INFLECTIONS OF TORIC VARIETIES
DAvID PERKINSON

To William Fulton

Let V = {mq,...,m;} be a set of distinct lattice points in ZZ, with mo = 0.
Associated with V' is an affine monomial map

v:C* — CtHL

x> (1™ ™)
where ™ stands for the monomial z]"* 25" - - - z™in . (The ordering of the lattice

points will not be important. The lattice point mg = 0 is included anticipating
the move to projective space.) As will be described carefully in §1, the span of
the derivatives of v up to order k at a point p, determines the osculating space of
order k at p. If the dimension of this osculating space is smaller than expected, we
say that v is inflected at p. In this paper, we show how inflection points are related
to the lattice points, V', and use this information to characterize toric varieties with
certain extreme inflectional behavior.

The following two theorems are examples of previous work in which varieties are
characterized by their inflectional behavior:

Theorem 0.1. ([F, K, P, T]) Let t = (n:k) —1, and let X C P! be a smooth,
projective n-fold whose k-th osculating space is all of P* at all points of X ; then X
is isomorphic to P™ embedded via the k-fold Veronese mapping.

Theorem 0.2. ([B, P, T]) Let t > 2, and let X C P?**! be a smooth, projective
surface not contained in a hyperplane, such that the dimension of its k-th osculating
space is 2k at all points of X and for all k < t; then X is isomorphic to P* x P!
embedded via all global sections of pri Opi1(1) ® pry Opi(t). So X is a rational
normal scroll of degree 2t.

These two theorems are proved using sophisticated machinery (in the former case, a
result of Mori characterizing projective space as the only variety with ample tangent
bundle, and in the latter, adjunction theory.) However, in all cases, the varieties
and embeddings turn out to be toric. As might be expected, if we are willing to
restrict our attention to toric mappings, we can establish these theorems by fairly
easy combinatorics characterizing polytopes with certain properties.

In §1, we show that the dimensions of the osculating spaces of v are given by
the Hilbert function of the set of lattice points, V. In §2 we discuss extending the
monomial mapping to a mapping of a toric variety into projective space. In §3,
our main result is to describe toric varieties of dimensions two and three embed-
ded in projective space so that the osculating spaces up to a certain order are as
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large as possible at all points of the variety and strictly smaller than possible for
higher orders (cf. Theorem 3.2 and Theorem 3.5). In the case of dimension two, we
show that the variety must be the projective plane (embedded via a Veronese), a
Hirzebruch surface, or one of three exceptions. The exceptional cases are non-ruled
varieties whose second-order osculating spaces have dimension strictly less than five
at all points. One of these cases was first noticed in [Tog], and the other two are
new.
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providing time and support through a Vollum research grant.

81 Inflections of affine monomial maps

For a € Z%,,, we denote the a-th partial derivative of v in the following way:

1 olely
Vo= =
@ a! Ozt ... 0xy"
where |a| = > | a; and a! = ay!---a,!. To study the inflections of v, define for

each integer k£ > 0 the matrix of k-jets of v

Jpv = (Ua)og\a\gk

whose rows are the partial derivatives of v up to order k, written in any order. The
k-th osculating space of v at the point p € C", Osci, v(p), is the span of the vectors
va(p) for 1 < |a| < k, translated out to v(p). Hence, Oscy v(p) is the tangent space
for v at p, and Oscg41 v(p) is determined by the first-order infinitesimal motions
of Oscy v(p). Since 0 is included in V', v is linearly independent from the v, with
la| > 0. Hence, rkJyv(p) = 1 + dim(Oscy v(p)). If this rank is not as large as
possible, i.e., is less than ("7*), then we say that p is an inflection point. In general,
the rank of Jiv will have a generic value—which might be less than maximal, and
so v will be inflected everywhere—but might drop below this generic value at special
points. We call these special points proper inflections or just inflections, again. (For
an arbitrary mapping v: X — P?, of a smooth variety into projective space, one may
define osculating spaces similarly after taking local coordinates on X and lifting to
CtHl. It is a standard result that the osculating spaces are independent of the
choice of local coordinates, and it is clear that dimensions of the osculating spaces
do not change after an affine change of coordinates in the target space, Ct. We are
choosing to avoid the machinery of principal parts or jet bundles as an unnecessary
complication for the purposes of this paper.)

As a further measure of inflection, let ]:,fv denote the i-th Fitting ideal of Jywv,
the ideal generated by the determinants of ¢ x i-minors of Jiv. There are inclusions

Fifte ¢ Fiv
U U
Fitle c Fi_w
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The rank of Jyv(p) is the largest r such that FJv(p) = (1). Note that the Fitting
ideals are monomial ideals (this can be easily seen by direct computation, or by
appealing to the natural torus action on C*). This means that we can realize all
possible ranks for Jiv(p) by only looking at those p whose coordinates are zeros and
ones. In other words, the rank of Jiv(p) only depends upon the smallest coordinate
flat, {z;, = --- = z;, = 0}, to which p belongs.

MAIN QUESTION: What is the relation between V', i.e., the set of lattice points
serving as exponents for v, and the inflections of v?

To start, we can evaluate a partial derivative of a monomial z:
1 olelzt

To = Wl 9gar - dgon @)

= £1> <€n>lj—a
a Qp
a

where the multinomial coefficient is defined to be zero if a; > ¢; for some i. An
easy consequence is that

tk Ji0(0) = [{m; € V|mi| < k)] (2)

Remark. The affine version of Theorem 0.1 follows: if the k-th osculating spaces of
v:C* — CL all have dimension ¢, then (2) says that ¢t +1 = [{m; € V| |m;| < k}|.
If t = ("}*) — 1, we are forced to take V = {m € ZZ||m| < k}.

Having determined the smallest possible rank, we now determine the largest.

Proposition 1.1. The generic rank of Jyv is
rk JkU(]., ey ].) = Hv(k)

where Hy is the affine Hilbert function of V, i.e., Hy (k) is the codimension in the
linear space of polynomials in n variables and of degree less than or equal to k of
those polynomials that are satisfied by the lattice points V' C Z™ C C".

PROOF: From (1), the column of Jxv(1,...,1) corresponding to the monomial z™

(mz) (mi71> . (mz,n>
0<\a\<k 1 n 0<|a|<k

But { (zi) . (“) }0<\a\<k forms a basis for the space of polynomials of degree < k

r
in 1,...,2,. Therefore, the linear relations among the rows of Jiv(1,...,1) cor-
respond to polynomials of degree < k passing through V. O

Hence, finding a monomial map whose osculating spaces have fixed generic dimen-
sions is the same as finding a set of lattice points with a certain Hilbert function.
(For the extension of this result to toric mappings, see Remark 2.3.)

