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Abstract

A study of the rigidity of frameworks and tensegrity frameworks.





Chapter 1

Frameworks

We begin by introducing the concept of frameworks with the interest of determining
when frameworks are rigid. Once we have gained a thorough understanding of how
to find the rigidity of frameworks we will then study rigidity in the case of cross
products of frameworks. In the final section we’ll introduce the idea of stresses on
frameworks to facilitate our understanding of tensegrities in the next chapter.

1.1 Examples of Frameworks

Let us begin with a discussion of frameworks and the questions that arise naturally
from their study. Our main resources for information about frameworks and rigidity
are from [5] and [1]. Consider a square where each vertex is a freely pivoting joint
and each edge is a rigid bar.

Figure 1.1: A square

One of the questions which arises as we consider this framework is whether it
is rigid. One can imagine that if held, this framework would collapse and move
freely. Now let’s consider embedding this framework in the plane, since it is itself a
two-dimensional object. Even with this restriction in movement the framework can
be moved in the plane without changing the lengths of the edges, as is illustrated
in Figure 1.2. However, a flexing of the framework is not the only movement to
be considered for our square. We can also slide the framework freely through the
plane with out changing its current shape. Since these movements of the framework
are not the flexings we would like to consider, let’s begin by fixing the lower two
corners of the square at the points d = (0, 0) and e = (1, 0). Let’s call the two upper
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Figure 1.2: A flexing of the square

vertices x1 = (x11, x12) and x2 = (x21, x22), and the whole framework A. In the
starting position of the square, x1 is at (0, 1) and x2 is at(1, 1). We can find all the

x1 x2

d = (0, 0) e = (1, 0)

Figure 1.3: Framework A

positions reachable by the points x1 and x2 by solving a system of equations that
describe the length constraints of the edges. Letting | | be the usual absolute value,
the system of equations is as follows:

|x1 − x2|2 = 1, |x1 − d|2 = |x1|2 = 1, |x2 − e|2 = |x2 − (1, 0)|2 = 1.

One family of solutions is x1(t) = (t,
√

1 − t2) and x2(t) = (t + 1,
√

1 − t2) for
t ∈ [0, 1]. In the solutions given here we allow edges to cross and vertices and edges
to lie on top of one another, even though this is not mechanically possible. This
family of solutions gives the flexing of the square shown in Figure 1.2.

Let us now insert a new bar into the framework, one which connects x2 and d.
To see if this new framework, which we’ll call B, is flexible, we can solve the system
of edge equations which describe this framework. These equations are the same
three previous equations, as well as the following:

|x2 − d|2 = |x2|2 = 2.

The only solutions to this system of equations are

(x1, x2) ∈ {((0, 1), (1, 1)), ((1, 0), (1, 1)), ((0,−1), (1,−1)), ((1, 0), (1,−1)).

These solutions are illustrated in Figure 1.5 This means that our framework is not
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d = (0, 0) e = (1, 0)

x1 x2

Figure 1.4: Framework B

(1, 1)

(1, 0)(0, 0)

(0, 1)

(0, 0) (1, 0)

(1, 1) (0, 0) (1, 0)

(0,−1)

(0, 0) (1, 0)

(1,−1)(1,−1)

Figure 1.5: Solutions

smoothly flexible, but instead has only a few positions which preserve edge lengths.
We will now consider the edge function. The edge function is a listing of the

squared edge lengths. For this particular framework B, the edge function is defined
as follows:

f(x1, x2) = (|x1 − x2|2, |x1|2, |x2 − (1, 0)|2, |x2|2).
Consider the Jacobian matrix of f(p) where p = ((0, 1), (1, 1)) is the starting position
of x1 and x2.

Jf(p) =









p1 − p2 p2 − p1

p1 − p3 0
0 p2 − p4

0 p2 − p3









=









−1 0 1 0
0 1 0 0
0 0 0 1
0 0 1 1









The rank of Jf(p) is 4, which means Jf(p) is invertible at the point p.

Theorem 1. Inverse Function Theorem

Suppose F : R
n → R

n is continuously differentiable on an open set containing
p ∈ R

n and the rank of Jf(p) is n. Then there exist neighborhoods U of p and V

of f(p) such that f : U → V is invertible, with a differentiable inverse.

For our framework B, the inverse function theorem implies that there exists an
open neighborhood of p such that f−1(f(p))∩U = {p}. Therefore there is no smooth
flexing of framework B, i.e., it is rigid.
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Now let’s consider framework A at the same point p. The edge function for A is

g(x1, x2) = (|x1 − x2|2, |x1|2, |x2 − (1, 0)|2)

This edge function gives the following Jacobian matrix.

Jg(p) =





p1 − p2 p2 − p1

p1 − p3 0
0 p2 − p4



 =





−1 0 1 0
0 1 0 0
0 0 0 1





The rank of Jg(p) is 3.

Theorem 2. Implicit Function Theorem

Suppose F : R
n × R

m → R
m is continuously differentiable on an open set con-

taining (a, b) and F (a, b) = c. Let M be the m × m matrix

(

∂Fi

∂xn+j

(a, b)

)

1≤i,j≤m

If M has rank equal to m, there is an open set A ⊂ R
n containing a and an open

set B ⊂ R
m containing b. For each x ∈ A there is a unique g(x) ∈ B such that

F (x, g(x)) = c and the function g : A → B is differentiable.

