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Abstract

In this thesis, we extend the definition of the critical group of a graph to the class of
oriented matroids (OMs). We also discuss abstract simplicial compelxes (ASC’s), and
their critical groups. Matroid complexes are ASC’s with facets taken from the bases
of a matroid. Stanley’s Conjecture states that the h-vector of a matroid complex is a
pure O-sequence.

Oriented matroids are used to study among other things, point configurations
in Rn. We use such OMs to examine some basic properties of the critical group
defined on OMs. We classify the critical group for the class of uniform matroids and
show it is independent of orientation. The canonical free join, X ./ Y, of two point
configurations X and Y has the property that Crit(X ./ Y ) = Crit(X) × Crit(Y ),
where Crit(X) is the critical group of the OM generated by X.

We also have a conjecture about translating between point configurations taken
from hyperplane arrangements, and graphs, via an intermediary hypergraph.





Introduction

In this thesis, we define and investigate extensions of the critical group and sandpile
group from the category of graphs to the category of Abstract Simplicial Complexes
(ASC’s) and the category of Oriented Matroids (OMs). The first chapter is the
graph theoretical version, the second chapter is ASC’s, the third is OMs, the fourth
investigates relations between OMs and ASC’s, involving the Tutte polynomial and
Stanley’s conjecture on the h-vector of a matroid complex, and the fifth involves
using hypergraphs to translate between representations of OMs as graphs and point
configurations.

I use boldface when making a definition. I sometimes use italics for terms which
have formal meanings when I am not defining them (I also use them for emphasis). I
use “quotations” for informal notions.





Chapter 1

Graphs

A simple, undirected graph, or simply a graph, G, is a set of vertices, V = V (G),
and a set of edges, or pairs of vertices, E = E(G).

G = {V,E}.
The adjective “undirected” is in contrast to directed graphs (or digraphs), in

which the edges are ordered pairs, e = {e−, e+}, with a head, e−, and a tail, e+.
“Simple” is in contrast to multigraphs, in which the edge set, E(G) is a multiset,
and weighted graphs, in which every edge is assigned a weight in the real numbers,
integers, or natural numbers. A weighting is encoded in the weight function of the
graph, wtG : E(G) −→ R. We can easily define a weighted graph from any multigraph
by taking the underlying graph and assigning weights to the edges according to their
multiplicity.

Another subtle distinction can be made (more or less rigorously) between directed
multigraphs and “labeled directed multigraphs.” Formally, a labeled directed multi-
graph is a directed multigraph together with a function Label : E(G) ∪ V (G) −→ A,
for some alphabet of characters, A. Of course, this definition extends to graphs, and
this allows us to identify weighted graphs and digraphs with special types of labeling
schemes. The weighted graph Label function just assigns the weights to the edges
(as characters, to be precise). For a digraph, we first chose a total ordering of V, and
define

Label({ev, eu}) =

{
+1 if v ≺ u
−1 if u ≺ v

}
.

The Sandpile Group can be defined for directed multigraphs, but for the majority
of this paper, we will only be concerned with simple, undirected graphs.

For a digraph, a multigraph, a labeled graph, or a weighted graph, G, we get the
underlying graph, G by ignoring the direction, label, weight, or number of edges
connecting two vertices. This is the simple undirected graph we get by ignoring the
extra information attached to edges, so the edges of G are the pairs {u, v} such that
{u, v} is an edge of G, ignoring the order for digraphs. We say that a digraph, D, is an
orientation of G, if G is the underlying graph of D, and every edge of G corresponds
to only one edge of D. In this case, we also say that D is an oriented graph.
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If our vertex set is endowed with a total order, ≺, then there is a unique orientation
of G, which we will call the orientation of G given by taking the smaller vertex as
the first element of every edge. The corresponding Label function is just the identity.

1.1 Cuts and Cycles

A signed cut, {A,Ac} is a partition of the vertices in a graph into two (non-empty)
sets; we identify the oriented cuts with the subsets of the vertices, A ⊂ V. Each
oriented cut defines a corresponding cutset, c(A), this is the set of edges going
between the two vertex sets of the partition. In the case of an oriented graph, we
define the corresponding signed cutset, c(A) := {c(A), f}, a signed set, with:

f(e) =

{
+1 if e+ ∈ A
−1 if e− ∈ Ac

}
.

The set of all signed cutsets of graph, G, we denote C∗(G). Dual to the signed
cuts are the signed cycles of the graph, the set of which is denoted C(G). A cycle is
a sequence of vertices, {v0, v1, ..., vn}, such that vi = vj iff i = j (mod n), and such
that vi, vi+1 are connected for all i.

1.2 The Sandpile Group

This thesis began as an investigation into the sandpile group of a graph. I ended up
focusing on the critical group, however, defined in the next section. As a reference
for sandpiles, see [25].

1.3 The Critical Group

The critical group of a graph is a graph invariant that (among other things) counts
the number of spanning trees of the graph (this is the order of the critical group). In
the case of undirected graphs, the sandpile group doesn’t depend on choice of sink,
and it is isomorphic to the critical group. We define the critical group as

Crit(G) = ZE/(C + C∗),

where C = SpanZ(C), C∗ = SpanZ(C∗), are the cycle space and cut space, of the
graph, respectively.
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Abstract Simplicial Complexes

A graph is a special case of a more general object: the simplicial complex. A simpli-
cial complex is a topological space constructed by gluing simplices together along
faces. This amounts to imposing the following restrictions on a family of simplices,
K :

* every face of every member of K is in K.

* for all σ1, σ2 ∈ K, σ1 ∩ σ2 is a face of both σ1 and σ2.

We are more concerned here with abstract simplicial complexes (ASC’s).
We think of ASC’s as “unrealized” simplicial complexes; lacking an embedding and
hence geometric features, ASC’s are purely combinatorial objects. To form an ASC,
∆, we start with a finite set of vertices, V = V (∆) = {v1, .., vn}. The ASC consists
of a set of subsets of V closed under the taking of subsets, that is,

X ⊆ ∆ =⇒ Y ⊆ ∆, ∀Y ⊂ X.

The members of ∆ are called faces. A maximal face is called a facet. We also order
the vertices via vi ≺ vj iff i < j.

The dimension of a face, X ∈ ∆, is |X| − 1. The dimension of ∆ is the
dimension of its largest face(s). In the case that all facets have the same size, we say
that ∆ is pure.

Every ASC can be geometrically realized as a simplicial complex. This involves
identifying every face, X ∈ ∆ of dimension k, with a (topological) simplex of dimen-
sion k, so that the incidences and containments of ∆ are preserved in the resulting
simplicial complex, K.

A (simple, undirected) graph is naturally an ASC of dimension ≤ 1. For a graph
G, the set ∆ = V (G) ∪ E(G) ∪ ∅ is the associated ASC. For any ASC, ∆, its
i-dimensional skeleton, denoted ∆(i), is the ASC we get by restricting to faces
of dimension ≤ i. The skeleton or underlying graph of an ASC is just its 1-
dimensional skeleton (a graph). We use ∆i to refer to the set of i-dimensional faces
of ∆. Notice that, in general,

∆i 6= ∆(i).
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2.1 Boundaries and Homology

Abstract Simplicial Complexes are naturally equipped with a boundary map, ∂ =∑∞
i=0 ∂i. We typically restrict the domain of the ∂i’s to be Z-linear combinations of

the i-dimensional faces of ∆, as they are identically 0 elsewhere. Each ∂i is a linear
function, determined by its action on the faces, f = {f1, .., fi}, fj ≺ fj+1, ∀j :

∂i({f1, ..., fi}) =
i∑
l=1

(−1)l−1{f1, ..., fl−1, fl+1, ..., fi}.

We can represent ∂i as a matrix with columns representing i-dimensional faces,
and rows corresponding to faces of dimension i− 1. This makes it easy to define the
coboundary map of dimension i, denoted ∂∗i to be the the linear map given by
the transpose of the matrix for the boundary map.

