variable of the symbol vector
and I1 is the ith variable of the δ-symbol vector.

Therefore, if τ = 1, the symbol circuit computes the next symbol vector equal
to the δ-symbol vector and if τ = 0, the symbol circuit computes the next symbol
vector equal to the symbol vector.

Figure 3.15 depicts the symbol circuit for Msum.

3.4.4 State circuit

If the direction variable d = 1, then the state circuit computes the left-state vector
equal to the δ-state vector and the right-state vector equal to the zero state vector.
If d = 0, then the state circuit computes the right-state vector equal to the δ-state
vector and and the left-state vector equal to the zero state vector.

Figure 3.16 depicts the state circuit for Msum.
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Figure 3.14: The δ-circuit for Msum
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Figure 3.16: State circuit for Msum

Left-state vector

Lay out n AND gates. The ith AND gate has a wire from the direction variable
and a wire from the ith variable of the δ-state vector. Then if d = 1 the AND gates
compute the values of the δ-state vector and if d = 0 the AND gates compute all 0s.

Right-state vector

Connect a NOT gate to the direction variable d. Lay out n AND gates. The ith

AND gate has a wire from the negated direction variable ¬d and a wire from the
ith variable of the δ-state vector. Then if d = 1 each AND gate computes 0 because
¬d = 0, and if d = 0 the AND gates compute the values of the δ-state vector.

3.5 Connecting the circuits

By this construction, in the next configuration each cell will input “state of the
cell” information from its neighbors to the left and right. Only one tape cell is
transitioning at a time and so at most one cell of the machine will receive a non-
zero state value; every other left and right state variable vector encode the halt
state. Then we build a subcomponent that computes the state vector of the cell.

Lay out m OR gates; the ith OR gate has a wire from the ith variable of the
left-state vector and a wire from the ith variable of the right-state vector. This
component computes the state vector of the cell.

The cell-symbol vector in the next configuration is computed by the symbol
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circuit component, i.e., vσ(c′)(k) = v′σ(c)(k). Then we need only connect the ith

variable of the next cell-symbol vector v′σ to the ith boolean variable of the cell-
symbol vector vσ.

We have thus described a method by which we may construct an arbitrary Turing
machine using circuits.

Figure 3.17 is a component representation of a cell of Modd among neighboring
cells and Figure 3.18 illustrates the circuitry of a machine cell of Msum also in the
context of its neighbors.
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Chapter 4

Sand

Sandpiles as models of self-organized criticality were first studied by Bak, Tang,
and Wiesenfeld in their attempts to understand chaos underlying organized systems
[BTW88]. As we add grains of sand to a sandpile, we observe that at a certain point,
the critical point, grains of sand cascade down the slope until the pile stabilizes. The
pile repeats this behavior; as we add sand, the slope of the pile increases until we
reach the critical point, when adding any additional sand causes the pile to cascade.
There has been a lot of recent study of the sandpile model (e.g. [HLM+08] and
[Lev07]).

4.1 Sandpile

Let G = (V,E) be a graph. The vertex set is V and the edge set is E ⊆ (V × V ).
We will assume that G has no loops, i.e., (v, v) /∈ E for any v ∈ V . The degree of a
vertex is the number of edges associated with a vertex, i.e., for a vertex v ∈ V ,

d(v) =
∑
w∈V

I(v, w),

where I is the following indicator function:

I(v, w) =

{
1 if (v, w) ∈ E
0 otherwise

.

A vertex v is a sink if d(v) = 0.
A sandpile configuration c of the graph G is an element of the set of mappings

from V to Z, i.e., c ∈ ZV .
Intuitively, we can think of a configuration c as labeling each vertex v with the

number of grains of sand c(v) being held by the vertex. We say a configuration is
unstable if for some v ∈ V , c(v) ≥ d(v). We define a function reporting whether a
vertex in a given configuration c is unstable:

unstable(v, c) =

{
1 if c(v) ≥ d(v)
0 otherwise

.
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Figure 4.1: A stable sandpile configuration for a graph

. . . . . .

. . . . . .