To fully understand this theorem, let’s see what it means in terms of our frame-
work A. The mapping we are interested in is the edge function for the framework,

g =: R
4 ≃ R × R

3 → R
3;

in this case m = 3, a = 0, and b = (1, 1, 1) since p = ((0, 1), (1, 1)). Considering the
Jacobian matrix above, we see that M is the following matrix.

M =





0 1 0
1 0 0
0 0 1





The rank of M is 3, thus implying that there exists a differentiable function g defined
on an open interval, I, about 0 ∈ R, and an open neighborhood U of p, such that

{(t, g(t)) | t ∈ I} = f−1(f(p)) ∩ U.

Since g is continuous, this gives us an entire family of solutions x ∈ U to the equation
f(x) = f(p). This means framework A is flexible, as expected. So we have found
that the Jacobian matrix of the edge function gives us a simple way to determine the
rigidity of a framework. Namely, if the Jacobian matrix has full rank, the framework
is rigid; if it does not, the framework is flexible.
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1.2 The Formal Language of Frameworks

In order to fully understand and further discuss this topic it will be useful to for-
malize the concepts we have been talking about. The examples of frameworks we
discussed earlier are types of graphs, as we can see from the following definitions.

Definition 3. An abstract framework is a graph G = (V, E), where V = {1, 2, . . . , v}
is the set of vertices and E is a collection of pairs of elements of V , i.e., the edges.

Definition 4. A framework in R
d, denoted G(p), is a pair (G, p), where G is an

abstract framework and p ∈ R
d × . . . × R

d = R
dv, i.e., p is a set of v d-tuples.

A framework G(p) is equivalent to an embedding of the graph G into R
d where

the i-th vertex is located at pi.
Although we only considered the edge function for a two-dimensional framework,

it can be defined for frameworks in any dimension.

Definition 5. Given a framework G(q) in R
d with |V | = v and |E| = e, we can

define the edge function in the following manner.

f : R
dv −→ R

e

(q1, . . . , qv) −→ (. . . , |qi − qj|2, . . .) i, j ∈ E, i < j

We are also going to use the Jacobian matrix of the edge function. Consider a
famework G(p) in R

d with |E| = e and |V | = v. Then the edge function is

f(p) = (. . . , |pi − pj |2, . . .).

Then Jf(p) will be a e × dv matrix with e rows and dv columns. The number of
columns arise because each of the v vertices has d partial derivatives. Often we will
denote an element of Jf(p) as (qi − qj), but it is important to remember that it is
a vector in R

d. Take G(p) and f to be as described above. Then one half of the
Jacobian matrix of f is the following e × dv matrix.

p1 · · · pi · · · pj · · · pv

edge{i, j}







... · · · ... · · · ... · · · ...
0 · · · (pi − pj) · · · (pj − pi) · · · 0
... · · · ... · · · ... · · · ...






.

Now let’s consider framework A using the definitions just given. Then framework A

is the graph G(p) where p = (p1, p2, p3, p4) = (0, 0, 1, 0, 0, 1, 1, 1), V = {p1, p2, p3, p4},
and E = {{p1, p2}, {p1, p3}, {p2, p4}, {p3, p4}}. Let’s look at the rigidity of G(p) more
formally by understanding the set

f−1(f(p)) = {q ∈ R
dv | G(p) and G(q) have corresponding edge lengths equal}.

We can see from our prior discussion of the flexibility of framework A that f−1(f(p))
includes the circular flexing of the framework described earlier. However, this is not
the whole picture. Also included in f−1(f(p)) are all the rigid motions of G(p).
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p4

p2p1

p3

Figure 1.6: Framework G(p)

Definition 6. A rigid motion of R
d is a mapping T : R

d → R
d which preserves

distances. In other words, the following condition holds.

|Tx − Ty| = |x − y| for all x, y ∈ R
d.

One way to think of the rigid motions of a d-dimensional framework G(p) is to
think of all the ways you can move G(p) through R

d without changing the shape
given by our original p, i.e., the set of all translations and rotations. However, rigid
motions will also include reflections about a hyperplane.

Definition 7. Two points p, q ∈ R
d are congruent, denoted p ∼ q if there exists a

rigid motion T such that T (pi) = qi for all i.

Now let’s consider the set M = {m ∈ R
d | m ∼ p} of all points m congruent

to p. If p1, . . . , pv don’t lie on a hyperplane, then M is isomorphic to the manifold
of rigid motions of p. The dimension of M can be shown to be d(d+1)

2
.

It will be helpful in our study of frameworks to understand what a manifold is,
so a brief introduction to the subject will be given. One can think of a manifold as
a blob in space, or more particularly, as a blob which ‘looks like’ a piece of R

d near
any particular point. For a detailed examination of manifolds, refer to [8] and [4].
An example of a manifold is the shell of a sphere in R

3, as shown in Figure 1.7. At
any point on the sphere pictured, such as x1, there is an open neighborhood U of x1

isomorphic to a disk in R
2. An example of something that is not a manifold is shown

x1

Figure 1.7: Manifold
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in Figure 1.8. The point which causes the trouble is x1. No open neighborhood of
x1 is isomorphic to R

d for any d. For a more formal understanding of manifolds we

x1

Figure 1.8: Not a Manifold

will need the following definitions.

Definition 8. Let X and Y be subsets of R
d and F : X → Y be a continuously

differentiable map. If X and Y are not both open, we assume F can be extended
to open sets containing X and Y . If F is one-to-one and onto and F−1 : X → Y is
continuously differentiable, then X and Y are diffeomorphic.