The sets of i-dimensional faces of ∆, together with the boundary maps are an
example of a chain complex. A chain complex is a sequence of abelian groups
or modules, C0, C1, ... and a sequence of homomorphic boundary operators, ∂0, ∂1, ...
with each ∂n : Cn → Cn−1. We represent chain complexes with diagrams:

· · · ∂n+1−→ Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂2−→ C1
∂1−→ C0

∂0−→ 0

substituting Ci = ∆i, gives the following diagram:

· · · 0 −→ 0 −→ Z∆d
∂d−→ Z∆d−1

∂d−1−→ · · · ∂2−→ Z∆1
∂1−→ Z∆0

∂0−→ 0

For any chain complex (here an ASC, ∆), we can define the homology groups
of ∆.

Hn(∆) = ker(∂n)/ im(∂n+1).

A slight modification gives the reduced homology groups, which we will use for
the remainder of this thesis. Here, we augment our chain complex, by inserting a
copy of Z :

· · · 0 −→ 0 −→ Z∆d
∂d−→ Z∆d−1

∂d−1−→ · · · ∂2−→ Z∆1
∂1−→ Z∆0 Σ−→ Z −→ 0

and exchanging the sum mapping,

Σ : ∆0 −→ Z
vi 7→ 1.

for ∂0 := 0. This again forms a chain complex, and the homology groups of this chain
complex are the reduced homology groups of ∆, denoted H̃i(∆).

The i-th Betti number is βi(∆) = rank(H̃i(∆)). The Betti numbers provide a mea-
surement of topological connectedness properties of a space. The 0-th Betti number
is exactly the number of connected components of a space, while i-th Betti numbers
measure the number of i+ 1 dimensional “holes” in the space.
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2.2 The f-vector and the h-vector

We also define the f-vector and h-vector of an ASC. The f-vector is

f(∆) := (f−1(∆), f0(∆), ..., fd−1(∆)),

where fi(∆) := |∆i|. The h-vector,

h(∆) := (h0(∆), ..., hd(∆)),

is a recombination of the f-vector, given by:

hk(∆) =
k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1.

We also have an explicit formula for the f-vector given the h-vector; these two uniquely
determine one another. In fact, the h-vector and f-vector correspond to different
evaluations of the same generating function,

f∆(x) =
d∑
i=0

fi−1(∆)xd−i.

h∆(x) = f∆(x− 1) =
d∑
i=0

hi(∆)xd−i.

The f∆(X) is called the face enumerator, while h∆(x) is the shelling polynomial.

2.3 The Critical Group

Duval, Klivens, and Martin recently extended the definition of the critical group and
the sandpile group to simplicial complexes [2],[3],[4], in the next two sections, we
summarize this work, defining the d-dimensional Critical Group and Sandpile Group
of an ASC and show that these extend the graph theory definitions. First, we define
the d-dimensional Laplacian, Ld = ∂d∂

∗
d . The d-dimensional Critical Group of an

ASC, ∆, is then:

Critd(∆) = ker(∂d)/ im(Ld).

This replicates the definition of the critical group in the graphic case.

2.4 The Sandpile Group

An ASC is acyclic in positive codimension (APC) iff

βi(∆) = 0, ∀ i < d.



8 Chapter 2. Abstract Simplicial Complexes

For an APC ASC, we can also define the d-dimensional Sandpile Group of
∆, with respect to a given (d − 1)-dimensional spanning complex, Γ. The choice
of sink in the graphical case is generalized by the choice of spanning complex. We
denote this group by

Sd(∆,Γ).

For a d-dimensional ASC, ∆, a spanning complex of ∆ is a connected, acyclic
subcomplex of dimension d−1 which “spans” ∆. Specifically, Γ is a spanning complex
iff Γ(d−1) = ∆(d−1), and Γ satisfies the following conditions:

* H̃d(Γ,Z) = 0

* |H̃d−1(Γ,Z)| <∞

* fd(Γ) = fd(∆)− βd(∆) + βd−1(∆),

any 2 of which imply the 3rd (so long as Γ(d−1) = ∆(d−1)).
Just as the sandpile group of a graph is isomorphic to integer combinations of the

non-sink vertex modulo the Laplacian, we now take integer combinations of the edges
not in the “sink”, Γ, modulo the (now order d) Laplacian:

Sd(∆,Γ) ≈ ZΓc/L̃d.

Of course, technically we need to restrict the Laplacian’s domain to ZΓc, creating the
reduced Laplacian, L̃d.

2.4.1 The Sandpile Group and the Critical Group are Iso-
morphic

We can easily demonstrate the equivalence of these groups for the d = 2 case (recall
d = 1 is the graphic case). Here, the “sink” spanning complex is just a spanning
tree for the skeleton of the complex. We know that for any spanning tree, Γ, of a
graph, G, adding any edge, e, of G not already included in Γ will create a unique
cycle, ce, containing e. Also, for d = 2, ker(∂d−1) = ker(∂1) is exactly the cycle space
of the underlying graph, which is generated by the ce’s, for fixed Γ, so we get an
isomorphism:

ZΓc −→ ker(∂1)

e 7→ ce.

This allows us to fill in the following commutative diagram, guaranteeing us the
desired isomorphism:

0 // ZE/ ker(L2)
L2 // ker(∂1) // Crit(∆) // 0

0 // ZΓc L̃2 //?�

OO

ZΓc //

e 7→ce ≈

OO

S(∆,Γ) //

≈

OO

0

This diagram is really just expressing the fact that it doesn’t matter whether we mod
out by the Laplacian or the reduced Laplacian.
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2.4.2 Firing Rules and Group Representatives

The choice of a “sink” spanning complex gave us the sandpile group of a simplicial
complex, Sd(∆,Γ), but while the firing rules in the graph case conserve the total
amount of “sand”, the higher dimensional reduced Laplacians used with ASC’s do
not necessarily have this property. Furthermore, while in the graphic case, “firing” a
vertex always resulted in a less sand on that vertex and only that vertex. However,
in the ASC case, “firing” a simplex can decrease the sand on other simplices, so it
becomes more difficult to create a sensible notion of stabilization, which we require
in order to find canonical group representatives for the equivalence classes created by
the action of the reduced Laplacian. However, since the configurations always form
a lattice ideal, I, we can choose a Gröbner Basis, G for I and reduce with respect
to G. So any choice of a Gröbner Basis gives a set of unique representatives for the
sandpile group. But without the intuitiveness of the graphic stable configurations,
these representatives are kind of arbitrary and weren’t of any further immediate
interest.

2.5 Group Dependence on Choice of Triangulation

In [2], the authors extend the sandpile group to cubical complexes. I spent some
time looking for “(abstract) polygonal complexes” in the literature, which would be
polyhedra glued together nicely, but I couldn’t find them easily and didn’t spend
too long on this topic. However, one interesting conjecture, to which I was able
to produce a counterexample is whether two different triangulations of the same
“polygonal complex” would have the same critical group. The “hollow cube” provides
a counterexample. The hollow cube is 6 “squares” glued together with 12 lines at 8
points, as below:

{{0, 1, 2, 3}, {0, 1, 5, 4}, {0, 3, 7, 4}, {1, 2, 6, 5}, {2, 3, 7, 6}, {4, 5, 6, 7}}
{{0, 1}, {0, 3}, {0, 4}, {1, 2}, {1, 5}, {2, 3}, {2, 6}, {3, 7}, {4, 5}, {4, 7}, {5, 6}, {6, 7}}

{0, 1, 2, 3, 4, 5, 6, 7}

If we identify {0, 1, ..., 7} with the points {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1},
{1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1} in R3, we could embed this as exactly the hollow
unit cube. The following simplicial complexes (given in terms of their facets) are

triangulations of the Cube.

C1 = {012, 015, 023, 034, 045, 047, 125, 237, 256, 267, 457, 567}
C2 = {013, 015, 034, 045, 123, 126, 156, 237, 267, 347, 457, 567}

However, their critical groups are not isomorphic; Crit(C2) ≈ Z/12Z, while Crit(C1)
is trivial.





Chapter 3

Oriented Matroid Theory

We are primarily concerned with oriented matroids (OMs), but we will begin with
matroids.

3.1 Matroids

A Matroid, M is a “dependence structure,” generalizing linear dependence on a set
of elements, E(M) = {e1, ..., en} (in this thesis, the element set is always finite). It’s
often convenient to assume an ordering on the element set; we say ei ≺ ej iff i < j.

