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The main tool for studying the inflections (or Weierstrass points) of a mapping
of a smooth projective variety into projective space are the principal parts of line
bundles. In recent work by D. Cox, [2], homogeneous coordinates on a toric variety
have been introduced, and in subsequent work with V. Batyrev, [1], an Euler se-
quence is defined. The homogeneous coordinates and the Euler sequence are direct
generalizations of the usual notions in the case of projective space. The purpose of
this note is to use the Euler sequence to describe the principal parts of line bundles
on a toric variety (Theorem 1.2). The essential idea is to compare derivatives with
respect to local and global coordinates. Even for the case of projective space, the
complete description is apparently not to be found in the literature.
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60 Notation

We use standard notation from analysis. If « = (ay,...,a,) is a tuple of non-
negative integers, let a! := [[1_, a;! and |a| := Y"1, a;. A monomial of the form
[T, e will be denoted by e*. We will often write d;, in place of 9/dx;.

Toric varieties. As general references for toric varieties, we use [3] and [8]. Let
X be an n-dimensional toric variety associated with a fan A in an n-dimensional
lattice N =2 Z™. Let M = Homy(N,Z) be the dual lattice and A(1) be the set of
one-dimensional cones of A. For each p € A(1), let n, be the generator of pN N
and D, be the associated T-invariant Weil divisor; the set of such D, is a basis
for the free abelian group of T-Weil divisors, Z*(1). To describe the homogeneous

coordinate ring of X introduced in [2], recall the exact sequence

0—M—71 — A4, 1(X)—0 (1)

m > Dy, = Z(mv nP>DP
p
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where A,,_1(X) is the group of Weil divisors modulo rational equivalence and the
map Z2(M) — A,,_;(X) sends a divisor to its class. For each p € A(1), let x, be
a variable. There is a 1-1 correspondence between T'-Weil divisors and monomials
in the z,, namely, D = 3 a,D, € ZA(M) corresponds with P = I, z,". The
homogeneous coordinate ring of X is S = Clz,|p € A(1)] with grading given by
the class group, A,_1(X). This means that two monomials P and z¥ have the
same degree if [D] = [E]in A,,_1(X). For each T-Weil divisor D, there is a coherent
sheaf, Ox (D). As explained in [2], it comes from sheafifying the A,,_;(X)-graded
S-module S(D), where S(D) is S with degree shifted by [D], i.e., its [E]-th graded
part is given by S(D)[g] = Sp)+(r- We will always be interested in the case where
X is smooth and projective. Hence, each Ox (D) is a line bundle.

As discussed in [1], for each element ¢ € Homy (A, —1(X),Z), there corresponds
an Euler formula. If f € S is homogeneous of degree [D], then it is straightforward

to check that
Y (Do) wpd, f = $(DDS

PEA(L)
The case of X = P" recovers the usual Euler formula.

Principal parts. Let F be an Ox-module on a smooth n-dimensional variety X
over C. Let P¥(F) be the sheaf of k-th order principal parts of F. We assume
familiarity with principal parts, and recall some basic facts. Some references are
[4], [6], [9], [11]. Throughout, we indentify vector bundles over X with locally free
sheaves of Ox-modules.

In the case where F = F' is locally free, the principal parts sheaves are locally
free, and there are exact sequences of vector bundles

0 — S*Qx ®o, F — P*(F) ™ P*Y(F) =0

where S¥Qx denotes the k-th symmetric power of the cotangent bundle of X. We
call these the fundamental exact sequences for principal parts bundles. One uses
these sequences to get a local description of the principal parts bundles, which we
recall for the case where F' = L is a line bundle. First suppose that X is affine, with
coordinate ring A = Clzy,...,x,], and define B = A[dzy,...,dx,] where the dz;’s
are indeterminates. Then X and L can be identified with A, and the bundle S*Qx,
(resp., P¥(L)), can be indentified with elements of B which are homogeneous of
degree k, (resp., < k), in the dz;’s. For arbitrary X, the local picture is similar
to the affine case just described: one takes local coordinates x1,...,x, at a point
x and replaces A by the completion of the local ring of X at x (isomorphic to
Cllz1,---,zn]])-

In general, for each k, there is a canonical map of sheaves of abelian groups
di: F — P*(F)

These maps commute with the projections to lower-order principal parts bundles:
T o d, = dix_1. For F = L, a line bundle, using local coordinates as above, dj,
sends a section of L to its truncated Taylor series

lex]
f:f(wlv"'vxn)'_)Z L9 f

ol Ore
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Composing with 7, amounts to truncating the Taylor series one degree earlier.