If two sets are diffeomorphic, we think of them as being equivalent. Consider
the sphere discussed above. A blob with no holes is diffeomorphic to a sphere, but
a torus is not diffeomorphic to a sphere. We now have sufficient terminology for the

Sphere

Diffeomorphic to a Sphere Not Diffeomorphic to a Sphere

Figure 1.9: Diffeomorphic to Sphere

definition of a manifold.

Definition 9. Let X be a subset of R
d. The set X is a k-dimensional manifold

if it is locally diffeomorphic to R
k. This means that for all x ∈ X there exists a

neighborhood U ⊆ X of x which is diffeomorphic to an open set V ⊆ R
k.
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Now we can begin to discuss the flexibility of frameworks in greater detail.

Definition 10. Let G(p) be a framework in R
d with edge function f . Then G(p) is

flexible if there exists continuous x : [0, 1] → R
dv such that the following conditions

hold:

1. x(0) = p

2. x(t) ∈ f−1(f(p)) for all t

3. x(t) is not congruent to p for t ∈ (0, 1].

The function x is a flexing of G(p). The framework G(p) is rigid if it is not flexible.

Suppose we have a flexing x(t) ∈ f−1(f(p)) for all t ∈ R, where x(0) = p. Then
for all {i, j} ∈ E and t ∈ R

d, we have

|xi(t) − xj(t)|2 = |pi − pj|2

When we take the derivative at t = 0 we get

(xi(0) − xj(0)) · (x′
i(0) − x′

j(0)) = (pi − pj) · (x′
i(0) − x′

j(0)) = 0.

Letting x′
i(0) = µi for i = 1, . . . , v, we get a vector of vertex velocities µ = (µ1, . . . µv)

where the following condition holds for all {i, j} ∈ E:

(pi − pj) · (µi − µj) = 0

A vector µ = (µ1, . . . , µv) ∈ R
dv satisfies the previous condition if and only if µ is

an element of the kernel of Jf(p). Showing this is not difficult and will be left as
an exercise for the reader. Now lets consider a curve x(t) on the manifold M . We
can see that x(t) satisfies

|xi(t) − xj(t)|2 = |pi − pj|2

which implies x(0) = (µ1, . . . , µv) also satisfies

(pi − pj) · (µi − µj) = 0.

Hence, x′(0) is an element in the kernel of Jf(p).

Definition 11. The tangent space, denoted Tp, of M at p is the collection of all
such x′(0) as x varies over curves in M .

We have just seen that Tp ⊆ ker Jf(p), which motivates the following definition
of rigidity.

Definition 12. Let G(p), where p ∈ R
dv, be a framework with an edge function f .

Then the framework G(p) is infinitesimally rigid in R
v if Tp = ker Jf(p) and in-

finitesimally flexible otherwise. The elements of the set ker J(p) \ Tp are called
infinitesimal flexings of G(p).
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p1 = (0, 0) p3 = (2, 0)

p2 = (1, 0)

Figure 1.10: Degenerate Triangle

It is easy to suppose, and true, that if a framework is flexible this implies it is
infinitesimally flexible. However, the converse is not true. We will illustrate this
with the following example of a framework which is infinitesimally flexible, but not
flexible. The framework we will be working with is a degenerate triangle, where all
three vertices are collinear. For our example, p = ((0, 0), (1, 0), (2, 0)) and G(p) is
illustrated in Figure 1.10.

The edge function for G(p) is

f(x1, x2, x3) = (|x1 − x2|2, |x1 − x2|2, |x2 − x3|2)

We get the Jacobian matrix at the point p as follows.

Jf(p) = 2





p1 − p2 p2 − p1 0
p1 − p3 0 p3 − p1

0 p2 − p3 p3 − p2



 = 2





−1 0 1 0 0 0
−2 0 0 0 2 0

0 0 −1 0 1 0





After performing some row operations on Jf(p) we get the following matrix.




1 0 0 0 −1 0
0 0 1 0 −1 0
0 0 0 0 0 0





From the row reduced matrix we see that the rank of Jf(p) is 2 and by the Rank-
Nullity theorem the dimension of the kernel of Jf(p) is 4. Earlier we found that

dim M = d(d+1)
2

as long as the vertices of the framework did not lie on a hyperplane,
which does not apply to our degenerate triangle. Instead we have, in this case, that
dim M = 2. We can see this from the following explanation. Each configuration
congruent to G(p) in a rigid motion may be obtained by first rotating G(p) about
the origin by θ and then translating along the ray at the origin determined by G(p),
as shown in Figure 1.11.

Therefore, there are elements in ker Jf(p) \ Tp and the degenerate triangle is
infinitesimally flexible. With a little thought, it is easy to see that G(p) is rigid, and
so we have a framework which is both rigid and infinitesimally flexible.

Recall the manifold M = {q ∈ R
dv | q ∼ p} ⊆ f−1(f(p)) of rigid motions we

discussed previously. Algebraic geometry implies that G(p) is rigid if and only if
there exists an open set U ⊆ R

dv with p ∈ U such that U ∩ f−1(f(p)) = U ∩M . For
more information about this please see [5].

More can be said about rigidity and flexibility if we introduce the concept of
regular points.
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G(p)

θ

Figure 1.11: Finding dim M

Definition 13. Let f : R
dv → R

e be an edge function. Also, let k = max{rank Jf(p) |
p ∈ R

dv}. If rank Jf(p) = k, then p is a regular point for f .