A matroid is defined by its elements and the dependencies between them. There
are numerous axiomatizations (each of which fully characterizes the matroid), we
consider several: independent sets, rank functions, bases, circuits, and cocircuits.

One of the sources of inspiration for the definition of matroids is the study of
the linear dependencies of the columns of a matrix. I’ve found matroids are best
understood and explained via analogy to the matrix case, so I’ll start by explaining
this special case.

3.1.1 Matroids from Matrices

Every matroid, M, has some element set, E(M). One way of defining matroids in
via their independent sets, some special subsets of E(M). For any finite set of
vectors, V ⊂ Rn, we can define a matroid, M(V ), with element set E(M(V )) = V,
by letting a subset of vectors be independent iff it is linearly independent. Starting
with a matrix, A, we form the matroid M(A), from the set of column vectors of A,
as just described.

The independent set axioms of matroids generalize some conditions of linear in-
dependence, as follows:

* (I0) 0 ∈ I

* (I1) X ⊂ Y ∈ I =⇒ X ∈ I

* (I2) X, Y ∈ I, |X| > |Y | =⇒ ∃x ∈ X s. t. Y ∪ {x} ∈ I
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We call a set of elements dependent iff it is not independent. We can understand
the other axiomatizations in terms of independence and in analogy with the vector
case. The circuits are simply the minimal dependent sets, while the bases are the
maximal independent sets. The rank function assigns a number to every subset of
the elements which corresponds the rank of the space they span in the vector case.
The cocircuits are the circuits of the dual matroid, M∗. Duality is fundamental in
matroid theory, and oriented matroid theory. For every matroid, M, we can define
the dual matroid, M∗, with the same element set,

E(M) = E(M∗),

and the property that
M∗∗ =M.

A simple characterization of the dual matroid is given in terms of the bases. A set of
elements, B, is a basis of M∗ iff Bc = E \B is a basis of M.

We also have that the circuits of a matroid are the cocircuits of the dual. We
denote the circuits/cocircuits of a matroid by CM / C∗M. We may drop the subscripts
when it is unambiguous which matroid we’re referring to. The duality between circuits
and cocircuits can be written as follows:

CM∗ = C∗M.

3.1.2 Graphic Matroids

The invention of matroids was also inspired by graph theory. For every graph, G,
we define the Cycle Matroid of G, M(G), whose element set is E(G) and whose
dependent sets are sets of edges containing a cycle (so the circuits of the matroid are
the cycles of the graph). A consequence of this construction is that the cocircuits of
the matroid are the cutsets of the graph. Thus, for any graph, M∗(G) is called the
Cutset Matroid of G, and its circuits are exactly the cutsets of G.

3.2 Oriented Matroids

We can modify our above procedures to create oriented matroids (OMs) from
matrices and graphs. Oriented Matroids are like Matroids, but they encode directional
information as well as dependence information. For every Oriented Matroid,M there
is an underlying matroid, denotedM (we then callM an orientation of M; not
all matroids have an orientation, we call those that do orientable.) In general, we
adopt the convention that for any signed object, the underlying object, in which we
forget the sign information, is denoted with an underline.

3.3 Axiomatizations

Here we give the rank, basis, circuit and cocircuit axioms for a matroid/OM. As
mentioned, each of these can be used to define an OM or a matroid. While it may
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seem redundant to give so many axiomatizations, we will use each of them in turn
in this thesis. In general, it’s not abnormal in matroid theory to translate between
axiom systems frequently, and in fact many more axiom systems we will not use or
discuss exist. I will refer to the “matrix case”, where the matroid is taken from a
matrix in the above fashion (M = M(A), for some A, ) and to graphic matroids to
help explain the motivation and intuition behind some of these characterizations.

To “orient” (that is, produce an orientation of) a matroid it is necessary to at-
tached signs (+ or -) to the bases, or to the elements of the circuits or cocircuits.
Just as the matroid information of any of these axiomatizations determines all the
others, so the sign information is entirely contained in any one of these sets, so OMs
are uniquely determined by their signed bases (chirotopes), signed circuits or circuits.
To encode this information, we use signed sets, and chirotopes. We identify {+,−}
and {+1,−1} when convenient.

3.3.1 Signed Sets

Signed sets are like sets, but every element is considered to be either positive or
negative. We define a signed set, X, to be an ordered pair, X = {X+, X−}. We call
X+ the positive part of X, its elements are the positive members of X. We call
X− the negative part of X, its elements are the negative members of X. The
underlying set of a signed set, X, is X := X+ ∪ X−.

3.3.2 Vector Representation

Since all of our signed sets are subsets of the element set of an oriented matroid,
{e1, .., en}, we can represent a signed set as a vector in ZE, identified with a vector
in Zn via this natural identification:

ZE −→ Zn

ei 7→ ei

with ei being the i-th matroid element, and ei being the i-th standard basis vec-
tor. This allows us to talk about the components of a signed set, referencing the
component of the corresponding vector in Zn. By forgetting about the signs of the
components, we introduce the mapping. If we let a 1 represent inclusion of the cor-
responding element in the set, then this mapping gives the underlying set of a signed
set. We extend to a mapping from OMs to matroids: simply choose a signed set
representation of an OM, M, apply to all of the signed sets (circuits/cocircuits),
and the resulting sets are the circuits/cocircuits ofM. This notation agrees with the
earlier definition of the underlying matroid.

3.3.3 String Representation

To a signed set, X, we associate a string SX = SX1 SX2 ...SXk from the alphabet
{e1, ..., en, ē1, ..., ēn}. Since the element set is totally ordered, with the condition that
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the characters’ subscripts form an increasing sequence, this is a bijection. For such a
string, we define the argument and sign of each character:

arg(ei) = arg(ēi) = ei.

sign(ej) = 1, ∀ j.
sign(ēj) = −1, ∀ j.

The total ordering also allows us to identify X+ and X− with strings from the
alphabet {e1, ..., en} with increasing subscripts. We let X

+/−
i be the i-th component

of the string corresponding to X+/−, considered again as an element of the matroid
(not a character).

3.3.4 Example

Let X be a signed set with X+ = {e3, e4, e7}, X− = {e2, e6}. Then as a vector,

X = {0,−,+,+,−, 0,+},

and as a string,
X = ē2e3e4ē5e7

and referencing components,

X1 = X6 = 0

X2 = sign(SX1 ) = X5 = sign(SX4 ) =− 1

X3 = sign(SX2 ) = X4 = sign(SX3 ) = X7 = sign(SX5 ) = 1

X+
1 = arg(SX2 ) = e2

X+
2 = arg(SX3 ) = e3

X+
3 = arg(SX5 ) = e4

X−1 = arg(SX1 ) = e5

X−2 = arg(SX4 ) = e7

3.3.5 Rank Axioms

The rank of a matroid is a function,

ρ : P(E) −→ {0, 1, ..., r}

satisfying the following axioms:

* (R0) ρ(X) ≤ |X|
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* (R1) X ⊂ Y ⊂ E =⇒ ρ(X) ≤ ρ(Y )

* (R2) X, Y ⊂ E =⇒ ρ(X ∩ Y ) + ρ(X ∪ Y ) ≤ ρ(X) + ρ(Y )

In the matrix case, the rank of a set F ⊂ E, is just the dimension of the space
spanned by the elements of F :

ρ(F ) = Span(F ).

The number r, is called the rank of M, and ρ has the property that:

ρ(B) = r iff B contains a basis ofM.

3.3.6 Basis/Chirotope Axioms

This brings us to the basis definition of a matroid. From the properties of the rank
function, we can tell that a basis of a matrix, A, is exactly a minimal subset of the
column vectors, B ⊂ E(M(A)), such that ρ(B) = r, i.e., B is a basis for the space
spanned by the columns of the matrix, Im(A). Every matroid corresponds uniquely
(up to loops) to a set of bases, B. The bases are r-element subsets of E, satisfying
the following axioms:

* (B0) B 6= 0

* (B1) X, Y ∈ B, X 6= Y =⇒ Y * X, X * Y

* (B2) X, Y ∈ B, X 6= Y, x ∈ X \ Y =⇒ ∃y ∈ Y \X s. t. X \ {x} ∪ {y} ∈ B

A loop is an element which is dependent as a singleton (and hence appears in no
basis of M).