Grothendieck, [4], defines differential operators so that they are represented by
principal parts bundles. A map D:F — G of sheaves of abelian groups is called a
differential operator of order < k if it factors:

F——>G

where u is Ox-linear. In the case where F = L is a line bundle, this definition is
equivalent to saying that locally, D is given by Ox-linear combinations of partial
derivative operators in the local variables.

To see the connection between principal parts bundles and inflections, let L be
a line bundle, W an (n + 1)-dimensional vector space over C, and W — I'(X, L)
a map of vector spaces. For each integer £ > 0, we define an Ox-linear truncated
Taylor series map by evaluating global sections and taking principal parts:

du: W ®¢ Ox — (X, L) @c Ox =% L 25 PF(L)

These maps are compatible with the projections: m; o ¢, = ¢g_1.
Assuming ¢ is surjective, there is a corresponding map

i X = P(W) =P

The study of inflections of f is equivalent to studying the degeneracy locii of the
¢r- Let 1 be the generic rank of ¢g. A point x € X such that the rank of ¢ ()
drops below 7y is called a k-th order inflection or Weierstrass point for f. Let
U={zreX ‘ rk ¢, = rr}. Restricting ¢ to U determines a surjection onto a
subbundle of P*(L)|yy which corresponds to a rational map

kaX - — — G,«k_l]P)n

to the Grassmannian of (7 —1)-planes in P™. This defines the k-th order associated
map of f sending a point to its k-th order osculating space. Using local coordinates
on X to parametrize the mapping, the point x € X is sent to the span of the
derivatives of the mapping up to order k.

§1 Principal parts on toric varieties

Let X be a smooth toric variety over C with s one-dimensional cones py, ..., ps
having associated invariant Weil divisors D; = D,, and homogenous coordinates
x; = wp,, for i =1,...,5. We want to describe the principal parts of line bundles
on X. Let

T :=a;,0x(—D;) =Y _ Ox(—Dy)e;
=1

where the e; are indeterminates. Take symmetric powers to define

s k
SkT = ®1§11§---§ik§sz(_Di1 — s — Dik) = (Z Ox(—Di)ei)
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with basis consisting of monomials in the ¢;’s of degree k.

Definition 1.1. If D is a T-Weil divisor, the bundle of k-th order homogeneous
principal parts of Ox (D) is

SkT(D) = SkY Qo OX(D) = @1§i1§---§ik§sz(D —D;, — = Dzk)

As an analogue of the projection of principal parts, 7, define the O x-linear map

o =05:S*T(D) = A,_1(X) ®z S*1Y(D)

f =) D@ wide, f
i=1

The map o is not generally surjective, but we will see that like the standard projec-
tion, its kernel is S*Qx ® Ox (D). It is surjective, however, in the case where k = 1
and D = 0. The resulting exact sequence has been called by [1] “the generalized
Euler exact sequence:”

0—Qx — @leox(—Di) ﬂ) An_l(X) ®70x — 0

For example, if X =P" with homogeneous coordinates xy, ..., z, and correspond-
ing divisors Dy, ..., D,, we can can identify A,,_1(X) with Z so that o; is deter-
mined by sheafifying the map

@ S(—D;) el g

This gives the standard FEuler sequence on projective space. For a general X, the
map o; will be determined by a matrix, as above, but with many rows: one for
each Euler formula on the toric variety.

In the case of X = P", the Euler sequence is exactly the fundamental exact
sequence for principal parts with £ = 1 and D = 0, [5]. A complete description of
Pk(Ox (d)) and the fundamental exact sequence for a range of values of k£ may also
be described using the Euler sequence (cf. §2). The main purpose of this note is to
generalize these ideas to the case of toric varieties.