The following is a standard theorem from the theory of manifolds.

Theorem 14. If p is a regular point, then f−1(f(p)) is a manifold of dimension
dv − k, where k = rank Jf(p).

So we have that if p is a regular point then both M and f−1(f(p)) are manifolds
with M ⊆ f−1(f(p)). Recall that if p1, . . . , pv do not lie on a hyperplane, then

dim M = d(d+1)
2

, and that if G(p) is rigid then U ∩ f−1(f(p)) = U ∩ M for some
open set U containing p. From this we can see that G(p) is rigid if and only if

dim M = dim f−1(f(p)), i.e., d(d+1)
2

= nv − k. We know by the Rank-Nullity
theorem that dim ker Jf(p) = nv − k. So by rearranging the equation we find

rank Jf(p) = k = dv − d(d + 1)

2
.

Similarly, we can see that if G(p) is flexible, then dim M < dim f−1(f(p)) implies

rank Jf(p) < dv − d(d + 1)

2
.

We would like to show that a framework G(p) is infinitesimally rigid if and only
if G(p) is rigid and p is regular. Before we state and prove this theorem it would be
helpful to have the following lemmas.

Lemma 15. The complement of the set of solutions to a system of polynomial
equations is either empty or an open dense set.
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We will not prove this here, but accept it as a fact from algebraic geometry and
use it to prove the following two lemmas.

Lemma 16. The set of regular points of the edge function f is an open dense set.

Proof. Let r = maxq{rank Jf(q)} and let R = {q | rank Jf(q) = r} be the set of
regular points of f . The complement of this set is the set

R′ = {q | rank Jf(q) < r}
= {q | the determinants of all r × r submatrices of Jf(q) vanish}.

So R′ is the solution set to a system of polynomial equations. By Lemma 15 we
have that R is an open dense set.

Lemma 17. Suppose v ≥ d. Then the set

P = {p = (p1, . . . , pv) ∈ R
dv | p1, . . . , pv do not lie on a hyperplane}

is open and dense in R
dv.

Proof. If v ≥ d, it is clear that the set P is nonempty. Suppose p1, . . . , pv lie on
a hyperplane defined by a0 +

∑

i aixi = 0. This is equivalent to a0 +
∑

i aipji =
0 for all j. This is true if and only if











1 p1

1 p2
...

...
1 pv





















a0

a1
...
ad











= 0

for some a 6= 0, thinking of each pj as a row vector. This holds if and only if

rank











1 p1

1 p2
...

...
1 pv











< d + 1.

Equivalently we have the determinants of all d + 1 × d + 1 submatrices of the
displayed matrix vanish. By Lemma 15 we have that all points p which do not lie
on a hyperplane form an open dense set.

Theorem 18. Let G(p) ∈ R
d be a framework and suppose p1, . . . , pv don’t lie on a

hyperplane. Then G(p) is infinitesimally rigid if and only if p is a regular point and
G(p) is rigid.

Proof. Suppose p is a regular point and G(p) is rigid. Then dim ker Jf(p) = d(d+1)
2

and therefore ker Jf(p) = Tp which implies G(p) is infinitesimally rigid. By Lemmas
16 and 17 we know there exists a point q ∈ R

dv which is regular and q1, . . . , qv

don’t lie in a hyperplane. So G(p) is infinitesimally rigid if and only if the kernel of
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Jf(p) = Tp. Equivalently, we have that the dimension of Jf(p) equals the dimension
of Tp. So we have

dv − rank Jf(p) =
d(d + 1)

2
.

By rearranging the equation we get

rank Jf(p) = dv − d(d + 1)

2
.

Since q is regular we know rank Jf(p) ≤ rank Jf(q) and rank Jf(q) ≤ dv − d(d+1)
2

.
Putting this all together we find

dv − d(d + 1)

2
= rank Jf(p) ≤ rank Jf(q) ≤ dv − d(d + 1)

2
.

So rank Jf(p) = rank Jf(q) which implies p is a regular point. It has been estab-
lished previously that infinitesimal rigidity implies rigidity so we are done.

1.3 Frameworks and the Cross Product

We will now begin to study frameworks which are formed from polytopes in the
following way. Define G(p) to be the framework whose edges and vertices are the
edges and vertices of a polytope. To begin with, it will be helpful to formally define
some concepts relating to polytopes. Our basic reference is [9].

Definition 19. A V -polytope is the convex hull of a finite number of points in R
d.

Definition 20. An H-polytope is the bounded intersection of finitely many closed
halfspaces in R

d.

It can be shown that H-polytopes and V -polytopes are equivalent and shall be
referred to as polytopes throughout this paper.

Definition 21. The dimension of a polytope is the dimension of its affine hull.

Definition 22. Let P ⊆ R
d be a polytope. A linear inequality cx ≤ c0 is valid for

P if it is satisfied for all points x ∈ P .

Definition 23. A face of a polytope P is any set of the form

F = P ∩ {x ∈ R
d : cx = c0}

where cx ≤ c0 is a valid for P .

Definition 24. The proper faces of a polytope are all the faces except for the whole
polytope and the empty face.

Definition 25. The vertices of a polytope are the 0-dimensional faces; the edges of
a polytope are the 1-dimensional faces.
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Definition 26. The facets of a polytope are the faces of dimension one less than
that of the entire polytope.