In an OM, we sign the bases. We represent this by the matroid Chirotope,

χ : {r − element subsets of E} → {−1, 0, 1}.

As mentioned, χ(B) = 1 iff B is a basis of M, in other words, χ = |χ| is just the
indicator function of the set B. But χ not only says which r-element subsets are bases,
it also assigns each basis an orientation, +1 or −1.

In the matrix case, the chirotope is just:

χ(x1, ..., xr) = sign(det(x1, ..., xr)).

In general, the chirotope must satisfy an abstraction of the Grassmann-Plücker rela-
tions for r-order determinants. The Grassman-Plücker relations are:

det(x1, ..., xr) det(y1, ..., yr) =
r∑
i=1

det(yi, xe, ..., xr) det(y1, ..., yi−1, x1, yi+1, ..., yr).

The corresponding condition on the chirotope is:
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(B2′) for all x1, ..., xr, y1, ..., yr ∈ E such that

χ(yi, x2, ..., xr) χ(y1, ..., yi−1, x1, yi+1, ..., yr) ≥ 0,

for all i = 1, ..., r, we have

χ(x1, ..., xr) χ(y1, ..., yr) ≥ 0.

A Chirotope is an alternating map,

χ̂ : Er −→ {−1, 0, 1}
Since χ̂ is alternating, we know χ̂(x) = 0, for all x ∈ Er such that there exist i, j,

(i 6= j) with xi = xj. So we can consider χ̂ restricted to r-element subsets of E, and
view it as attaching signs to the bases of a matroid, so that χ̂(B) 6= 0 iff B is a basis
of M.

Since E is ordered, every subset is ordered canonically, so we may consider the
chirotope as a map from unordered r-element subsets:

χ : {r−element subsets of E} → {−1, 0, 1} := χ̂ |{{x1,...,xr} |xi≺xi+1, ∀ i}

Since χ̂ is alternating, the mappings χ and χ̂ determine one another uniquely.

The underlying matroid’s bases are also easily determined by the chirotope ofM.
They are exactly

{B | χ(B) = 1}
where χ := ( ◦ χ).

3.3.7 Circuit Axioms

As mentioned, the circuits of a matrix are the minimal dependent sets of vectors.
The following circuit axioms are used to characterize a matroid, C(M) ⊂ E(M) :

* (C0) 0 /∈ C

* (C1) C = −C

* (C2) ∀X, Y ∈ C, X ⊂ Y ⇒ X = Y or X = −Y

* (C3) X, Y ∈ C, X 6= Y, e ∈ X+ ∩ Y − =⇒ ∃Z ∈ C s. t.
Z+ ⊂ (X+ ∪ Y +) \ {e} and Z− ⊂ (X− ∪ Y −) \ {e}

Because of axioms (C0) and (C1), circuits come in pairs, {c,−c}. When listing
the circuits, we often list only one of each pair.

The circuits are also used to construct graphic matroids in a straightforward man-
ner. For a graph, G, we take as elements edges of G,

E(M) = E(G),

and let the circuits of M be the cycles (or circuits) of the graph.
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3.3.8 Cocircuit Axioms

The cocircuits correspond in the graphic case to cutsets of the graph. Since they also
are the circuits of the dual matroid,

C(M∗) = C∗(M),

we can conclude that (planar) graphic duality corresponds to matroid duality. In
fact, more is true, a graph G is planar iff its matroid dual, M∗(G), is graphic.

The cocircuit axioms a matroid are easily obtained by “dualizing” the circuit
axioms. We use C∗ to refer to the set of cocircuits.

* (CC0) 0 /∈ C∗

* (CC1) C∗ = −C∗

* (CC2) ∀X, Y ∈ C∗, X ⊂ Y ⇒ X = Y or X = −Y

* (CC3) X, Y ∈ C∗, X 6= −Y, e ∈ X+ ∩ Y − =⇒ ∃Z ∈ C∗ s. t.
Z+ ⊂ (X+ ∪ Y +) \ {e} and Z− ⊂ (X− ∪ Y −) \ {e}

Because of axioms (CC0) and (CC1), cocircuits come in pairs, {c,−c}. When
listing the cocircuits, we often list only one of each pair.

3.4 The Critical Group

Definition. Subsuming that definition of the critical group of an undirected graph,
we define the critical group of an oriented matroid M, denoted Crit(M) to be:

Crit(M) = ZE/(C + C∗),

where C = SpanZ(C), C∗ = SpanZ(C∗), are the circuit space and cocircuit
space, respectively.

A trivial consequence of this definition is that

Crit(M) = Crit(M∗).

To find the critical group of an undirected graph, we first give each edge an
orientation. As the critical group of an undirected graph is well-defined, it follows
that it is independent of the choice of orientation. This leads us to ask the following
question:

Question. Is it the case that for any orientable matroid, M, all orientations of M
have the same critical group?

We know the answer is yes in the graphic and uniform cases. The graphic case is
well known, we prove the uniform case in Theorem 3.1.
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3.5 The Sandpile Group

In graphs, the vertices are not represented explicitly in the matroid. But the sandpile
group is defined using the vertices. It turns out that in a graph, the fundamental
cocircuits of the matroid correspond perfectly to singleton vertex cuts. Suho Oh
has suggested [20] that fundamental cocircuits might serve as a vertex analog for
construction of the matroid sandpile group.

For a matroidM, we let FM(B, x) = F(B, x) denote the fundamental circuit
of the basis B with respect to an element x /∈ B. This is the unique circuit of
M, C ∈ C contained in B ∪ {x} and containing x :

x ∈ F(B, x) ⊂ B ∪ {x}.

F∗M(B, y) = F∗(B, y) denotes the fundamental cocircuit of B with respect
to y ∈ B. This is the unique cocircuit disjoint from B \ {y}, and containing y :

y ∈ F∗(B, y) ⊂ (B \ {y})c.

The fundamental circuits and cocircuits are related by

F∗M(B, y) = FM∗(E \B, y).

3.6 Equivalence for Oriented Matroids

We already have one equivalence relation on the class of oriented matroids: we say
that M and M′ are reorientation equivalent iff M = M′. Now, we define an
isomorphism of oriented matroids, M and M′. This is a bijection, f : E(M) −→
E(M′), such that the matroid structure is preserved. Since all the axiomatizatons
are equivalent, we only need prove that one of the circuits, cocircuits, chirotope,
etc., are preserved by f. It is easy to see that the critical group is invariant under
isomorphism. This result is preserved even if we take the more general notion of
isomorphism from [24], which doesn’t require a bijection between the element sets,
allowing for “insertion or deletion” of parallel elements and loops. Elements e, f
are parallel if {e, f} is a circuit. An element e is a loop if {e} is a circuit. Where we
have resigning, [24] instead has relabeling, allowing these insertions and deletions.

If we consider OMs on some fixed element set, E, it makes sense to distinguish
isomorphism from equality. We will define two more equivalence relations on the set
of oriented matroids (not their isomorphism classes) with a given element set, E. We
define their operation on elements and extend linearly to signed set representations.

Let On be the set of oriented matroids with element set E = {ei, ..., en}. Define
the resigning map, resign : E ×On −→ E, by

resign : E × ZE −→ ZE
(ei, ej) 7→ (−1)δijej
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and extending linearly. So the resign map just switches the sign on the ei-th coordi-
nate of a vector x ∈ ZE. This induces a resign map on OMs, to resign an OM, M,
we choose any representation of M as a set of sign vectors in ZE, apply the resign
map to this set, and the resulting sign vectors determine an OM.

We sayM andM′ are resigning equivalent iff there is some F = {f1, .., fk} ⊂ E
such that resigning M by {f1, .., fk} in succession gives M′. In other words,

resign(F,M) =M′,

where we have extended the resign as just described.
We define the action of the symmetric group, Sn on an OM via permutation of

the element set:

perm : Sn × E −→ E

{σ, ei} 7→ eσ(i).