In what follows, we will only need to know the generic rank of Jxv and its rank
at the origin, but for completeness, we will extend Proposition 1.1 to determine
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the rank at all points. As noted earlier, is suffices to consider only points whose
coordinates consist of zeros and ones. We will use the following notation: Given
a C {1,...,n}, let p, € C* be the point whose i-th coordinate is 0 if i € a and
1 otherwise. Thus, the generic value of rk Jiv along the flat {z; = 0| i € a}
is determined by the rank at the point p,. Let II denote the lattice of integer
points in this flat. To calculate the rank at p,, we will take slices of the lattice
which are parallel to II. For each positive lattice point in the space normal to II,
ie., for each a € I+ := {b € Z%| b; = 0,i & a}, we take the slice through a,
I, ;=0 +a:={be€ 7% b; =ai,i € a}. By forgetting the components they have
in common, we can think of the exponents of v that lie in a particular slice II,
as defining a monomial map from the smaller space II, ® C = C*~l*l Applying
Proposition 1.1 to determine the rank of the (k — |a|)-jets of this new map and
summing over the first k + 1 slices gives the result. To formalize this, let © be
the orthogonal projection of C* onto the slice II, ® C = C*~ 1@l and consider the
exponents for the new monomial map just described:

Vo :i=mw((V NII,) U{a})

We have forced V; to include the origin, by adding {a}, in order to apply Proposi-
tion 1.1. To compensate, define

0, ifaeV
1, otherwise

ov(a) := {

Proposition 1.2. With notation as above

rk Jrv(pa) = Z (Hy, (k —la|) — v (a))

a€ll, |a| <k

PROOF: For each a € II+ with |a| < k, let B, be the matrix whose rows are the
partial derivatives, vy, for b € II, such that |b| < k. Hence, up to a rearrangement of
rows, Jv consists of the blocks of rows, B,. Using (1) to take the partial derivative
of a monomial gives

Tl (pa) #0 < m; =a; fori € a (%)
«— mell,

Hence, each column of Jiv(p,) will be nonzero along at most one of the blocks, By;
therefore,

rk Jku(pa) = Z rkBa(pa)
a€llt,|a|<k

Consider the map ¥ associated with the exponents V,. It follows from (x) that
the nonzero columns of B, (p,) come from those components of v of the form z™
with m € II,. Hence, disgarding the columns of zeros, By (pa) is Ji—|q0(1,...,1)
provided a € V. The rank of B, (p,) is then given by Proposition 1.1. If a ¢ V, then
it has been added to from V;,. So ¢ has an “extra” component, and Jj_|,0(1,...,1)
has an “extra” row, linearly independent from the others. Thus, in this case,
tk By (pa) = 1k J—|q|¥(1, ..., 1) — 1. This accounts for the presence of dy. O
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Remark 1.3. In the case p, = 0, then II = {6}, I+ =72, I, = {a}, and

1, ifaeV
0, otherwise

Hy, (k) — 8y (a) = {

Thus, Proposition 1.2 reduces to (2).

82 Inflections of toric varieties

This section introduces the notation we use to describe toric varieties and defines
inflections for toric mappings. As general references, we use [Ful] and [Oda]. Let
X be an n-dimensional toric variety associated with a fan A in an n-dimensional
lattice N 2 Z™ We will use the notation in [Cox]: M = Homgz(N,Z) is the dual
lattice; A(k) is the set of k-dimensional cones of A; if o € A(k), then o(¢) denotes
the /-dimensional cones contained in o; for each p € A(1), let n, be the generator
of pN N and D, be the associated T-invariant Weil divisor; the set of such D,
is a basis for the free abelian group of T-Weil divisors, Z2(), To describe the
homogeneous coordinate ring of X introduced in [Cox], recall the exact sequence

0— M — 2722 5 A4, (X)—0 (3)

m +— Dy, = Z(m,np)Dp
p

where A, _1(X) is the group of Weil divisors modulo rational equivalence and the
map ZA(W) — A, ;(X) sends a divisor to its class. For each p € A(1), let z, be
a variable. There is a 1-1 correspondence between T-Weil divisors and monomials
in the z,, namely, D = Y a,D, € Z*") corresponds with #” = [] z;". The
homogeneous coordinate ring of X is S = Clz,|p € A(1)] with grading given by
the class group A,, _1(X). This means that two monomials ¥ and 2% have the
same degree if [D] = [E] in A,,—1(X). For each T-WEeil divisor D, there is a coherent
sheaf, Ox (D), and the polyhedron

PD)={me MR/ (m,n,) > —a,, Yp € A(1)}

whose elements may be thought of as global sections of Ox (D).

For the rest of this section, assume that X is smooth and projective. Hence,
each Ox (D) is a line bundle. Let v: X — P* be a toric mapping, i.e., determined
by globally generating sections my, ..., m; of a T-line bundle, Ox (D). We identify
each m; with a point in the polytope, P(D). The fact that these m; globally
generate Ox (D) means that they include the vertices of P(D). In homogeneous
coordinates

v: X — Pt (4)
x — (gPmotD . gPmetD)
where Dy, = 3 (m,n,)D,, as above. Each [Dp,,] = 0 in A,,_1(X), so v is homo-

geneous of degree D.
We define inflections for v by restricting it to the natural affine subsets of X.
The variety X comes from glueing the X, = C" for each maximal cone o € A(n).
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For each such o, the 1-dimensional cones p € (1) correspond to variables z, in
the homogeneous coordinate ring. Setting the remaining z, = 1 in (4) determines
an affine map, v7: X, — C!*t!, of the sort considered in §1. This map is the
restriction of v to X,, lifted to Ct*!. The lattice points determining this affine
map can be determined from the m; € P(D) by translating the vertex of P(D)
corresponding to o to the origin and writing the m;’s with respect to the basis
for the lattice, {n,|p € o(1)}. Restricting v to another maximal affine subset
amounts to choosing another vertex of P(D) and writing the m;’s with respect to
the corresponding basis for the lattice (cf. Example 2.4).

A point p € X, is an inflection point for v if it is an inflection point for v7.
To show that this definition is independent of the choice of o, we define the ma-
trix of homogeneous k-jets, taking derivatives up to order k with respect to the
homogeneous coordinates:

[T
ka = (,Ua)aEZLAo(l)‘vlalSk

Proposition 2.1. For each o € A(n), the Clz,|p € o(1)]-span of the rows of the
matrix of homogeneous jets restricted to X,

Tty = J]?v|x,,:1,p€a(1)
is the same as that of the affine jets on X,

Jpv? = (vg )a€Z>O,\a\§k

PROOF: One direction is obvious since the rows of the latter matrix are a subset of
the rows of the former. To show the opposite inclusion, we use “Euler formulas” for
X to rewrite the derivatives of homogeneous coordinates in terms of derivatives of
affine coordinates. As shown in [B, C], there is one Euler formula for each element
¢ € Homz(A,—1(X),Z). If f € S is a homogeneous polynomial of degree [E], the
Euler formula corresponding to ¢ is

> ¢(Dp)ayfe, = S(E]D S

pEA(L)

Since X is smooth, {n,},c,(1) is a basis for the lattice N. It follows from (3)
that [D,],gos(1) forms a basis for 4, 1(X). Hence, for each p ¢ o(1), there is an
element ¢ € Homy(A,,—1(X),Z) such that ¢([D,]) = 1 and ¢([D,]) = 0 for all
other u & o(1). Thus, for any polynomial f of degree [E], after setting x, = 1 we
can solve for f,, using the Euler formula corresponding to ¢ to get

fe, = O([ED)f Z H([Du))wp e,
peo(l)

In this way, a derivative of any order with respect to the homogeneous variables
can be reduced to an expression only involving the affine coordinates. [

As an immediate consequence, we see that our definition of inflection does not
depend on a choice of X, :
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Corollary 2.2. The Fitting ideals of J,?v|g and Jyv? are the same. In particular,
rk Jv(p) =tk Jyv7 (p) for all p € X,,.