We are now going to study the rigidity of frameworks formed from polytopes.
For ease of discussion we will refer to the Jacobian matrix of the edge function of
a framework as the rigidity matrix. The rigidity matrix of a framework F will be
denoted R(F ). Given two polytopes, P and Q, there are several ways to construct a
new polytope. A natural question which arises from considering the rigidity matrix
of a polytopal framework P is how the rigidity matrix of a construction involving
P is related to R(P ).

The construction we are interested in is the cross product. As we shall see, the
rank of the rigidity matrix of the cross product can be expressed elegantly in terms
of the ranks of the original frameworks.

Definition 27. Let P be a polytope of dimension d and Q be a polytope of dimen-
sion d′. The cross product of P and Q is the following

P × Q = {(p, q) | p ∈ P, q ∈ Q}.

The cross product P × Q has dimension d + d′.

An example of a simple cross product is as follows. Suppose we have two poly-
topal frameworks P and Q which are line segments of equal length; then the cross
product is a square, as illustrated in Figure 1.12.

=×

Figure 1.12: Cross Product

Theorem 28. Suppose P and Q are polygonal frameworks and let vP and vQ

denoted the number of vertices of P and Q, respectively. Then

rank R(P × Q) = vQ rank R(P ) + vP rank R(Q)

Proof. We will begin by finding the rigidity matrix of P × Q. It is helpful to note
that the edges of P × Q are formed either from an edge of P cross a vertex of Q

or from an edge of Q cross a vertex of P . Let vi, 0 ≤ i ≤ vP , be the vertices of
P and wi, 0 ≤ i ≤ vQ, be the vertices of Q. Let us first consider the entries of
R(P ×Q) which correspond to the edges formed from an arbitrary edge of P and a
fixed vertex w of Q.
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Then we have

(v1, w) · · · (vi, w) · · · (vj, w) · · · (vvP
, w)

edge P × w







... · · · ... · · · ... · · · ...
0 · · · (vi, w) − (vj , w) · · · (vj, w) − (vi, w) · · · 0
... · · · ... · · · ... · · · ...






.

Note that when we subtract (vi, w) − (vj , w) we get (vi − vj , 0). Remember that
we are writing the entries of R(P ×Q) in this manner for ease of typesetting, what
(vi − vj , 0) really is a vector with d + d′ elements: from vi − vj we get d of the
elements and the other d′ are zeros. With some permutation of the columns, which
doesn’t affect the rank, we derive the matrix R(P ) with several columns of zeros
appended. Repeating the process for each vertex of Q we have a copy of R(P ) for
each vertex wi, giving us vQ copies of R(P ). A similar process, which the reader
can work through if desired, gives us vP copies of R(Q) in R(P × Q). The matrix
we now have after permuting the columns, R(P ×Q), is shown below. The zeros in
this matrix are zero vectors.





























R(P ) 0 · · · · · · 0 0 0 · · · · · · 0
0 R(P ) · · · · · · 0 0 0 · · · · · · 0

0 · · · . . . · · · 0 0 0 · · · · · · 0
0 · · · · · · R(P ) 0 0 0 · · · · · · 0
... · · · · · · · · · · · · R(Q) 0 · · · · · · 0
0 0 0 0 · · · 0 R(Q) · · · · · · 0
...

...
...

...
...

...
...

. . .
...

...
0 0 0 0 · · · 0 · · · · · · R(Q) 0





























With the matrix in this form it is clear that rankR(P × Q) = vQ rank R(P ) +
vP rank R(Q), however we should understand why it is possible to arrange the
columns of R(P × Q) in this manner. Recall that when considering the row of
R(P × Q) indexed by the edge (vi, vj) × wk we have an entry (vi − vj, 0), where 0
is a d′-vector in the column indexed by vi in R(P × Q). Also in this column we
have an entry for the edge vi × (wk, wl), which turns out to be (0, wk − wl), where
0 is a d-vector. This means that in all the columns with entries of R(P ) there are
zeros in all entries except those with an edge of P involved. Similarly, for columns
with entries of R(Q) there are all zeros except for entries with edges of Q involved.
Therefore we can rearrange the matrix the way shown.

This proof is rather difficult to parse, so the reader is encouraged to use the
following example to clarify any confusion. Let Q = G(q) be the unit square with
q = (0, 0, 1, 0, 0, 1, 1, 1). Let P = G(p) be the unit interval with p = (0, 1). To
find p × q we will consider q to be an element of R

24
= R

8, namely that q =
((0, 0), (1, 0), (0, 1), (1, 1)). By taking the cross product of first 0 and then 1 from p

with each pair of q we find p × q. Then P × Q = G(p × q) is the unit cube with

p × q = (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1).
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x1 x2

P

x3 x4

x1 x2

Q

x1 x5

x2 x6

x3

x4 x8

x7

P × Q

Figure 1.13: P ,Q, and P × Q

These frameworks are shown in Figure 1.13.

The edge function for Q is

fQ(x1, x2, x3, x4) = (|x1 − x2|2, |x1 − x3|2, |x2 − x4|2, |x3 − x4|2).

From this we get the rigidity matrix:

R(Q) =









−1 0 1 0 0 0 0 0
0 −1 0 0 0 1 0 0
0 0 0 −1 0 0 0 1
0 0 0 0 −1 0 1 0









Clearly, rankR(Q) = 4. Now consider P . The edge function in this case is
fP (x1, x2) = |x1 − x2|2 which gives us the matrix

R(P ) =
[

−1 1
]

.