Figure 4.2: An infinite wire

We define the next configuration c′ = next(c) of the graph:

next(c)(v) = c(v)− d(v)unstable(v, c) +
∑

(v,w)∈E

unstable(w, c).

Thus, to get the next sandpile configuration, each unstable vertex fires, delivering
one grain of sand to each of its neighboring vertices. The sink of the graph is
only stable without sand, but since there are no out-edges the sink never fires.
Consequently, we often distinguish the sink from the other vertices and do not
include the sink in the configurtion of the graph.

4.2 Sandpile circuit

We will now describe how to build circuits out of sandpiles, as presented by Goles
and Margenstern [GM96].

Let us consider a graph composed of vertices arranged in two parallel lines, with
an edge between horizontal neighbors, as in Figure 4.2. We will call this graph a
wire. The neutral wire is the stable wire configuration where each vertex holds one
grain of sand (see Figure 4.3).

Consider the configuration of an infinite line of vertices having a pair of vertices
holding 0 and 2 grains of sand (from left to right) amid vertices holding 1 grain
of sand (see Figure 4.4). The vertex with 2 grains of sand is unstable and fires,

. . .

. . . . . .

. . .
1 1 1 1

1111

1 1 1 1

1111

Figure 4.3: A neutral wire
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Figure 4.4: The signal is directed along the length of the wire due to the unstable
vertex firings

120 1

1 1 0 2

Figure 4.5: A 0-valued wire

translating the sand one vertex to the right; similarly the 02 will travel down the
line of vertices amid vertices having 1 grain sand. We will interpret this 02 as a
signal along the line of vertices and we can exploit this signal to ascribe a boolean
value to a wire in a subgraph configuration by staggering 02 signals in the top and
bottom lines of vertices.

A wire, as in Figure 4.5, with a top signal two vertices ahead of a bottom signal
is said to be carrying the boolean value 0. A wire, as in Figure 4.6, with a bottom
signal two vertices ahead of a top signal is said to be carrying the boolean value 1.
Then the 0-valued wire is simply the 1-valued wire with the lines of vertices inverted.

Sandpile gates

As we noted, the wires carrying 0 and 1 are inversions of one another and so the
construction of a NOT-gate is straightforward; we will invert the lines of vertices to

1 1 0 2

120 1

Figure 4.6: A 1-valued wire
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. . .
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. . .

Figure 4.7: The NOT-gate graph

reverse the value of the wire (see Figure 4.7).
Intuitively, we can think of the sandpile AND- and OR-gates as composed of

vertices that either delay or send signals forward without a delay. The vertex with
3 out-edges and 1 grain of sand will only fire after two of its neighboring vertices
have fired but the vertex with 3 out-edges and 2 grains of sand fires when any of its
neighboring vertices fires (see Figures 4.8 and 4.9). The AND-gate has a delaying
vertex above and a not-delaying vertex below; then the top 02 “signal” is sent ahead
of the bottom 02 “signal” (encoding 1) only when both input wires carry 1, otherwise
the bottom signal is propagated first because it is not delayed. The OR-gate has
a non-delaying vertex above and a delaying vertex below; the bottom signal is sent
ahead (encoding 0) only when both input wires carry 0, otherwise the top signal is
propagated first.

An AND-gate takes two input wires, say X and Y , and outputs one wire carrying
the truth value of X ∧Y . Figure 4.10 depicts the construction of the sandpile AND-
gate.
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Figure 4.10: The sandpile AND-gate with neutral wire inputs and output

As we might expect, an OR-gate is an inverted AND-gate (see Figure 4.11).
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Figure 4.11: The sandpile OR-gate with neutral wire inputs and output

We can verify that the sandpile gates really do output the truth value of the
input expression, i.e., 1∧1 = 1 or 1∧0 = 0 (see Figures 4.12 and 4.13, respectively).
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Figure 4.8: The delaying vertex in action
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Figure 4.9: The non-delaying vertex in action
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Figure 4.12: The sandpile AND-gate evaluates 1 ∧ 1 = 1
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Figure 4.13: The sandpile AND-gate evaluates 1 ∧ 0 = 0
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We now have most of the components we need in order to build our Turing
machine, but we must also describe the k-splitter. In order to propagate k signals
from an original signal, we need only have a vertex with k grains of sand and where
one line of vertices comes from the left, for instance, k lines of vertices come from
the right (see Figure 4.14).