Remark 2.3. Note that if V = {my,...,m:} C P(D) is the set of monomials
defining v, then dimension of the k-th osculating space at a generic point of X
is again given by the Hilbert function, Hy (k). This follows from Proposition 1.1
because the set of monomials defining any restriction of v to a maximal affine open
set, X, , differs from V' by an affine change of coordinates, which does not affect Hy .

Example 2.4. (Togliatti’s Del Pezzo) Consider the affine map
C =
(z,y) = (L a,y, 2%y, zy*, °y")

defined by monomials whose exponents form the vertices of the hexagon pictured
below:

12 (2,2

(0,2) (2,1)

(0,0) (1,0)

The mapping naturally extends to a mapping of the toric surface, X, with fan,
A, determined by the inward normals of the hexagon:

The maximal cones are labeled o1,...,06. The one dimensional cones have
generators (1,0), (0,1), (-1,1), (—1,0), (0,—1), and (1,—1) to which correspond
the homogeneous coordinates z1, ..., zg, respectively. Choosing the dual basis for

M and Ds, ..., Dg as a basis for 4;(X), the exact sequence, (3), becomes

SO O
OO = O
o= OO
= O O O

0— 72 VA N/ |
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Choosing D = D3 + 2Dy + 2D5 + Dg, the polytope P(D) is the convex hull of the
exponents with which we started. The extension of the mapping to X is given in
homogeneous coordinates, (4), by

v: X = P?

2.2 2.2 2,2 2 2 2.2 2,2
(@1,...,T6) = (T3X5X5T6, T1T4TLXE, T2T5T5T5, TIT2T5Tg, T1X3T3L4, T1T5L3T6)

Our original map is the restriction of v to X,, (lifted to C%) which we get by setting
x3 = -+ =1x = 1. To restrict v to X,,, we set 1 = x4 = x5 = x5 = 1,

072 C2 - C°

(z2,23) = (3,1, 2003, To, 2323, Tha3)

The exponents for this affine restriction come from the original exponents by the
following affine change of coordinates: translate the vertex (1,0) to the origin and
use the first lattice points lying along the two edges of P(D) emanating from this
vertex as a basis for the lattice. Using Proposition 1.1, Proposition 1.2, and (2), or
by direct calculation, we find the dimensions of the osculating spaces. By symmetry,
we need only consider v’*—the affine map with which we started—and by the
discussion in §1, we need only consider the points (0,0), (1,0), and (1, 1):

k ‘ Osc, v71(0,0) ‘ Oscg v71(1,0) | Osci v71(1,1)
1 2 2 2
2 2 4 4
3 4 5 5
>4 5 5 5

Dimensions of the osculating spaces of Togliatti’s Del Pezzo

The first osculating spaces are all two-dimensional since v is an embedding. We
would expect the generic second osculating space to have dimension 5. However, the
six exponents happen to lie on a conic, so the dimension is 4. The exponents place
independent conditions on higher degree curves. By (2), the dimension of the k-th
osculating space at the origin is found by counting the number of exponents, m,
with |m| < k.

The unusual inflectionary behavior in this example was first noticed in [Tog].
It is a special projection—the exponent (1,1) € P(D) is not included—of the Del
Pezzo surface of degree 6 in P°.

§3 Characterization of toric varieties with special inflectionary behavior

Using the notation of the last section, let X be a smooth, projective, toric n-fold,
and let v: X — P! be a toric embedding determined by sections of a line bundle
Ox (D). We identify the sections with a set of lattice points V' C P(D) C M = Z".
Assume that v spans P!. In this section, we will characterize v with osculating
spaces of certain dimensions. The idea is to apply the results in §1 relating the
dimensions with Hilbert functions of lattice points to determine P(D) and V, from
which X and v can be reconstructed (cf. [Ful,§3.4]).

VERONESE. First, we have the toric version of Theorem 0.1:
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Theorem 3.1. Let t = (”‘,’;k) — 1 and suppose that Osci v(p) = Pt for all p € X.
Then X = P", and v is the k-fold Veronese embedding.

PROOF: Translate any vertex of P(D) to the origin and take the first lattice points
along the one-dimensional faces emanating from the vertex as a basis for the lat-
tice (possible since X is smooth). As discussed in §3, we can think of the points
of V', after the affine change of coordinates, as defining an affine map as in §1, the
restriction of v to a maximal affine subset of X. According to (2), we must include
the lattice points m € Z%, with |m| < k. However, since there are t + 1 = (”‘,’;k)
of these, there can be no other lattice points in V. So, up to an affine change of
coordinates, P(D) and V, hence X and v, are determined. O

SURFACES. Consider the case where X is a surface and, at all points of X, the
osculating spaces for v are as large as possible up through order s — 1 and strictly
smaller than possible for order s.

Theorem 3.2. Suppose that dim(Oscy, v(p)) = (2'};’“) —lfork=1,...,s—1, and
that dim(Osc; v(p)) < (*1°)—1forallp € X. Up to an isomorphism in the category
of toric mappings to projective space, the following are the only possibilities:

(1) X is P?, v is the (s — 1)-th Veronese embedding, and P (D) is
(0,s1)

(0,0) (s-1,0)

V' consists of all lattice points in P(D).
(2) X is a Hirzebruch surface Fy, (including the case Fy = P! x P!), and P(D)
is

(0s1) ((s-1)btas1)

00 (a0)

for integers a > s — 1, b > 0. V can be any subset of the lattice points of
P(D) containing all points “out to level s —1” as described in the beginning
of the proof.

(3) s =2, the surface X is P* x P! blown up at two T-fixed points, v is a special
projection to P® of the Del Pezzo surface of degree 6 in P®, (cf. Example 2.4),
and P(D) is

12 (2,2

(0,2) (2,1)

(0,0) (1,0)

V' consists of the vertices of P(D).
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(4) s =2, the surface X is the blow-up of the preceding example in two T-fixed
points, v embeds X as a surface of degree 14 in P7, and P(D) is

(2,4) (34)

33

(01

(0.0) (1.0)

V' consists of the vertices of P(D).
(5) s =2, the surface X is the blow-up of the preceding example in four T-fixed
points, v embeds X as a surface of degree 48 in P!, and P(D) is

(5,10) (6,10)

(6.9

(5.6)

1.4

(01
(0.0)

(1.0

V' consists of the vertices of P(D).