We extend this via linearity to a map perm : Sn × ZE −→ ZE, and this map
induces an operation on OMs with n elements for each permutation. We simply
apply perm to any signed set representation of our OM, considered as a vector in ZE,
and the result is another such OM on the same element set. We call two OMs,M and
M′, permutation equivalent iff there exists a σ ∈ Sn such that perm(p,M) =M′.

If they are well-defined, it is easy to show that resign : PE × On −→ On and
permn : Sn ×On −→ On define bonified transitive, symmetric, and reflexive equiva-
lence relations:

Reflexivity:

resign(∅,M) =M
perm(∅,M) =M.

Symmetry:

resign(F,M) =M′ =⇒ resign(F,M′) =M.

perm(σ,M) =M′ =⇒ perm(σ,M′) =M.

Transitivity:

resign(F,M) =M′, resign(G,M′) =M′′ =⇒ resign(F ∪G \ (F ∩G),M) =M′′.

perm(σ,M) =M′, perm(σ′,M′) =M′′ =⇒ perm(σ′σ,M) =M′′.

It must be verified that resign : PE×On −→ On and permn : Sn×On −→ On are
in fact well-defined. Since they were defined by linear extension on basis elements, we
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know the mappings on signed sets, resign : PE×ZE −→ ZE and perm : Sn×ZE −→
ZE, are well-defined, the question is whether any we can apply these mappings to
any representation of an OM, M and get the same OM, M′, out, independent of
choice of representation. The answer is yes. We leave this to the reader.

We also would like to know the effect of resigning or permuting on the chirotope
of a matroid. We have that

resign(e, χ)(B) =

{
χ(B) if e /∈ B
−χ(B) if e ∈ B.

}
.

for any e ∈ E, and any r-element B ⊂ E. Hence, resigning by a set, F ⊂ E, gives:

resign(F, χ)(B) = (−1)|F∩B|B

This is an easy consequence of the cocircuit/chirotope translation given in [16].
For a permutation, σ, we just have

perm(σ, χ)(B) = χ(σ(B)).

3.7 Oriented Matroids from Point Configurations

We use (x1, ..., xn) for coordinates of the vector ~x. For a set of vectors, we use
{x1, ...,xk}. Ziegler’s Lectures on Polytopes [14] was the primary reference for this
section.

Every finite set of vectors, {v1, ...,vk} spanning an r-dimensional vector space
gives rise to an oriented matroid with circuits given by the minimal linear dependen-
cies of the vectors in the following way: for each such dependence,

k∑
i=1

λivi = 0

we associate the sign vector

D = (sign(λ1), ..., sign(λk)).

Define the support of D as the set {i : Di 6= 0}. The circuits of the oriented matroid
are then the sign vectors with minimal support.

Every affine point configuration

X = {p1, ..., pk} ⊂ Rn

also gives rise to an associated oriented matroid via an associated set of vectors, which
we will call the projectivization of X, denoted by

proj(X) := {v1, ...,vk} ⊂ Rn+1, vi = (1, pi), ∀i.
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The cocircuits of a point configuration correspond to hyperplanes passing through
some of the points. Each such hyperplane divides the set of points into the points
on it, the points “above it” and the points “below” it (once we decide which way
is “up”). These translate into sign vectors, with + for the points above, - for those
below, and 0 for those on the hyperplane. A cocircuit is then one such sign vector
with minimal support (given by a hyperplane passing through a maximal set of the
points).

3.8 Uniform Oriented Matroids

An (oriented) matroid M is called k-uniform, or simply uniform, if its bases are
exactly the k-element subsets of E(M).

We were able to completely classify the critical groups of uniform oriented ma-
troids. Let U(n, r) denote the uniform matroid of rank r on n elements. We have the
following result:

Theorem 3.1. The critical group of a uniform oriented matroid is independent of
orientation. For any orientation of U(n, r), we have:

Crit(U(n, r)) ≈


Z/nZ : r ∈ {1, n− 1}
Z/2Z : r odd, n even, 2 < r < n− 2
0 : otherwise.

Proof. The following proof uses results from [22] and OMs constructed from point
configurations (and one that isn’t). Hoffstätler and Nickel[22] give the dimension and
in some cases an explicit formulation of the circuit space of an OM, C(M) (which
he calls the circuit lattice of M, denoted F(M).) Instead of letting points, p
be the elements of the matroid, we will make corresponding matroid elements, ep.
This allows us to disambiguate between addition/subtraction of points as points, and
addition/subtraction of sign vectors corresponding to matroid elements. Note that
we still use ei to denote standard basis vectors, so ei 6= ei.

First, suppose r = 1. Then the bases of M are just the singleton subsets of E.
Since the critical group is invariant under resigning of elements, all rank 1 OMs are
in the same resigning class and hence have the same critical group. Now, consider
the set of points

X = {0, e1, e2, ..., en−2, p} ⊂ Rn−2,

where

p =
n−2∑
i=1

λiei,
n−2∑
i=1

λi < 1, and λi > 0.

These points constitute the points of the (n−2)-dimensional simplex with the point p
somewhere in the convex hull of the other points. This point set determines a uniform
OM of rank n − 1. By the affine dependence definition of a circuit, we know that
the only circuit of the OM is (+,+, ...,+,−), since any proper subset of E is linearly
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independent, and p is defined as a positive linear combination of the ei. Any n − 2
points lie on a hyperplane in n− 2 dimensional space, so the cocircuits can be found
by looking at all n− 2 element subsets of E. Let H ⊂ E, with |H ∩ X| = n− 2. Let
Hc ∩ X = {x, y}.

Suppose p /∈ Hc. Then H cuts the simplex in half with x and y on opposite sides,
so the resulting cocircuit is ±(ex − ey). On the other hand, if p ∈ Hc, then H is one
of the facets of the simplex, so x and y are on the same side of H, and the resulting
cocircuit is ±(ex + ey).

By setting cocircuits equivalent to 0, we find that ep+ex = 0, ∀ ex ∈ E, x 6= p. By
also setting the circuit equivalent to 0, we find that ep = (n−1)∗ex, ∀ ex ∈ E, x 6= p,
implying n∗p = 0. The critical group is exactly ZE modulo these equivalence relations,
i.e., Z/nZ.

Since there is only one isomorphism class for rank 1 (and hence rank n − 1)
matroids, this is the critical group for any uniform matroid on n elements with rank
1 or n− 1.

Now, suppose the second condition holds, so we know r is odd, n is even, and
2 < r < n − 2. We use several results from (H&N). First, we have that C is either
the set of things whose coefficients sum to an even number,

C = {x ∈ ZE|
∑

e∈E xe = 0(2)},

where xe is of course, the e-th component of the vector x ∈ ZE, or C has dimension
(n− 1). Furthermore, a further result gives that all those OMs with dim(C) = n− 1,
are in the same isomorphism class, so have the same critical group.

In the case that C = {x ∈ ZE|
∑

e∈E xe = 0(2)}, the critical group is either
Z/2Z, or trivial, since ZE/C ≈ Z/2Z, already, and to construct the critical group
we just mod out by the cocircuits as well. But since every r + 1 element subsets
of E is dependent and thus a circuit of U(n, r), by duality, the cocircuits are the
n − r + 1 element subsets of E. So when n is even and r is odd, every cocircuit has
an even number, (n− r + 1), of non-zero entries (when considered as a sign vector).
Considering the sign vector as an element of ZE, every non-zero entry is either +1
or −1, and hence is equivalent to 1(2). Hence the sum of the coefficients of the image
of the cocircuit is even, so C∗ ⊂ C. This completes the proof for this case.

For the case where dim(C) = n − 1, I define an oriented matroid, M, prove it is
in this isomorphism class, and prove is has critical group Z/2Z.

Let E(M) = {e1, ..., en}, with ei ≺ ej iff i < j, as per usual. Let the circuit
signature (up to sign) for any X ∈ C be given as follows. Let X = {x1, ..., x2k}, with
xi ≺ xi+1, ∀ i. Then define X+ = {xi | i = 1(2)}, X− = {xi | i = 0(2)}. We must
first show that the circuits thus signed obey the axioms. In particular, we must show
that:

∀ X, Y ∈ C, X 6= −Y, ∀ e ∈ X+ ∩ Y −, ∃ Z ∈ C s. t.