So we have rankR(P ) = 1. In our example vQ = 4 and vP = 2, so

rank R(P × Q) = vQ rank R(P ) + vP rank R(Q) = 4(1) + 2(4) = 12.

Let’s find rankR(P × Q) by hand to make sure we understand the whole process.
In this case the edge function is

fP×Q(x1, x2, x3, x4, x5, x6, x7, x8) =

(|x1 − x2|2, |x1 − x3|2, |x1 − x5|2, |x2 − x4|2, |x2 − x6|2, |x3 − x4|2,
|x3 − x7|2, |x4 − x8|2, |x5 − x6|2, |x5 − x7|2, |x6 − x8|2, |x7 − x8|2).



16 CHAPTER 1. FRAMEWORKS

From this we find R(P × Q) to be the following matrix.









































0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1









































As we can see, the rank of R(P × Q) is 12.

1.4 Stresses of Frameworks

It will now be convenient to introduce the idea of stresses on a framework. We
would like the reader to have some familiarity with stresses in the simpler context
of frameworks before we introduce stresses of tensegrities in the next chapter. Let’s
picture the edges as springs that are either stretched or compressed. Consider
a vertex pi and an edge connected to that vertex,{pi, pj}. Then there is a force
exerted on the vertex pi along the edge {pi, pj}, say ωij(pi−pj), where ωij ∈ R. The
force exerted on the vertex pj is ωij(pj − pi) and is clearly equal and opposite to the
previous force. To continue with the spring analogy, ωij > 0 is a compression of the
edge, while wij < 0 is a stretching of the edge. Now let us consider a framework for
which the sum of all the stresses on each vertex is zero. This gives us the following
definition.

Definition 29. Let G(p) be a framework with p = (p1, . . . , pv). Let a(i) denote the
set of vertices sharing an edge with vertex pi. Then the collection {wij} is a self

stress on G(p) if the following condition holds.

∑

j∈a(i)

ωij(pi − pj) = 0.

We can describe the self stresses of a framework using the Jacobian matrix of the
edge function. A self-stress is a linear relation on the rows of Jf(p) or, equivalently,
an element of the transposed matrix Jf(p)t. To fully understand self stresses, let’s do
an example using the framework depicted in Figure 1.14. We’ll call this framework
G(p) and let p = (0, 0, 1, 0, 0, 1, 1, 1).

Then we have the edge function

f(x1, x2, x3, x4) = (|x1 − x2|2, |x1 − x3|2, |x1 − x4|2, |x2 − x3|2, |x2 − x4|2, |x3 − x4|2).
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x3

x1

x4

x2

Figure 1.14: G(p)

From this we get the Jacobian matrix at the point p which looks like the following.

1

2
Jf(p) =

















−1 0 1 0 0 0 0 0
0 −1 0 0 0 1 0 0

−1 −1 0 0 0 0 1 1
0 0 1 −1 −1 1 0 0
0 0 0 −1 0 0 0 1
0 0 0 0 −1 0 1 0

















Then we can find the transpose of the Jacobian matrix.

1

2
Jf(p)t =

























−1 0 −1 0 0 0
0 −1 −1 0 0 0
1 0 0 1 0 0
0 0 0 −1 −1 0
0 0 0 −1 0 −1
0 1 0 1 0 0
0 0 1 0 0 1
0 0 1 0 1 0

























To find the kernel we perform Gausian elimination to get the following matrix.

1

2
Jf(p)t =

























1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
























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So we find that

ker Jf(p)t = span

















−1
−1

1
1

−1
−1

















.

Now we need to understand how this vector tells us the self stress of our framework.
When we originally found the Jacobian matrix of G(p) we set up the matrix in the
following manner.

Jf(p) =

p1, p2

p1, p3

p1, p4

p2, p3

p2, p4

p3, p4

p1 p2 p3 p4
















p1 − p2 p2 − p1 0 0
p1 − p3 0 p3 − p1 0
p1 − p4 0 0 p4 − p1

0 p2 − p3 p3 − p2 0
0 p2 − p4 0 p4 − p2

0 0 p3 − p4 p4 − p3

















The order in which we placed the rows of the Jacobian matrix determines which
entry in the vector corresponds to which edge. In our case we find that

(ω12, ω13, ω14, ω23, ω24, ω34) = (−1,−1, 1, 1,−1,−1).

It will help to visualize how this self stress acts upon G(p). Please refer to Figure 1.15
for the duration of the following discussion.

x3

x1

x4

x2

Figure 1.15: A stress on G(p)

It’s easily verified that
∑

ωij(pi − pj) = 0.

holds at each vertex.
Suppose that our framework was instead the one shown in Figure 1.16, which

we’ll call G̃(p) with edge function f̃ . The vector p will remain the same. By similar
computations as we performed for G(p) we find that Jf̃(p)t has full rank, and
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x1

x3

x2

x4

Figure 1.16: G̃(p)

x3

x1

x4

x2

Figure 1.17: There is no stress of G̃(p)

therefore no self stresses. We can see that this must be true if we look at how the
stresses must be arranged on the framework.

It is clear that in order for the stresses on vertices x1 and x4 to sum to zero, we
must add stresses which force the sums at x2 and x3 to be nonzero.