To begin to compare homogenous principal parts on a general toric variety with
the standard principal parts, consider the map

s k
Clzt!, ... o — SkCztt, ... afl] = <Z Clztl,. .., xfl]ei>
i=1

1 /< F 1 olely
f**ﬁ(.zeiam) =2 Gt

For each divisor D, the sheaf Ox (D) is naturally a subsheaf of the constant sheaf
on ClzT!, ..., zE (see the definition of Ox (D) in [2]). Hence, for each D, the map

S
just described induces a differential operator of order k:

N2 s e ] LY =Y
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To verify that d is a differential operator, note that on a standard affine open set,
the operators 0, which do not come directly from the coordinates can be written
as combinations of those that do by using Euler formulas (cf. §0). In detail, let U
be a standard affine open set and assume that xq,...,x, are coordinates. The
sheaf Ox (D) is the set of elements of degree [D] in Clzy,...,z,,x ij_lH, A
(cf. [2]). Take [Dy41],...,[Ds] as a basis for A,,_1(X), and take the dual basis,
Grt1y-- -, Ps, for Homy(A,_1(X),Z). For f € Ox(D)(U), the Euler formulas of §0
can be written (solving for d;;)

1
awjf <¢J D] Z¢] z] xz a:Z)f) j:n+17"'78
J

(The reader may find the exact description of S¥Y(D)(U), given in the proof of
Theorem 1.2, useful in understanding the remarks just made.) Hence, using the
above formulas, d; can be described using only partial derivatives with respect to
the coordinates.

The universal property of principal parts bundles says there is an O x-linear map
ug factorizing 0 through the canonical differential operator dy:

P*(Ox (D))

.

Ox (D) —2~ §k7(D)

Finally, to make the projections o3 and 7 compatible with the maps wuy, define

T = 1: S*Y(D) — A,_1(X) ®2 S*T(D)

f =) [Di] ® ©i0x,

=1

Although 7 involves partial derivatives with respect to the x;, it is Ox-linear. If f
S

is homogeneous of degree [E] =3"._, a;[D;], then

S

()= wDi)® f=[E®f

=1

Hence, 7 is just multiplication by degree.
We can now state the main theorem:

Theorem 1.2. For each k > 0, there is a commutative diagram with exact rows

0 — S¥Qx ® Ox (D) — SFT(D) —%— A,_1(X) ®7 S¥=17(D)
i Sk=17(D)
-

kO . oM (P Dkim. (PN Tk pk=1/m. (DY N
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The bottom row is the fundamental sequence for principal parts bundles. Since my,
is surjective, P¥(Ox (D)) is the pullback of o), and T,_1oug_1. (See §2 for remarks
about cases where wy, is injective.)

PROOF: We will first show that the right-hand square of the diagram commutes.
Since P*(Ox (D)) is generated by the image of dy and dj is compatible with the
projection, 7y, it suffices to show that oy o 6 = 71 0 dp_1:

o (50(f)) = ;[Di] ® i, (% <Z 63‘%) kf)
oo gy En)

= Z ®37z wl 5k 1(f)) = Tk—l((sk—l(f))

We now take local coordinates to check that the induced map between ker oy
and ker 7y, is an isomorphism. Let U be a standard maximal affine open set of X.
We may assume that xi,...,z, correspond to one-dimensional cones spanning a
maximal cone in the fan for X and that U is the corresponding affine subset. Take
the primitive lattice points on these one-dimensional cones as a basis for N, the
dual basis for M, and [Dy,41], ..., [Ds] as a basis for A,,_1(X). The exact sequence,
(1), for A,,—1(X) becomes

I,
&

for some matrix C' = [Cn+i,j]1§i§8—n, 1<5<n-

According to [2], if F is a T-Weil divisor, then I'(U, Ox (E)) is the set of elements
of degree [E] in the localized ring Clz1,..., %]z, ,,...z,- Since linearly equivalent
divisors give rise to isomorphic line bundles, we may assume that D = a,+1Dp41+

-4 asDs for some integers a;. Hence, the affine coordinate ring on U is

(C ;]

0—7Z" s 7.° s 757" —=0

F(U,OX):B:C[’LU]_,...,wn], w; :SLC]Z
| S

Also, letting P = []°_, ., «{*, we have
U, Ox(D)) = z"B
and

€1

W-I-
Jj=n+1+j

(U, S*¥Y (D)) = «¥ (B
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To make the kernel of o apparent, it is convenient to change e-variables, letting
ﬁ—wizzzn_i_ng,i;—l, fOI’].SZSn
2 = j=nt1%; ¢

L forr n+1<3<s

x;’

It follows that I'(U, S*Y (D)) = «P(357_; B2)*, and since [D;] = >27_ . ¢;:[Dj]
fore=1,...,n, we get that

0k = [Dnt1] ® T [Ds] ® 0.,

Hence, the kernel of o consists of polynomials of z-degree k in P Blzy,. .., 2]
which do not involve any of the z; with ¢ > n.