Z+ ⊂ (X+ ∪ Y +) \ {e} and Z− ⊂ (X− ∪ Y −) \ {e}
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Let X, Y and e satisfy the above. Notice that with the above notation, xi =
arg(SXi ), and yi = arg(SYi ), for all i, so then e = xi = yj, for some i, j with i odd and
j even. Suppose i < j. Then let

SZ = {SYi | i < j} � {SXi | i ≥ j},

with the dot, � , representing concatenation, so the elements of Z inherit their signs
from X and Y, so z ∈ Z+ iff z ∈ X+ ∪ Y +.

Notice that Z contains exactly j − 1 elements of Y and r − j + 2 elements of
X, for a total of r + 1 elements. Thus Z is a circuit of the matroid, and hence a
signed circuit; we only took elements greater than e from X and only took elements
less than e from Y, and hence arg(SZi ) ≺ arg(SZi+1), for all i, and hence the signs of
the elements of Z are consistent with the circuit signature. Finally, since Z doesn’t
contain e, we have proven the axiom holds, for the case i < j.

For the case that i > j, simply consider X ′ = −Y, Y ′ = −X. Then we have
e = x′i = y′j, with i < j, and can apply the result just obtained on X ′, Y ′ to produce
a Z ′. Observe that Z ′ = −Z, and hence, by axiom (C1), Z ∈ C.

We are left with the case that i = j, in which case, by the way we defined the circuit
signature, sign(SXi ) = sign(SYi ), for all i. Now, since X 6= −Y, we know X 6= Y , and
consequently, ∃ b s. t. xb 6= yb. We want a to be the spot closest to i where X and Y
differ. Let a be the maximal such b less than i, if one exists, otherwise, let a be the
minimal such b greater than i. Notice that as defined, a < i implies xa+1 = ya+1, and
a > i implies xa−1 = ya−1. Now, there are four conditions:

• If a < i, and xa < ya, then Z = X ∪ {ya} \ {xa+1} defines a circuit.

• If a > i, and xa > ya, then Z = X ∪ {ya} \ {xa−1} defines a circuit.

• If a < i, and xa > ya, then Z = Y ∪ {xa} \ {ya+1} defines a circuit.

• If a > i, and xa < ya, then Z = Y ∪ {xa} \ {ya−1} defines a circuit.

These can all be verified very easily. We have guaranteed that the element to be
inserted is in order and has the correct sign.

Now, observe that the coefficient sum of the image of any circuit of X ∈ C is 0.
Thus using (H&N), dim(C) = n − 1, and so this matroid is from the isomorphism
class of interest. But we also want to show that all of the elements of the matroid
are in fact equivalent when we quotient by C. By assumption, r < n − 2, thus the
following are circuits of M :

c1 = {e1, ..., ei−1, ei , ei+2, ..., er+2}
c2 = {e1, ..., ei−1, ei+1, ei+2, ..., er+2}

and c1 − c2 = eiei+1. Thus ei ∼ ei+1, ∀ i.



24 Chapter 3. Oriented Matroid Theory

Now, we give a cocircuit with image -2. Since all the cocircuits have even image,
this will finish the proof. Define d ∈ C∗, by

d+ = {e1, e2, ..., e(n−r−1)/2}
d− = {e(n−r+3)/2, e(n−r+5)/2, ..., en−r+2}

Then |d| = n − r + 1, so to prove d ∈ C∗, it suffices to show that d ⊥ c, ∀ c ∈ C.
So lets suppose c ∈ C, but c and d are not perpendicular. Suppose |c ∩ d+| > 1 or
|c ∩ d−| > 1. Then there exist i, j, with i < j, such that arg(Sci ), arg(Scj ) ∈ d+, or
arg(Sci ), arg(Scj ) ∈ d−, so then

arg(Sci+1) ≤ arg(Scj ), so Sci+1 ∈ d+

or
arg(Scj−1) ≥ arg(Sci ), so Scj−1 ∈ d−.

But then c ⊥ d, since

sign(Sdi ) sign(Sci ) = − sign(Sdi+1) sign(Sci+1)

or
sign(Sdj ) sign(Scj ) = − sign(Sdj−1) sign(Scj−1)

Thus |c ∩ d−| ≤ 1, and |c ∩ d+| ≤ 1, and so equality necessarily holds for both, since
|c| = r+ 1, |d| = n− r+ 1 =⇒ |c ∩ d| ≥ 2. So now we have c = dc ∪ {e, f}, with e ∈
d+, f ∈ d−. But then let arg(Sci ) = e. Then necessarily, arg(Sci+1) = (n−r+1)/2, since
(n− r + 1)/2 /∈ d, and arg(Sci+2) = f, so sign(Sdi ) sign(Sci ) = − sign(Sdi+2) sign(Sci+2),
since sign(Sci ) = sign(Sci+2).

Now, suppose that neither of the first two conditions hold, so the theorem states
that the critical group is 0. We consider three cases:

(1) : r ∈ {0, n}
(2) : r ∈ {2, n− 2}, n 6= 3
(3) : n odd, 2 < r < n− 2.

For case (1), suppose r = 0. Then the circuits are exactly the 1 element subsets
of E, thus C = ZE.

For case (2), suppose r = 2. Then by Table 1 in [22], C = ZE.
For case (3), we use a result from [22], which states that for even r : 2 < r < n−2,

C = ZE. By duality, then, for any r : 2 < r < n − 2, one of {r, n − r} will be even,
since n is odd. Thus either C = ZE, or C∗ = ZE.

3.9 The Free Join

The free join is a construction defined in [28]. The definition below is a modification
convenient for proving later theorems. I’m using the bowtie, ./ for my definition,
even though it is different from [28]’s.
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Definition. For any two point configurations, X = {x1, ..., xa} ⊂ Rn and Y =
{y1, ..., yb} ⊂ Rm, we define the canonical free join of X and Y, a subset of Rm+n+1

by
X ./ Y := ιX(X) ∪ ιY (Y ),

where

ιX : Rm −→ Rm+n+1 ιY : Rn −→ Rm+n+1

(x1, ...xm) 7→ (x1, ..., xm, 0, ..., 0) (y1, ...yn) 7→ (0, ..., 0, y1, ..., yn, 1).

3.9.1 What Groups Can be Constructed This Way?

It turns out that any finite abelian group is the critical group of some point configu-
ration. We prove this below.

Lemma 3.1. For any two point configurations, Xand Y , let

proj(X) = {x1, ...,xa} ⊂ Rn, proj(Y ) = {y1, ...,yb} ⊂ Rm,

and let {p1, ..., pa, pa+1, ..., pa+b}, be the points of X and Y embedded in Rn+m+1 via the
canonical free join, and {v1, ...,va+b} = {(1, p1), ..., (1, pa+b)} , be the corresponding
vectors. Let

CX = {cX1 , ..., cXα }, CY = {cY1 , ..., cYβ }
be the circuits of X ⊂ Rn and Y ⊂ Rm, and let

Cx = {cx1 , ..., cxα}, Cy = {cy1, ..., c
y
β} ⊂ {−, 0,+}

a+b

be the corresponding sign vectors for the embedded points, {p1, ..., pa+b},

cxi = (cXi ,~0b), c
y
j = (~0a, c

Y
j ).

Then the circuits of X ./ Y are exactly the sign vectors Cx ∪ Cy.

Proof. To each cXi (respectively, cYj ) there corresponds at least one vector,

λi = (λi1, ..., λ
i
a)

(
respectively, γj = (γj1, ..., γ

j
b )
)

such that

(sign(λi1), ..., sign(λia)) = cXi
(
respectively,(sign(γj1), ..., sign(γjb )) = cYj

)
and

a∑
k=1

λikxk = 0 (respectively,
b∑

k=1

γjkyk = 0).

Then the vectors Λi = (λi,~0b) (respectively,Γj = (~0a, γ
j)), have the property

a+b∑
k=1

Λi
kvk = 0, (respectively,

a+b∑
k=1

Γjkvk = 0),
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since
a+b∑
k=1

Λi
kvk =

a∑
k=1

λikxk +
a+b∑

k=a+1

0 = 0 + 0 = 0,

and similarly for the Γj’s.