PROOF: Translate a vertex of P(D) to the origin. Since X is smooth, the generators
of the 2 edges emanating from the vertex must form a Z-basis for the lattice, M.
With respect to this basis, the condition that rk J;,_jv(p) = (;i‘f) for all p implies,
by (2) from §1, that the sections determining v must include all those corresponding
to lattice points (a,b) with a + b < s — 1. We say that V includes all points out to
level s—1 with respect to the chosen vertex. The fact that rk Jyv(p) < (*1*) for all p
means that the lattice points determining v must satisfy a polynomial of degree s
in two variables, say F'. This reasoning allows us to construct the possibilities for
P(D) and the lattice points, V.

So far, we know that V' (after the affine change of coordinates described above),
must include (a,b) such that a + b < s — 1. To construct P(D), go out along one
of the edges emanating from the vertex (0,0) to the next vertex, say (a,0), where
a > s — 1. Since X is smooth, the next edge emanating from this vertex passes
through a lattice point of the form (b, 1).
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(b.1)

(0,0) ¢ (a0)

We divide the problem into four cases:

Case i. b > a, s > 2. In this case, including all points out to level s — 1 with
respect to the vertices (0,0) and (a,0) implies that V' must include (b —1,1) as
well as (b,1). This means that there are at least s + 1 elements of V' along the line
y = 1. Hence, the curve of degree s containing V' must have a linear component:
F = (y — 1)G for some polynomial G of degree s — 1 passing through the points
V not on the line y = 1. However, there are at least s points of V' lying along the
z-axis. Thus, G = yH where H has degree s — 2 and passes through the remaining
lattice points. Continuing this reasoning now for the lines y = 2, y = 3, etc., shows
that v is a mapping of a Hirzebruch surface as described in the statement of the
theorem.

Case ii. a > s — 1, s > 2. The analysis here is similar to that for Case i. Since
we must have points out to level s — 1 with respect to the vertex (0,0), there are
more than s elements of V' along the z-axis and y must be a factor of F'. Continue,
showing that y —1,...,y — (s —1) are factors. The only possibility is the Hirzebruch
surface, again.

Case iii. a = s —1, s > 2. Given the above cases, we may assume that each edge of
P(D) contains exactly s lattice points and that b < a. The edge emanating from
(a,0) is forced to connect with the vertex lying on the y-axis, (0,s — 1). The only
possibilities are Fy = P! x P! (if b = a) and the Veronese (if b < a).

Case iv. s = 2. This last case is more difficult. First, given the above cases and the
fact that the toric variety is smooth, we can assume that besides (0,0), (1,0), and
(0,1), the set V' contains lattice points of the form (b,1) and (1,¢) with b,¢ > 1.
Fixing b and c¢, there is a unique conic passing through these points

Q=(c—Dr@-1)+0-Dyly—1) = (b —-1)(c— Dy

The lattice points on ) are easy to describe. It happens that if p is a lattice
point on @, then the horizontal line through p (if not tangent) meets in another
lattice point, and similarly for vertical lines. Starting with (0, 0), the horizontal and
vertical lines meet ) in (1,0), (0,1), respectively. Repeating for the points (1,0)
and (0, 1) gives the points (1,¢) and (b, 1), respectively, and so on. In this way, we
get all of the lattice points on Q.

/[

(1.9 /

(0,2) (b,2)

(0,0) (1,0)
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We want to show that to build P(D) starting with the initial five points, we
must take all the lattice points on @); hence, b, c must be such that () is an ellipse
(since X is projective, P(D) must have a finite number of vertices, for instance).

Translating any lattice point of ) to the origin, we now show that the lattice
points on ) which are adjacent to that point will form a basis for the lattice.
Hence, thinking of the lattice point as vertex of a potential P(D), the smoothness
condition is satisfied. Consider consecutive lattice points, (z1,y1), (x2,y2), and

(73,y3) along Q:

(%3:Y3)

(%2:¥2)
(X1.Y1)

and assume the smoothness condition is satisfied at (z2,y2):

det<m3_m2 y3—yz> -1
Iy —T2 Y1 — Y2

It is easy to check that the intersection of a vertical line through any point (x,y)
on @ meets () again at (z,1+ (¢ — 1)z — y), and the intersection of a horizontal
line through (z,y) meets @) again at (1 + (b — 1)y — z,y). Drawing the vertical
lines through the (z;,y;) gives a sequence, (z;,1+ (c—1)x; —y;) with i = 1,2,3, of
consecutive lattice points on () for which the smoothness condition is still satisfied:

det<963—$2 (0—1)(963—962)—(313—342)) :det(m_@ —(y3—y2)> _ 1

1 — w2 (c—1)(z1 —22) — (Y1 — y2) T —x2 —(y1 —y2)

Similar reasoning holds for horizontal lines. Since any sequence of consecutive
lattice points on () comes from repeatedly intersecting with horizontal or vertical
lines starting with the sequence (b, 1), (1,0), (0,0)—for which the smoothness con-
dition holds—the smoothness condition is satisfied for any three consecutive points
along @, as claimed.

Let po, p1, and p2 be adjacent lattice points of P(D) and lying consecutively
on (). Thinking of ps as the vertex, the lattice points p3 for which ps — ps, p1 — po
forms a basis for the lattice lie on a line passing through pg. This line intersects
(@ in at most one other point. Hence, it must lie consecutively along @ with p;
and py. This shows that to build P(D) starting from our initial five points, we must
take consecutive lattice points along ). The construction can only work when @
is an ellipse, i.e., when the discriminant of ) is less than 0. This means that
(b—1)(c—1) < 4, which implies (b, ¢) € {(2,2),(2,3),(3,2),(2,4),(4,2)}. The case
of b = ¢ = 2 gives Togliatti’s surface, (3); b = 2, ¢ = 3, gives (4), (isomorphic to
b=3,c=2); and b =2, c =4, gives (5), (isomorphic to b=4, ¢ =2). O

Remark 3.3. Restricting to the category of toric varieties, Theorem 0.2 is easily
established as a corollary to Theorem 3.2. Let t > 2, and let v: X — P2+l be
an embedding with dim(Oscg v(p)) = 2k for k < t at all points p € X. Apply
Theorem 3.2 with s = 2 to narrow the possibilities. We then look for polytopes
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P and a subset of lattice points V, including the vertices of P, satisfying two
properties:

(1) Translating any vertex of P to the origin, and choosing the adjacent lattice
points as a basis for the lattice, the number of (a,b) € V with a +b < k is
2k + 1 for k <t, (cf. §1, (2));
(2) Hy(k) =2k, k <t, (Proposition 1.1, Remark 2.3).
It is straighforward to check that the only possibility is as stated in Theorem 0.2.
The following conjecture can be similarly established for toric varieties:

Conjecture. ([P, T]) Let t > 2, and let X C P***2 be a smooth, projective surface
not contained in a hyperplane, such that the dimension of its k-th osculating space
is 2k at all points of X and for all k < t. Then X is isomorphic to a P*-bundle, the
Hirzebruch surface, Fy , embedded as a scroll via the natural map

X =T = P(Opi(t) ® Opi(t + 1)) = P(H*(Op:(t)) ® H®(Opr(t + 1)) = P+

In fact, it turns out that the conjecture does not hold outside of the toric setting.
R. Piene and H. Tai (personal communication) have found special (non-toric) pro-
jections of Veronese embeddings which satisfy the hypotheses of the conjecture.
Unlike our toric examples, the hypotheses hold for these projections with k¥ < ¢+1,
not just k < t.

These counter-examples to the conjecture are at least projections of toric vari-
eties, and one might get the impression that placing many restrictions on the oscu-
lating spaces of an embedding at least forces the variety to be rational. However,
[Dye] has given examples of embeddings of irrational varieties with very special os-
culating spaces including a non-ruled surface in P> whose second osculating spaces
are all of dimension < 4.

3-roLDS. We consider the same problem for 3-folds. Assume that at all points of
the 3-fold, X, the osculating spaces are as large as possible up through order s — 1
and are strictly smaller than possible for order s. As in the proof of Theorem 3.2,
we talk about lattice points of a polytope having a certain “level” with respect to
a vertex (cf. V.3 in the proof of Theorem 3.5).

Theorem 3.5. Suppose that dim(Oscy, v(p)) = (3;5]“) —lfork=1,...,s—1, and
that dim(Osc; v(p)) < (*1°)—1forallp € X. Up to an isomorphism in the category
of toric mappings to projective space, the following are the only possibilities:
(1) X is P3, and v is the (s — 1)-th Veronese embedding. P (D) is the tetrahe-
dron:

(0,051

(5_11(),0) A (0’5_110)

V' consists of all lattice points in P(D).
(2) X is an equivariant fiber bundle over P! with fiber equal to one of the toric
varieties appearing in Theorem 3.2. The polytope P(D) is a truncated
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cylinder over one of the polygons in Theorem 3.2. Hexagons, octagons, and
dodecagons are allowed for the base of the cylinder only in the case s = 2,
(cf. Remark 3.6). V is any subset of the lattice points in P(D) containing
all points out to level s — 1.

(3) X is a P'-bundle of the form P(Os(E) & Og(E")) for some ample divisors
E, E' on an arbitrary smooth toric surface S, (cf. Remark 3.6). P(D) has
the form

The shaded polygon, in the plane z = 0, represents P(E), and the dashed
polygon, in the plane z = 1, represents P(E'). The top face, in the plane
z = s —1, also has the form P(E'") for a divisor E" on S. The set V is any
subset of the lattice points in P(D) containing all points out to level s — 1.
(4) s =2, and X is P? blown up in four points. P(D) is the truncated tetrahe-

dron:
(0,2,2) 1,2,2)

0,1,2)

(1,0,2) (2,0,2)

V' consists of the vertices of P(D).
(5) s =2 and P(D) is the join of two hexagons sharing an edge:

0,1,2) 0,2,2)

(0,0,1) 0,2,1)

(1,0,0) (1,2,0)

(2,1,0) (2,2,0)

V' consists of the vertices of P(D).
(6) s =2, and X is P! x P! x P! blown up in six points. P(D) is the truncated
octahedron:
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(2,2,4)

(3,2,4)

V' consists of the vertices of P(D).

(1,3,3)
(0,2,2)

(0,2,1)
(132

(0,1,0)

(1,1,0)

(1,1,3)
(0,1,2)
(0,0,1)
(1,0,2)
(0,0,0)
(1,0,0)
(2,0,2),
(2,0,1)
(3.1,2)
(3,1,3)

(2.3,2)
(221

(3.2,2)
(3.3.3)

(2,34)

(3,34)

15

(7) s = 2 and P(D) is constructed from eight dodecagons, six octagons, and
twenty-four triangles:

V' consists of the vertices of P(D).

(8) s = 2 and P(D) is constructed from four dodecagons, four hexagons, and

twelve triangles:
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(6,10,1) (6,12,2)

V' consists of the vertices of P(D).
(9) s =2 and P(D) is the join of two dodecagons sharing an edge:

(0,9,6) (0,10,6)

(0,6,5) (0,10,5)

(0,4,4) (0,9,4)

(0,1,2) (0,6,2)

(4,4,0) (4,9,0)

(5,6,0) (5,10,0)

(6,9,0) (6,10,0)

V' consists of points out to level two from the vertices of P(D), and any
number of the lattice points along the edges joining the dodecagons.

(10) s = 2 and P(D) is constructed from two dodecagons, six octagons, and
twelve triangles:
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(6,10,5)

V' consists of the vertices of P(D).
(11) s =2 and P(D) is constructed from six octagons, and eight triangles:

03,3 (0,4,3)
0,1,2) (0,4,2)

(1,3,3) (1,6,3)
(0,0,2) (0,00 (0,10 03,2)
(1,0,0) (13,0
(2,1,0) (2,4,0)

(33,1) G30) (340 (36,1)
(2,4,3) (2,7.3)
(3.4,2) (37,2
(3,6,3) (373

V' consists of the vertices of P(D).
(12) s =2 and P(D) is constructed from three octagons, two hexagons, and six
triangles:

©10 (0,31) (04,2

V' consists of the vertices of P(D).
(13) s =2 and P(D) is the join of two octagons sharing an edge:
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(0,3,3) (0,4,3)

(0,1,2) (0,4,2)

(0,0,1) (0,3,1)

(1,0,0) (1,3,0)

(2,1,0) (2,4,0)

(3,3,0) (3,4,0)

V' consists of points out to level two from the vertices of P(D), and any
number of the lattice points along the edges joining the octagons.

(14) s = 2 and P(D) is constructed from one dodecagon, three octagons, four
hexagons, three quadrilaterals, and six triangles:

©0.0,0) ©0.1,0
©0,0,1) ©03.1)
1,00 (1,4.0)
©0.1,2) 0:4.2)
(2.1.9 ©33) 0.4.3) 26.0)
1.2.2) (1.6.2)

o) 1.43) 1,6:3) 1D
4.4.0) 263) @73 49.0)
4:8.2) 49.2)

(56,0 (5.10,0)

V' consists of the vertices of P(D).
(15) s = 2 and P(D) is constructed from one dodecagon, seven hexagons, and
six triangles:
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(2,5,2)

0,2,2) (2,4,2)

0,1,2)

V' consists of the vertices of P(D).
(16) s = 2 and P(D) is constructed from six octagons, eight hexagons, and
twelve quadrilaterals:

134) (144

(2,1,0) (2,4,0)

(6,8,4) (6,9,4)

V' consists of the vertices of P(D).