We identify P*(Ox (D))|y with the elements of degree < k in Bldwy, ..., dw,],
thinking of the dw;’s as indeterminates. For z? f(w1,...,w,) € I'(U, Ox (D)) =
zP B, the map dj, gives the truncated Taylor series expansion of f,

n k
' i=1

(6%
= Z i' orlf dw®
al dwe
| <k

The kernel of 7 is the set of polynomials of degree exactly k£ in the dw;’s. We
will be finished if we show that for each o € Z%, with |a| = &, the map uy sends the
monomial dw® to the corresponding monomial in the kernel of oy, namely, 2P 2%,
A priori, we know that ug maps the kernel of 7 to the kernel of oy, so ug(dw®)
has no terms involving z; with ¢ > n. Thus, we just need to check the coefficients
of terms only involving z; with ¢« < n.

Using a standard identity from analysis,

) = ue | (1§ )ue P aPu?)

p<a

=) " (~1)leAl (g) w P8y (P wP)

p<a

For each v = (y1,...,7,0,...,0) € Z%, with |y| = k, we need to find the z7-term
in the above expression. In 0y (zPw?), this term is

i \ .
o (xPwP) » = %( e,-awi> (waﬂ)]
L ’ =1 z7
' ﬂ) Do <>
Gy 1)
= _<ﬁ>a:Dwﬂﬁ i(z~+w i Coit i
|\ =1 \ Wi Z Ze=n+1 ‘e .
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(A note to help see that the second line in the above computation follows from the
first: Recall that each z; is a homogenous linear combination of the e;’s. Hence, to
find the z7-term, we only need to consider partial derivatives, d,,, with i < n.) Now
note that since # < a and |a| = ||, the final expression is zero unless = a = 7.
Thus,

ug (dw®) = zP 2%

as required. [

§2 Discussion

I. Taylor series/associated maps. We define Taylor series maps with respect to
the homogeneous coordinates on the toric variety, X, and compare them with the
usual notion (cf. §0). Let W — I'(X,Ox (D)) be a map of vector spaces over C.
By evaluating global sections, define the Ox-linear map

W @c Ox — T(X,0x (D)) ®c Ox <% Ox(D) 2 S* 1 (D)

There is a commutative diagram expressing the compatibility of ¢} with the usual
truncated Taylor series map:

Sk (D)

o T
Ug

W ¢ Ox —= PF(Ox (D))

If ug is injective, then the ranks of ¢2‘ and ¢y are the same at all points of X.
Thus, ¢’kl can be used to measure inflections: if W maps to a set of globally gen-
erating sections of Ox (D), the k-th order inflections of the corresponding map,
X — P", are exactly the points where qbz drops rank. The following proposition
gives a sufficient condition for the injectivity of uy.

Proposition 2.1. Using the notation of §1, the map uy, is injective provided that
the classes, [D — D;, — --- — D;,]| are nonzero for all i, ...,i; € {1,...,s} and for
{=0,...,k—1.

PROOF: From the definition of S*Y(D) and the fact that 7, is multiplication by
degree, it follows that 7, is injective provided that [D — D;, —---— D;,] are nonzero
for all i1,...,ip € {1,...,s}. Theorem 1.2 implies that u, is injective provided that
ug_1 and 1y_1 are injective. The result follows. [J

For instance, on P"* with Ox (D) = Ox(d), the map uy, is injective if k& < d or if
d < 0. (For more on this point, see II, below.)