So then each such Λi, and each Γj give a dependence among the vectors (v1, ..,va+b),
and furthermore, the corresponding sign vectors have minimal support, since other-
wise the corresponding sign vectors cXi , c

Y
j would not have minimal support, and hence

would not be circuits. Furthermore, the sign vectors of these Λi,Γj are exactly the
sign vectors cxi , c

y
j , as desired.

Lemma 3.2. For any two point configurations, Xand Y , let

C∗X = {dX1 , ..., dXα }, C∗Y = {dY1 , ..., dYβ }

be the cocircuits of X ⊂ Rn and Y ⊂ Rm, and let

C∗x = {dx1 , ..., dxα}, C∗y = {dy1, ..., d
y
β} ⊂ {−, 0,+}

a+b

be the corresponding sign vectors for the embedded points, X ./ Y = (p1, ..., pa+b),

dxi = (dXi ,~0b), d
y
j = (~0a, d

Y
j ).

Then the cocircuits of X ./ Y are exactly the sign vectors C∗x ∪ C∗y .

Proof. We’ll prove this using hyperplanes. Every cocircuit has a corresponding hy-
perplane, which can be defined by a normal vector perpendicular to the hyperplane,
and a scalar representing the distance of the plane from the origin. So for each dXi ,
we take a corresponding normal vector, Si = (si1, ..., s

i
n), and a scalar Si. And for

every dYj , we take a corresponding normal vector, T j = (ti1, ..., t
i
m), and scalar Tj.

The points of the hyperplane corresponding to the vector Si are exactly the points
p such that

n∑
k=1

sjkpk = Si

and similarly for the vectors T j.
Thus, all the points P = (p, q), where q ⊂ Rm+1 lie on the hyperplane defined by

the vector (Si,~0m+1), and the scalar Si. This hyperplane defines a cocircuit in X ./ Y,
since if it it did not have minimal support, than neither would the corresponding
cocircuit, dXi of X.

The argument works for the cocircuits of Y as well, if we take the vector corre-
sponding to T j to be (~0n, T

j, 0).
It remains to show that there are no new cocircuits of X ./ Y, besides these.

Suppose there were another cocircuit. Consider the corresponding hyperplane, H,
and let

U = (u1, ..., un+m+1)
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be a vector defining this hyperplane. Then consider the hyperplanes in Rn and Rm

defined by the vectors

UX = (u1, .., un), UY = (un+1, ...un+m).

If either of these does not contain at least all the points contained by one of the
cocircuits of X or Y, then the U does not define a cocircuit, because we can change
one of Ux, or UY to be exactly one of the Si or T j which contains all of the points of
H ∩ ιX(X) or H ∩ ιY (Y ), and at least one more.

Thus H must at least contain at least all the points ιX(dXi ) ∪ ιY (dYj ), for some
i, j. Suppose it contains another point of X ./ Y. Then either UX or UY does not
define a hyperplane in X or Y. Since every non-zero vector defines a hyperplane, UX ,
or UY must be 0, but not both, since then U = (0, ..., 0, un+m+1) must contain a point
of ιY (Y ), but this implies un+m+1 = 0, since every point of ιY (Y ) has a 1 in the last
coordinate. And if um+n+1 = 0, then U = ~0, and so does not define a hyperplane.
Thus any cocircuit of X ./ Y has the specified form.

Theorem 3.2. For any two point configurations, Xand Y ,

Crit(X ./ Y ) ≈ Crit(X)⊗ Crit(Y ).

Proof. We rewrite the statement as

Z(X ./ Y )/(CX./Y + C∗X./Y ) ≈ ZX/(CX + C∗X)⊗ ZY/(CY + C∗Y ),

where (abusing notation) CX is taken to mean the circuit space of the oriented matroid
of the point configuration X, and so forth.

Now, we also have

Z(X ./ Y ) = Z(ιX(X))⊗ Z(ιY (Y )),

so we can rewrite the left side of the equation as

Z(ιX(X))⊗ Z(ιY (Y ))

CX./Y + C∗X./Y
=

Z(ιX(X))⊗ Z(ιY (Y ))

Cx + C∗x + Cy + C∗y

=
Z(ιX(X))

Cx + C∗x + Cy + C∗y
⊗ Z(ιY (Y ))

Cx + C∗x + Cy + C∗y

=
Z(ιX(X))

Cx + C∗x
⊗ Z(ιY (Y ))

Cy + C∗y
,

the last equality holding because all the points of Z(ιX(X)) already have 0’s where the
elements of Cy,C

∗
y do not, and all the points of Z(ιY (Y )) have 0’s where the elements

of Cx,C
∗
x do not.

Now we simply observe that

Z(ιX(X))

Cx + C∗x
≈ ZX/(CX + C∗X)
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via the mapping that forgets the last m+ 1 coordinates, and the mapping that puts
0’s there, and similarly,

Z(ιY (Y ))

Cy + C∗y
≈ ZY/(CY + C∗Y )

via the mappings that forgets the first n coordinates and the last coordinate, and the
mapping that puts 0’s and a 1 in those coordinates. This demonstrates the claimed
isomorphism.

Corollary. Any Finite Abelian Group is the Critical Group of some point configura-
tion.

Proof. By Lemma 3.1/3.2 and Theorem 3.1, the group (Z/2Z)k⊗Z/n1Z⊗Z/n2Z...⊗
Z/nlZ is isomorphic to Crit(Y k ./ X1 ./ ... ./ Xl), with Y k the canonical free join
of Y with itself k times, and Y is some point configuration representing U(6, 3),
for instance, {(1, 1), (1, 0), (0, 1), (−1,−1), (−1, 0), (0,−1)} (other examples abound
in [17], in fact, exactly the “non-trivial” order types they list had critical group
Z/2Z)

Xi = {e1, e2, ..., eni−2, p} ⊂ Rni−2,

where

p =
k∑
i=1

λiei,
k∑
i=1

λi < 1, and λi > 0 ∀ i.
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Matroid Complexes, h-vectors, and
the Tutte Polynomial

In this chapter, I examine the relationship between the Tutte Polynomial, the h-
vector, the number of bases, and the order of the critical group of a matroid.

4.1 The Tutte Polynomial

The Tutte Polynomial, T (x, y), is best known as a graph invariant that is both hugely
informative and computationally difficult. But it also generalizes perfectly well to
matroids. For a matroid, M, we define:

TM(x, y) =
∑
S⊆E

(x− 1)r(M)−r(S)(y − 1)|S|−r(S).

This definition easily captures the duality property of the Tutte polynomial:

TM∗(x, y) = TM(y, x).

We can also define the Tutte polynomial inductively via contracting/deleting edges
[10]; this definition can be easier to work with on graphs.

4.2 Matroid Complexes

To every matroid, M, we associate an abstract simplicial complex (ASC), ∆(M).
The faces of ∆(M) are the independent sets ofM, so the facets are the bases ofM.
We call an ASC, ∆, a matroid complex if ∆ = ∆(M), for some M.

We have already defined the h-vector of an ASC, ∆,

h∆ = h(∆) = (h0(∆), ..., hd(∆)),

hk(∆) =
k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1,

fi(∆) = |∆i|.



30 Chapter 4. Matroid Complexes, h-vectors, and the Tutte Polynomial

So to every matroid we can associate an h-vector, h∆(M), as well. In this section,
we’ll investigate the relationship between the Tutte Polynomial, the h-vector, the
number of bases of the matroid, and the size of the critical group.

It is a theorem of Criel Merino’s that the Tutte Polynomial of a graph, T (x, y),
evaluated at x = 1, gives, via the coefficients of the resulting terms, the number of
super-stable configurations of the graph of each degree [9]. An easy consequence of
this is that T (1, 1) is equal to the number of super-stables, i.e., the size of the critical
group of the graph. The Tutte Polynomial is generalized to matroids. For a matroid,
M, T (1, 1) is equal to the number of bases of M. So in the graphic case, the size
of the critical group is the number of bases. However, this is not generally true for
non-graphic matroids. As we demonstrated with Theorem 3.1, U(2k, 3) has critical
group of order 2, but it has

(
2k
3

)
bases. We haven’t yet found a counterexample for

the following conjecture, however:

Conjecture. The order of the critical group of an oriented matroid divides the sum
of its h-vector.