(17) s = 2 and P(D) is constructed from one octagon, four triangles, four
hexagons, and a square:
0,2,2) (1,3,2)
(0,2,1) (2,4,1)

(1,3,0) (2:4,0)

(0,1,0) (34,0

(0,0,0) (33,0

(1,00) (2,1,0)

0,0,1) (2,2,1

0,1,2) 1,2,2)



20 DAVID PERKINSON

V' consists of the vertices of P(D).

PROOF: Arguing as at the beginning of the proof to Theorem 3.2, the problem is
equivalent to finding all sets of lattice points V in R® with convex hull a polytope, P,
such that

V.1. P is 3-valent, i.e., three edges emanate from each vertex;

V.2. translating any vertex to the origin, the first lattice points along the three
edges emanating from the vertex form a Z-basis for the lattice Z3 C R?
(ensuring that the associated toric variety is smooth);

V.3. V includes all lattice points out to level s — 1 with respect to each vertex:
translating any vertex of P to the origin and letting x,y,z be the first
lattice points along the three edges emanting from the vertex, the set of
lattice points, V', must include those points corresponding to ax + by + cz,
for a, b, c non-negative integers with a + b+ ¢ < s — 1;

V.4. the lattice points in V must satisfy a non-zero polynomial in three variables
with degree < s.

Let F' be a (two-dimensional) face of P. The points of FNV, thought of as sitting
in a two-dimensional lattice in the plane supporting F', determine a mapping of a
toric surface. We say F' is proper if, up to a change of coordinates of the two-
dimensional lattice, F' NV has one of the forms of Theorem 3.2 (for the same s):
a certain triangle, a family of quadrilaterals, and a certain hexagon, octagon, or
dodecagon (the last three are possibilities only when s = 2). We say P is proper
if each of its faces is proper; otherwise P is improper. We divide the problem into
four cases: I. P proper, s > 2; II. P proper, s = 2, but no octagons or dodecagons
are allowed as faces of P; III. P proper, s = 2, and P must include an octagon or
dodecagon as a face; and IV. P improper.

Case I. (P proper, s > 2) Since P is proper and s > 2, each face of P must be
a triangle or a quadrilateral. Euler’s formula shows that the only such 3-valent
polytopes are formed by: (i) four triangles (a tetrahedron); (ii) two triangles joined
by three quadrilaterals (a truncated triangular cylinder); and (iii) six quadrilaterals
(a box). We consider these cases separately.

(i). (four triangles) There is one possibility: a tetrahedron with s lattice points on
each edge. In order to satisfy V.3, the set V' must contain all the lattice points
on or in the tetrahedron. It is then easy to check that V.1-V.4 are satisfied. This
gives (1), the Veronese embedding.

(ii). (two triangles, three quadrilaterals) Since P is 3-valent, if two triangles meet,
they must share an edge and P is forced to be a tetrahedron. Hence, in the present
case, the two triangles do not touch. We may assume that the coordinate planes
=0,y =0, and z = 0 form three of the five supporting planes for P and that the
bottom face (in the plane z = 0) is the triangle with vertices (0,0,0), (s — 1,0,0),
and (0,s — 1,0), surrounded by quadrilaterals. The remaining triangle must also
have s lattice points per side. Using the restriction on the quadrilateral faces
coming from Theorem 3.2, the vertices of this triangle must have the form (0,0, a),
(s —1,0,b), (0,s — 1,c) for integers a,b,c > s — 1. We may assume that a is no
larger than b and c¢. Again using the restriction on the shapes of the quadrilateral
faces, it follows that b = (s —1)e+a and ¢ = (s — 1)e’ +a for some integers e, e’ > 0.
It is straightforward to check that the resulting polytope satisfies conditions V.1
and V.2. The lattice points in the base of the cylinder satisfy a polynomial of
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degree s in two variables, and all the lattice points in the polytope satisfy this same
polynomial. Thus, any set of lattice points in the polytope meeting condition V.3
also meets condition V.4. There is no restriction on the height of the truncated
cylinder. This example falls under (2) in the statement of the theorem.

(iii). (six quadrilaterals) We may take one vertex of the box, P, to be the origin
and the coordinate planes x = 0, y = 0, z = 0, as three of the six supporting
planes. We may take the vertices of the bottom of the box (in the plane z = 0)
to be (0,0,0), (s — 1,0,0), (0,a,0), (s —1,(s — 1)e + a,0) for integers e > 0 and
a > s — 1. Ruling out the case of a box with s lattice points per side, assume that
the bottom is choosen so that a > s — 1. The restriction coming from Theorem 3.2
for the shape of the quadrilateral in the plane = 0 forces (0,0, s—1) to be a vertex
of P and the remaining vertex in this plane to have the form (0, (s — 1)e’ +a,s —1)
for some integer e’ such that (s —1)e’ +a > s — 1. Since the edge along the bottom
connecting (s —1,0,0), and (s — 1, (s — 1)e + a,0) has length > s — 1, the height of
the face attached to the bottom along this edge must be s — 1. This forces z = s—1
to be a supporting plane for P and the remaining vertex in the plane y = 0 to have
the form ((s —1)e” +s—1,0,s — 1) for some integer ¢’ > 0. To make the top of the
box proper, we must take (s — 1)¢/ +a=s—1 or ¢’ = 0. In the former case, the
remaining vertex has the form ((s — 1)(¢” +1),(s —1)(e + 1), s — 1), in the latter,
(s—1,(s—1)(e+e€')+a,s —1). In either case, we get a truncated cylinder over
the face supported by y = 0.

It is straightforward to check that the resulting polytopes satisfy conditions V.1
and V.2. As in case (ii), any set of lattice points satisfying V.3 will also satisfy V 4.
This example falls under (2).

Case II. (P proper, s = 2, but no octagons or dodecagons are allowed as faces
of P) In this case, P may have faces that are triangles, quadrilaterals, or hexagons.
From Euler’s formula, the possibilities for the number of triangles and quadrilaterals
is the same as in Case I. However, given an acceptable number of triangular and
quadrilateral faces, there are an infinite number of combinatorially different 3-valent
polytopes that can be built by adding hexagons, [Gri, pp. 253-281]. Ouly finitely
many of these give rise to lattice points satisfying our conditions. We consider three
cases, as above.