. . .

. . .
. . .

1111

2

1 1 1 1

1 1 1 1

Figure 4.14: A 2-splitter sandpile in a neutral line.

4.3 Sandpile machine

We can now build a cell of the Turing machine out of sandpile gates, splitters, and
neutral wires, i.e., doubled neutral lines. We will specify that the wires be at least
four vertices long to allow us to see the value being transmitted. We will ensure that
the cells are synchronized by standardizing the length of each vertex path through
the machine cell. In fact, we can have a path length of 61 vertices.

In order to accommodate for the first cell, there is no OR-gate for state inputs
because there is no left-neighboring cell; the first cell is in a transition state either
when the machine begins its computation or, when in the previous configuration the
second cell was in a transition state, the next-move function moves the tape head
left (see Appendix A).

Once we have built the machine hardware, we are able to compute an input by
adding and subtracting a grain of sand to alter the wires from neutral configurations
to unstable configurations, coding boolean values. The signals propagate along the
wires as the unstable vertices topple simultaneously; our Turing machine has started
the computation. We will consider the computation to be completed when the state
at each cell is halted, i.e., the state output wires are all 0-valued. Then the output
of the machine is simply the symbol output at each machine cell.





Appendix A

Sandpile Modd

The sandpile representation of the Turing machine Modd is composed of the four
sandpile circuit subcomponents (see Figures A.1–A.4). We then depict the config-
urations of the first two cells of the sandpile machine computing the input 1 and
halting in 118 steps. The halted sandpile machine encodes a blank in the first cell,
a 1 in the second cell, and blanks in the remaining tape cells; thus the machine
decides that 1 is odd.
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Figure A.1: The sandpile state circuit for Modd
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Figure A.2: The sandpile δ-circuit for Modd
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Figure A.3: The sandpile transition circuit for Modd
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Figure A.4: The sandpile symbol circuit for Modd
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Figure A.5: The initial configuration of the sandpile Modd with input 1
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Figure A.6: The 6th sandpile configuration of Modd with input 1
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Figure A.7: The 11th sandpile configuration of Modd with input 1
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Figure A.8: The 16th sandpile configuration of Modd with input 1
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Figure A.9: The 21th sandpile configuration of Modd with input 1
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Figure A.10: The 26th sandpile configuration of Modd with input 1
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Figure A.11: The 31st sandpile configuration of Modd with input 1
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Figure A.12: The 37th sandpile configuration of Modd with input 1
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Figure A.13: The 42nd sandpile configuration of Modd with input 1
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Figure A.14: The 47th sandpile configuration of Modd with input 1
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Figure A.15: The 52nd sandpile configuration of Modd with input 1
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Figure A.16: The 57th sandpile configuration of Modd with input 1
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Figure A.17: The 62nd sandpile configuration of Modd with input 1
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Figure A.18: The 67th sandpile configuration of Modd with input 1
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Figure A.19: The 72nd sandpile configuration of Modd with input 1
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Figure A.20: The 77th sandpile configuration of Modd with input 1
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Figure A.21: The 82nd sandpile configuration of Modd with input 1
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Figure A.22: The 87th sandpile configuration of Modd with input 1
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Figure A.23: The 92nd sandpile configuration of Modd with input 1
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Figure A.24: The 98th sandpile configuration of Modd with input 1
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Figure A.25: The 103rd sandpile configuration of Modd with input 1



68 APPENDIX A. SANDPILE MODD

1
2
3

0

sink . . .. . .
. . .. . .
. . .. . .

. . .. . .

. . .. . .

. . .. . .

Vertex representation
with respect to number

of grains of sand:

Figure A.26: The 108th sandpile configuration of Modd with input 1
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Figure A.27: The 113th sandpile configuration of Modd with input 1
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Figure A.28: Modd halts after the 118th sandpile configuration with output 1
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