4.3 Stanley’s Conjecture

Definition. A vector h = (h1, ..., hn) ∈ Zn is called a pure O-Sequence if it is the
degree sequence of some pure multicomplex.

A pure multicomplex is an order ideal of monomials with a set of maximal (with
respect to divisibility) elements of common degree d. An order ideal of a poset, P,
is a subset, I ⊂ P, with y < x, x ∈ I ⇒ y ∈ I.

Stanley’s Conjecture. The h-vector of a matroid complex is a pure O-Sequence.

Merino proves Stanley’s conjecture for cographic matroids, using the result that
the super-stables of a graph form an order ideal. The conjecture has also been proved
for several other classes of matroids [19],[20].

Merino’s proof also rests of the following relation between h-vectors.

hG(t) : = TG(1, t)

= TM(G)(1, t)

= TM∗(G)(t, 1)

= h∆(M∗)(t).

where M(G) is the cycle matroid, as defined in 3.1.2. The identity

TM(G)(1, t) = TM∗(G)(t, 1) = h∆(M∗)(t)

is in Merino’s Thesis [9]. This relation, TM(1, t) = h∆(M∗)(t), does not, in general,
hold for non-graphic matroids; the uniform matroid U(8, 3) provides a counterexam-
ple.
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Realizations of Graphic Matroids
Using Hypergraphs

In trying to prove that a set of point configurations, X1, X2, ... represented the ma-
troids M(K1),M(K2), ..., where Kn is the complete graph on n vertices, I stumbled
across what I believe to be a more general way of realizing (at least some) graphic
matroids. This method of realization is distinct from the representation given in
Proposition 5.1.2 of [29]; it gives a point configuration representing the M, rather
than a vector configuration, to name one difference. Briefly, for my method, we con-
sider a graph, G, as a hypergraph, G, and then in the complement of the dual of
G, denoted (G∗)c, we consider hyperedges as hyperplanes and vertices as points, and
containment in the hypergraph as geometric containment. It remains to see if every
graph can be translated into a set of hyperplanes in this way. First I’ll need to go
over some hypergraph basics.

5.1 Hypergraph Basics

Hypergraphs are perhaps the most basic combinatorial objects. A hypergraph is
a generalization of a graph which allows edges (called hyperedges) to contain (or
“connect”) any number of vertices. Avoiding many technicalities, we define a hyper-
graph, H = {V, E}, with V = {v1, ..., vn} a finite set, and E = {e1, ..., em}, where
each ei contains a subset of V. The edges need not contain distinct subsets. We can
represent a hypergraph, H, via its incidence matrix:

AH = (aij),

where

aij =

{
1 if vi ∈ ej
0 otherwise.

Conversely, every n×m matrix, A, with entries in {0, 1}, determines a hypergraph,
H(A). Every hypergraph, H, has a dual, H∗, with the property that H∗∗ = H. The
dual is easily defined via the incidence matrix. Let H be a hypergraph, and define:

H∗ = H(ATH).
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Any graph, G, is trivially a hyperpgraph, G, with the same vertices and edges.
We will use G always to mean the hypergraph corresponding to G. In particular, this
is significant when considering duality, since the notions do not coincide.

We use Hc to denote the complement of the hypergraph H. This is the hypergraph
we get by swapping all the 0’s and 1’s in the adjacency matrix.

AcH = 1n×m − AH .

Where 1n×m is the matrix of 1’s.
Notice that dualizing and complementing commute, as a result of the linearity of

the matrix transpose map:

A(Hc)∗ = ATHc = (1n×m − AH)T = 1m×n − ATH = 1m×n − AH∗ = A(H∗)c .

5.2 Hypergraphs from Hyperplanes

An affine hyperplane (we’ll just call them hyperplanes) is an affine subspace of codi-
mension 1. Hyperplanes can be given by a normal vector, a = (a1, ..., an) and a
displacement scalar, b. The hyperplane determined by a and b is then the set of
points x = (x1, ..., xn) satisfying

a1x1 + a2x2 + ...+ anxn = b

Hyperplanes generalize planes (in R3) and lines (in R2).
Let F = {f1, ..., fn+2}, a set of (distinct) hyperplanes of Rn. In this section, we

define
X = X(F ) = {x ∈ Rn | ∃Fx ⊂ F s. t. ∩Fx = {x}}

So X is the set of all points x ∈ Rn that can be written (as a singleton set) as the
intersection of some of the hyperplanes of F. Now we can define M(F ) :=M(X).

To translate between graphs and point configuration, we define the incidence
hypergraph of F, using these points as vertices, the hyperplanes of F as edges, and
containment as containment.

H = H(F ) = {X, E}

E = {f1, ...fn+2},

where the contents of fi are exactly X ∩ fi. This translation corresponds vertices of
the graph, G, to hyperplanes of F, and edges of the graph to points of X(F ), but in
a less-than-inuitive way. A point is contained in a hyperplane iff the corresponding
edge does not contain the corresponding vertex. Thus, the fact that in a graph every
edge contains 2 vertices translates to the requirement that every point of X lies in
exactly n of the hyperplanes. So then for any 2 hyperplanes, fi, fj, to see if their
vertices vi, vj are connected in G, we check if their union contains all the points of
X :
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X ⊂ fi ∪ fj iff {vi, vj} /∈ E(G).

Now, we have the following novel conjecture, hopefully soon to be a theorem.

Conjecture 5.1. Let G be a graph, G the corresponding hypergraph. Let F be a set
of hyperplanes in Rn such that H(F ) = (G∗)c. Then M(G) =M(F ).

A related question is whether for any graph, G, there is a set of hyperplanes, F,
such that H(F ) = (G∗)c. Currently I’ve had problems in generating such an F for
the house graph, which is C5 (the cycle on 5 vertices) plus some additional edge.
Also, every graph I have constructed so far has been of a particular type: Given the
complete graph, Kn, and a set of disjoint subsets, A = {A1, ..Ak}, of the vertices, we
define Kn\A by removing all edges e = {u, v}, such that there exists an Ai containing
both u and v. All of my examples so far are of the form Kn \A, for some A and some
n ≤ 5. These suggest possible limitations to the answer to this question.

5.3 Examples

Here we give some examples of the following translation. I’ve found examples for the
following:

1. K3

2. K4

3. K4 \ {v1, v2}

4. K4 \ {{v1, v3}, {v2, v4}}

5. K5

6. K5 \ {v1, v2}

7. K5 \ {v3, v4, v5}

8. K5 \ {{v1, v2}, {v3, v4, v5}}

Next is a list of figures for the corresponding graphs:

1. 2.
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3.

4.

5.

6.

7.

8.

Next is a list of equations of some corresponding hyperplane arrangements, in
order:

1. x = 0, x = 1, x = 2.

2. x = 0, y = 0, x− y = 1, x+ y = 4.

3. y = 1, y = 3, x− y = 0, x+ y = 4.

4. x = 0, x = 1, y = 0, y = 1.

5. x = 0, y = 0, z = 0, x+ y + z = 1, 3x+ 2y + z = −6.

6. x = 0, y = 0, z = 0, x+ y + z = 1, 2x+ y + z = 4.

7. x = 0, y = 0, z = 0, x+ y + z = 1, x+ y + z = 2.

8. x = 0, y = 0, z = 0, z = 1, x+ y = 2.
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Here is a list of drawings of I made of the hyperplane arrangements for 1,2,3,4,7,
and 8:
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Finally, here we see a labelled example for the graph G = K5\{v3, v4, v5}, showing
the correspondences. Define F = {h1, h2, h3, h4, h5} with:

* h1 = {(x, y, z) ∈ R3 |x = 0},

* h2 = {(x, y, z) ∈ R3 | y = 0},

* h3 = {(x, y, z) ∈ R3 | z = 0},

* h4 = {(x, y, z) ∈ R3 |x+ y + z = 1},

* h5 = {(x, y, z) ∈ R3 |x+ y + z = 2},

Then we have the following:
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