(). (four triangles) As argued in Case I, (i), if two triangles touch, P must be a
tetrahedron. So suppose that no two triangles touch. Up to a change of coordinates
of the lattice, we may assume that the polytope contains a triangle surrounded
by three hexagons with coordinates as shown below (the coordinate planes are
supporting planes):
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(0.2,2) (1.2,2)
y=(021)

(2,1,2)

a=(0,0,1) B=(2,01)

(1,0,2) (2,0,2)
These lattice points sit on only one quadric,
Q=—a+2"—y+y’—z+2°+ay —a2— Y2

At each of the vertices labelled «, 3, v, we must fit triangles since a hexagon
added there would not have vertices lying on the quadric. For example, if a hexagon
were to sit at a = (0,0, 1) it must also include the adjacent vertices (1,0,2) and
(0,1,2). Lying in the plane determined by these vertices, the remaining vertices are
forced to be (2,1,4), (1,2,4), and (2,2,5), none of which lie on the quadric. Hence,
the triangle with vertices a, (1,0, 2), and (0, 1, 2) lies on the polytope and, similarly,
there are triangles at vertices 4 and . Now, since the polytope is 3-valent, z = 2
must be a supporting face which closes the polytope with a hexagon. The result
is (4), a truncated tetrahedron. The vertices form a set of lattice points satisfying
condition V.3. They lie on a unique quadric @, and thus satisfy V.4. None of the
remaining lattice points from the polytope—the centers of the four hexagons—Ilie
on . Finally, it is straightforward to check that V.2 is satisfied.

(ii). (two triangles, three quadrilaterals) Suppose that a triangle touches two
quadrilaterals. Using 3-valency and properness, and considering the supporting
planes of the polytope, we see that the only possibility is a truncated cylinder over
the triangle.

Now suppose that a triangle touches exactly one quadrilateral and, hence, two
hexagons. We may assume that the configuration is as in the diagram:

a=(0,1,2) B=(0,2,2)

y=(0.21)

(1,0,0)

(0,0,0)

5=(2,1,0) (0,1,0)

£=(2,2,0) 0 =(1,2,0)
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The supporting plane determined by points a, 3, and ¢ forces (e to be an edge. The
supporting plane determined by f3, 7y, € forces v to be an edge. Thus, the polytope
is what might be called the join of two hexagons sharing an edge, (5). It is easy to
check that the smoothness property holds at each vertex. For instance, translating
the vertex @ = (0,1,2) to the origin, the adjacent lattice points—including the
point (1,1,1) on the edge ad—form a basis for the lattice:

(0,0,1) — a 0 -1 -1
det [ (0,2,2)—a |=[0 1 0]=1
(1,1,1) — 1 0 -1

For the final possibility, if there is a triangle which does not touch a quadrilateral,
we repeat the argument just given in (i) to get a truncated tetrahedron, (4).

(iii). (six quadrilaterals) There are three cases to consider. First, suppose that
at least three quadrilaterals meet at a point. By considering supporting planes
and using 3-valency, we are reduced to the case of no hexagons: Case I, (iii).
Second, suppose that no three quadrilaterals meet at a point and there is set of
two quadrilaterals meeting at a point. By 3-valency, the quadrilaterals that meet
must share an edge. Since no three quadrilaterals meet, there is a hexagon at both
vertices along this edge. It is straightforward to check that this forces the polytope
to be a truncated hexagonal cylinder, an instance of (2). Finally, suppose that
no two quadrilaterals meet. Since each quadrilateral is surrounded by hexagons
having two lattice points on each edge, the quadrilaterals must also have exactly
two lattice points on each edge. Starting with a square surrounded by hexagons, we
proceed as in the latter part of Case II, (i), arriving at (6), a truncated octahedron
as stated in the theorem.

Case III. (P proper, s = 2, and P must include an octagon or dodecagon as a
face) This case involves a long and tedious search, greatly facilitated by the use
of a computer. The basic idea is that the points of V' must lie on a quadric, and
there are not too many choices for a quadric containing a dodecagon or an octagon.
Trying to construct a polytope one face at a time soon determines the quadric
completely and allows us to specify the possibilities. We will give an outline of
the search and examples illustrating all of the techniques needed. The problem
is divided into six cases: (i) two dodecagons meet, (ii) two octagons meet, (iii) a
dodecagon and octagon meet, (iv) a dodecagon and hexagon meet, (v) an octagon
and hexagon meet, and (vi) none of the above.

(i). (two dodecagons meet) First note that taking any vertex of the dodecagon of
Theorem 3.2 as the origin and the adjacent lattice points as a basis for the lattice,
there are two possibilities: the original dodecagon or its flip about the diagonal,
y = x. Thus, in our case, we consider two possible orientations for the dodecagons
which meet. We may assume that one dodecagon sits in the plane z = 0 and includes
the lattice points (0,0,0), (1,0,0), (0,1,0), (2,1,0) (the rest are determined). And
we may assume that the second dodecagon sits in the plane = 0 and includes the
lattice points (0, 0,0), (0,1,0), (0,0, 1). However, there are two possible orientations
for the second dodecagon: it can include the vertex (0,2, 1) or its flip, (0,1,2). The
former case, pictured below, will be called orientation 1:
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(0,0,2) ((V

y
(0,0,0)
(1,0,0) a= (QN

The quadrics containing these two dodecagons have the form

Q = 9az? — Yazxy + brz + 3ay® — 3ayz + az® — Yazx — 3ay — az

for a,b € C. What are the possibilities for the remaining face meeting the do-
decagons at vertex a? There are two possible dodecagons (differing by orientation)
that could fit there, but it is straightforward to check that neither of these would
have lattice points lying on ). Similarly, there are two possible octagons, neither of
which would lie on . The same holds for the unique hexagon that could fit there.
Hence, a quadrilateral or a triangle must fit at a.

If a triangle fits at «, 3-valency would require that (2,6,0), (1,4,0), (0,2,1), and
(0,4,4) be co-planar, but they are not. Thus, a quadrilateral is forced at a. The
quadrilateral and the set of exponents, V', must contain the point (1,5,1), forcing
b=0in @. A priori there are many possibilities for the shape of the quadrilateral.
Larger quadrilaterals would need to contain the next point out along either the edge
containing (0,2,1) and (1,5, 1) or the edge containing (1,4,0) and (1,5, 1), namely:
(2,8,1) or (1,6,2), respectively. However, it is easy to check that these points are
not zeroes of Q@|,—o. Hence, the quadrilateral has vertices (0,1,0), (0,2,1), (1,4,0),
and (1,5,1), as pictured below:
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(0,4,4)

(1,5,1)

- ~
2.1.0) B=(140) ~ < -

It is now easy to check with a computer that a dodecagon must fit at vertex 3,
having orientation 1 with respect to the dodecagon it meets along the edge joining
(1,4,0) and (2,6,0), and a quadrilateral must fit at the origin, containing exactly
4 lattice points. By symmetry, the whole figure must consist of quadrilaterals and
dodecagons, each quadrilateral surrounded by 4 dodecagons and each dodecagon
surrounded by 6 quadrilaterals and 6 dodecagons. If the figure were to close up to
give a polytope, consideration of Euler’s formula would lead to a contradiction, as
we now explain.