Chapter 2

Tensegrity Frameworks

In the summer of 1948 a young student of art and architecture at Black Mountain
College by the name of Kenneth Snelson attended a summer session taught by R.
Buckminster Fuller. Intrigued by geometry learned in that course, Snelson created
a sculpture during the following winter of a completely new type. It was a sculpture
built of rods and string which had no apparent weight bearing elements and yet
maintained its shape. The following summer Snelson showed his sculpture, which
he called a ‘floating compression’, to Fuller. Fuller was very excited by it. He
popularized it by incorporating it in many of his lectures and gave it the name
tensegrity, which is a compound of tensional integrity. Because Fuller named and
popularized tensegrities it is a common misconception that he invented them. For
more information about Snelson’s role in the discovery of tensegrities please see [6]
and [7].

With the discovery of tensegrities came the need to answer the basic question of
what a tensegrity is in a mathematical sense. Once that was accomplished through
careful definitions (presented later in this chapter), mathematicians now had the
language with which to analyze and classify tensegrities.

2.1 Tensegrities

Before we can begin defining what a tensegrity is we need to define some preliminary
concepts relating to graphs. Our main sources for this section are [3] and [2].

Definition 30. A graph is the pair G = (V, E) where V is a finite set of points
called the vertices of G and E is a collection of pairs {i, j} of vertices i, j ∈ V called
the edges.

A graph is basically a set of points connected by edges. There are no restrictions
on the edges, meaning they cross, loop, or form double edges. Please see Figure 2.1
for an example.

Definition 31. A signed graph is a graph with a partition of the edges E into three
classes, denoted G± = (V ; E−, E0, E+).
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Figure 2.1: A Graph

Definition 32. A tensegrity framework in R
d, denoted G±(p), is the pair (G±, p)

where p ∈ R
d × . . . × R

d = R
dv, i.e., p is a set of v d-tuples.

Definition 33. A cable is a member of E−; a bar is a member of E0; a strut is a
member of E+.

The elements of E can be thought of as constraints on pairs of vertices in the
tensegrity. A cable is an edge which can get shorter but not longer. If you think of
two vertices connected by a cable, they can be pushed closer together, but there is
a maximum distance between them determined by the length of the cable. A strut
is in some sense the opposite of a cable; it is an edge which can get longer, but
not shorter. In this case, our two vertices have a minimum distance between them
determined by the length of the strut, but can be pulled apart. A bar is an edge
which cannot get longer or shorter.

In the figures throughout this paper, I will use the same notation for cables,
bars, and struts, as shown in Figure 2.2.

Cable StrutBar

Figure 2.2:

An example of a simple tensegrity is given in Figure 2.3. As you can see, this is a
tensegrity formed with two struts and four cables. To give the reader a sense of what
a tensegrity really is, this tensegrity can be built quite easily from two pencils and
a rubberband by holding the pencils in a cross and placing the rubberband around
the ends. Clearly the elements used to build this small tensegrity are not struts and
cables as they are defined to be. However, if desired, we can carefully replace the
rubberband with string, which has the properties of a cable. Finding struts in the
real world is a bit tricker, but for practical purposes we can build tensegrities using
bars in the place of struts. The reason for this is when a tensegrity is rigid, its struts
cannot get longer as there is inward pressure on the struts at the vertices.

We would like to be able to study the rigidity of tensegrities as we studied the
rigidity of frameworks in the last chapter. The concepts of rigidity needed will
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x4 x2

x1

x3

Figure 2.3: A Simple Tensegrity

take more thought to understand; they do not make as much intuitive sense as
the concepts of rigidity for frameworks. One important fact to notice is that the
frameworks defined in the last chapter are in fact tensegrity frameworks, just ones
where E = E0, i.e., all the edges are bars.

Definition 34. A tensegrity G±(p) dominates the tensegrity G±(q), denoted G±(p) ≥
G±(q), if the following conditions hold.

1. |pi − pj | ≥ |qi − qj | when {i, j} ∈ E−.

2. |pi − pj | = |qi − qj| when {i, j} ∈ E0.

3. |pi − pj | ≤ |qi − qj | when {i, j} ∈ E+.

If G±(p) dominates G±(q) then all of the cables of G±(p) are at least as long as
those in G±(q), all of the bars are of equal length, and all the struts are no longer.

Now that we have the notion of dominance, we can define rigidity for a tensegrity.

Definition 35. A tensegrity G±(p) is rigid in R
d if for every continuous flex, x(t) ∈

R
dv, with x(0) = p, and such that G±(p) ≥ G±(x(t)) for all 0 ≤ t ≤ 1, it follows

that p is congruent to x(t) for all 0 ≤ t ≤ 1.

This definition is the converse of the definition of flexibility given for frameworks.
The two definitions are similar enough that it may be helpful for the reader to review
this definition given in the previous chapter.

The following conditions is equivalent to the condition given above for rigidity.
There is an ε > 0 such that if G±(p) ≥ G±(q) and |p − q| < ε then p is congruent
to q.

The tensegrity shown in Figure 2.3 is rigid, where as it’s dual, formed by switched
struts and cables, is flexible. This is illustrated in Figure 2.4.

The notion of infinitesimal flex extends to tensegrities as we can see from the
following definition.
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Figure 2.4: Flexing the Dual

Definition 36. An infinitesimal flex, also known as a first order flex, of a tensegrity
G±(p) is an assignment p′ : V → R

d, where p′(vi) =: p′i for each vi ∈ V , such that
for each edge {i, j} ∈ E the following conditions hold.