We can define variants of uj, and ¢f so that inflections can be measured using
homogeneous coordinates even in the case where wuy is not injective. First, define
the differential operator of order k:

d<r = ®F (61 Ox (D) — @}_ ST (D)

(Compare this with J; of §1, where we only took derivatives of order exactly £ in
the homogeneous coordinates.) The Ox-linear map corresponding to d<j via the
universal property of principal parts bundles is

ko kA TN .~k AlArs TN
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Using the Euler formulas from §0, it is straightforward to check that u<y is always
injective. Defining ¢” B = @’g:()(ﬁf}, we get a “Taylor series” map and a commutative
diagram -

DS T(D)

h
bk
U<k

W ®c Ox —> Pk(OX( ))

Now, the ranks of ¢; and d)Zk are the same at all points of X. This idea was used
in [12] to define inflections of toric mappings using homogeneous coordinates.

II. Principal parts on projective space. Let X = P" and Ox (D) = Opn(d)
for some integer d. The commutative diagram in Theorem 1.2 can be written
0 —= 5*Qpn ® Opn(d) —= Opu(d — k) ("") == Ozu(d — b+ 1)2"E=7) —0

(d—k+1)

n+k:—1)

u Opn(d — k + 1)2("i"

Uk —1

00— SkQ]pm &® O]pm(d) I Pk(O]}Dn(d))

PF1(Opu(d)) ——> 0

The surjectivity of the upper row can be checked in local coordinates. The map
Tr—1 is multiplication by degree, d — k + 1. Since wug is an isomorphism, it follows
from the five-lemma that all the uj are isomorphisms for £ = 1,...,d. When
k = d+ 1, the map 74 is multiplication by zero and ug41 is not an isomorphism. If
d is negative, then uy is an isomorphism for all .

We have identified P*(Opn(d)) as a direct sum of line bundles in the case where
k <dord< 0. In the case where k > d, it follows from Theorem 1.2 that

PHO (@) = @* & O+

where the bundle Q¥ is given as
n+d
OF — er (opn(d pe('t) memenun, 0" ))

In particular, Q4! = SO0, ® Opn(d). It also follows that for k& > d there are
exact sequences
0= S*Qpn @ Opn(d) — QF = Q* 1 —

It would be nice to know more about these bundles, Q.

Note. In [10] it had previously been noted that P*(O(d)) = O(d — k)®*+1) on P!
for 0 <k <d.

ITI. Principal parts of projective bundles. In [11], a description of principal
parts on prOJectlve bundles over arbitrary schemes was glven We recall this de-

I B T Y IR B B AP Yy 4+ T 1r - 4 Y Y. r YT o
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noetherian scheme S. Let P = P(E) be the projective bundle of one-dimensional
quotients of E with projection u: P — S and universal quotient bundle O(1). (For
example, if F is a trivial bundle over a field S = k, then P = P}.)
To describe the principal parts of O(d), we use the Euler sequence on P, which
we write as
0—Qps®0(1) = Ep = 0O(1) = 0

where Ep := u*FE. Define a map
er:SFEp — O(1) @ S*1Ep .= S*1E(1)

Ul-"UkI—>Z<6(’Ui)®’l)1""&i"'1}k>
i

Tensoring by O(¢) gives a map which we also denote by €
er: SFEp(0) — SF1Ep(£ 4 1)

(This map is essentially oy from §1.)

Theorem 2.1. Let k > 0 be an integer, and assume that the characteristic of the
residue field at each point of S is zero or greater than k; then there is a commutative
diagram with exact rows

0 — S*Qp/s®@0(d) — SPEp(d—k) - SF'Ep(d—k+1) — 0

| 3 ]

0 — S*Qps®@O(d) — P*(O(d—k)) = P*=1O(d-k+1)) — 0

The bottom row is the fundamental sequence for principal parts bundles. The map
vy Is an isomorphism when k < d or when d < 0.

In [11], this theorem is proved only for the case k < d. Using the ideas presented
in this paper, the result can be extended to the case d < 0.

IV. Differential operators on toric varieties. We have given a description of
P¥(Ox (D)) on a toric variety. Thus, taking duals—applying Hom( - , Ox) to The-
orem 1.2—should give a description of the differential operators D: Ox (D) — Ox.
I. Musson, [7], has described these “twisted” differential operators on a toric variety,
and it would be interesting to compare our results.
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