1. (pj − pi) · (p′j − p′i) ≤ 0 when {i, j} ∈ E− (cables)

2. (pj − pi) · (p′j − p′i) = 0 when {i, j} ∈ E0 (bars)

3. (pj − pi) · (p′j − p′i) ≥ 0 when {i, j} ∈ E+ (struts)

Some examples of first order flexings are shown in Figure 2.5. It should be noted

Cable Bar Strut

Figure 2.5: First Order Flexings

that this definition holds for frameworks, as a framework can be thought of as a
tensegrity where all the edges are elements of E0, or bars.

Recall from algebra that a square matrix S is skew symmetric if S + St = 0. An
example of a skew symmetric matrix is

S =





0 1 2
−1 0 3
−2 −3 0



 .

Definition 37. An infinitesimal flex p′ of a tensegrity G±(p) is trivial if there is a
skew symmetric matrix S and a vector q such that p′i = Spi + q for all i.

For clarification, consider the following calculation. Given a skew symmetric
matrix S and a (column) vector v, then

vtSv = (vtSv)t = vtStv = −vtSv
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This can only be true when vtSv is zero. So for a trivial flex:

(pj − pi) · (p′j − p′i) = (pj − pi) · ((Spj + q) − (Spi + q))

= (pj − pi) · S(pj − pi)

= (pj − pi)
t · S(pj − pi)

= 0

Now we have the terminology to define infinitesimally rigid.

Definition 38. A tensegrity G±(p) is infinitesimally rigid, also referred to as first-

order rigid, if every infinitesimal flex is trivial.

The rigidity matrix of a tensegrity is defined the same way as for a framework.

Definition 39. The rigidity matrix, denoted R(G±(p)) of a tensegrity G±(p) is the
Jacobian matrix of the edge function of G±(p).

2.2 Stresses of Tensegrities

In this section we will study the stresses of tensegrities, which will be a generalization
of the discussion of stresses of frameworks in the previous chapter.

Definition 40. Let G±(p) be a tensegrity with p = (p1, . . . , pv). Let a(i) denote the
set of vertices pj sharing a common edge with vertex pi. Then the collection {ωij}
is a self stress G±(p) if the following equilibrium condition holds at each vertex i.

∑

j∈a(i)

ωij(pj − pi) = 0,

Definition 41. A proper self stress is a self stress where the following conditions
hold.

1. ωij ≥ 0 when {i, j} ∈ E− (cables)

2. ωij ≤ 0 when {i, j} ∈ E+ (struts)

There is no condition for bars.

A tensegrity with a proper self stress means that at each of the cables, there
is no inward force on that edge and at each strut there is no outward force on
the edge. Let’s give an example of a self stress and a proper self stress using the
simple tensegrity introduced previously. We’ll call this tensegrity G±(p) where p =
(0, 0, 1, 0, 0, 1, 1, 1), as shown in Figure 2.6. To begin with we need to find the kernel
of Jf(p)t. Since this calculation is the same as the one performed in Section 1.4, we
will leave it out entirely. The reason these two calculations are exactly the same even
though we were dealing with a framework and we are now dealing with a tensegrity
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x4 x2

x1

x3

Figure 2.6: G±(p)

is that the edge function is the same for both. So from our previous work we know
the self stresses of G±(p) are in

ker Jf(p) = span

















−1
−1

1
1

−1
−1

















.

If we first consider the self stress

Ω = (−1,−1, 1, 1,−1,−1).

This is not a proper self stress, as the conditions given in Definition 41 do not hold.
Now let

Ω = (ω12, ω13, ω14, ω23, ω24, ω34) = −1(1, 1,−1,−1, 1, 1) = (1, 1,−1,−1, 1, 1).

This self stress is a proper because

ω14 = ω23 = −1

and
ω12 = ω13 = ω24 = ω34 = 1.

This satisfies the condition that the stresses on struts be less than or equal to zero
and the stresses on cables be greater than or equal to zero. In fact, since the
inequalities are strict, this is a strict proper self stress, which is defined below.

Definition 42. A strict proper self stress is a proper self stress where the inequalities
in Definition 41 are strict inequalities.

In this chapter we have learned the basic ideas surrounding tensegrities. This
is, however, the tip of the iceberg as far as tensegrities are concerned. There are
many more interesting concepts which can be understood once we understand these
concepts.
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2.3 Tensegrities and the Energy Function

In their paper Second-order rigidity and prestress stability for tensegrity frameworks,
Connelly and Whiteley have refined the notion of rigidity farther, introducing the
notions of second-order rigidity and prestress stability. We found in the previous
chapter that infinitesimally rigid implied rigidity for frameworks. In a similar fashion
for tensegrities, infinitesimally rigid implies prestress stability, which implies second-
order rigidity, which in turn implies rigidity. However, none of these implications
can be reversed. The definitions of second-order rigidity and prestress stability rely
on the concept of energy functions of the tensegrity. This is studied in great detail
in Connelly and Whiteley [3]; a short summary will be given here.

An energy function is a function on all of the edges of a tensegrity, where if an
edge is changed in length, the energy in the edge changes. If a cable is lengthened,
a strut is shortened, or a bar is changed in length, then the energy in that edge
increases. If a cable is shortened or a strut is lengthened, then the energy decreases.
This means that there is a general form for the energy functions of cables, struts
and bars, which is illustrated in Figure 2.7.

Cable StrutBar

Figure 2.7: Energy Functions

Since a detailed explanation of energy functions is beyond the scope of this paper,
further exploration of this topic will be left to the interested reader.
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