Let R be any 3-valent, 3-dimensional polytope, and let p; be the number of faces
of R having k edges. A simple consequence of Euler’s formula relating the numbers
of vertices, edges, and faces, taking 3-valency into account, is the following relation:

3ps +2ps+ps =12+ Y (k—6)pg
k>7

(In fact, there is a sort of converse. Eberhard’s theorem, [Grii, p. 254], states that
given any finite sequence of non-negative integers py, for k # 6, there is a 3-valent,
3-dimensional polytope, possibly containing hexagons, such that pj is the number
of faces with k edges.) In our case, the formula reads

2]94 =12 + 6])12

Combined with the additional fact that 4p, = 6p;2, coming from the arrangement of
quadrilaterals and dodecagons, we get a contradiction. Thus, orientation 1 does not
produce an acceptable polytope (although it produces interesting affine mappings).

Now consider orientation 2, pictured below:
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7
(0,1,2) -
-~
-~
(0,0,1) / (0,4,1) -
(0’0’0) /

a=(0,1,0)

(1,0,0)

2,1,0) f=(140

AN (26,00 N\
AN

As in the case of orientation 1, there is a quadric, (), with two parameters,
containing the vertices of the two dodecagons. One may check that either a hexagon,
a quadrilateral, or a triangle must fit at vertex a. The quadrilateral and the hexagon
lead to figures that do not close, as in the case of orientation 1 (using Eberhard’s
theorem again). So suppose that a triangle fits at «. The triangle does nothing
to specialize the quadric, @), so we need to look at vertex 3. A triangle is ruled
out by 3-valency, but it turns out that a dodecagon, an octagon, a hexagon, or a
quadrilateral are possibilities (i.e., consistent with @) at 8. The dodecagon leads
to a figure which does not close, but the octagon, hexagon, and quadrilateral lead
to polytopes for which V.1-V.4 hold. These are (7), (8), and (9), respectively.

(ii). (two octagons meet) Proceeding as in (i), there are two orientations for the
meeting octagons. One produces no examples, the other produces (10), (11), (12),
and (13). Asin (i), in the second orientation, we fit a triangle at one of the vertices
on the edge shared by the octagons, then we find that a dodecagon, an octagon, a
hexagon, or a quadrilateral can fit next to this triangle. Unlike (i), the dodecagon
leads to an acceptable polytope.

(iii). (a dodecagon and octagon meet) Again, as in (i), there are two orientations.
Oune produces no examples (giving a figure which does not close, as before), and
in the other we can fit a quadrilateral or a triangle next to the meeting dodecagon
and octagon. The quadrilateral leads to a figure which does not close, so we do not
get an example. On the other hand, next to the triangle, we can fit a dodecagon,
an octagon, or a hexagon; the dodecagon and octagon lead to examples we have
already seen, and the hexagon produces (14).

(iv). (a dodecagon and hexagon meet) There is only one orientation to consider.
A dodecagon, a quadrilateral, or a triangle must fit next to the meeting dodecagon
and hexagon. The dodecagon was already considered in (i) and did not lead to
an example. The quadrilateral leads to a figure which does not close. Finally
the triangle yields several possibilities. A dodecagon, an octagon, a hexagon, or a
quadrilateral can fit next to the triangle. The dodecagon and octagon then produce
examples we have already seen. The hexagon produces (15). The quadrilateral does
not produce an example.

(v). (an octagon and hexagon meet) This case is similar to (iv). An octagon, a
quadrilateral, or a triangle can fit next to the meeting octagon and hexagon. The
octagon was considered in (ii) and did not lead to an example. The quadrilateral
gives (16). Next to the triangle, there can be a dodecagon (reducing to (iii)), an
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octagon (reducing to (ii)), a hexagon leading to (17), or a quadrilateral leading to
no example.

(vi). (none of the above) We are left with the case of a dodecagon or octagon sur-
rounded by triangles and quadrilaterals. Using 3-valency, one may check that there
can be no triangle. We get a truncated cylinder over the dodecagon or octagon,
instances of (2).

Case IV. (P improper). Suppose we have V' and P satisfying V.1-V.4. Let f(x,y, z)
be a non-zero polynomial of degree < s satisfied by the points of V', and let F be a
face which is not proper. The lattice points in FFNV/, sitting in the plane supporting
F, say II, determine a mapping of a toric surface. If f restricted to II is non-zero,
then this surface mapping would satisfy Theorem 3.2 and F would need to be
proper. Hence, f contains the equation for IT as a factor. In fact, we will see that,
up to an affine change of coordinates of the lattice in R® and a constant factor,
F=TI50 =)

If s >2, let V=V \(VNI),let P be the convex hull of the points of V, and
let f be the polynomial of degree < s — 1 one gets by removing the equation for IT
from f. We now verify that V and P satisfy conditions V.1-V.4 with s replaced
by s — 1. Making an affine change of coordinates, assume for the moment that II
is defined by z = 0. The diagram below labels consecutive vertices ag, Bo, and o
of F'. The first lattice points on the edges leaving F' from these vertices are ay, (1,
and 1, and the vertices at the end of these edges are a, 3, and 7.

Y

Let ap = (a,b,0), v0 = (¢,d,0), and 81 = (i,j, k). We may assume that Fy =
(0,0,0). Since P satisfies V.1, it follows that

a b

a b 0
c d 0=
i j k d

=

Hence, we may assume that k¥ = 1 and, similarly, all the first lattice points on edges
emanating from F' lie in the plane z = 1. Thus, chopping off the face F' leaves a
new face F' in the plane z = 1. Also, note that none of these first lattice points are
vertices of P since s > 2, so the new polytope is combinatorially equivalent to P.
The above computation shows that after an affine change of coordinates, we can
take the edges (of the truncated polytope) Sia1, 8171, and $15 to lie along the
coordinate axes. It is then easy to verify V.1-V.3, and of course, V.4 is satisfied
with s — 1 in place of s, using f.

Removing F' from P gives the new polytope P. If P is not proper and s —1 > 2,
we can repeat the process of chopping off an improper face. Eventually we are
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reduced to lattice points V* with convex hull the polytope P*, combinatorially
equivalent to P and satisfying V.1-V.4 for some integer s* in place of s. The
polytope P* is either proper, or improper with s* = 2.

P* proper: If P* is proper, we have shown that up to a change of coordinates
it must be: (1), a certain tetrahedron (the numbers here refer to the statement of
the theorem); (2), a truncated cylinder over one of the polygons from Theorem 3.2;
or, in the case s* = 2, (4)—(17). To rule out each of these possibilities, imagine
reversing the process of going from P to P*. This would involve taking a face of P*,
whose supporting plane we can take to be z = 0, and extending the edges coming
into this face down to a parallel plane, which we can take to be z = —1. The
result is an intermediary polytope, P, combinatorially equivalent to P and P*, and
improper. The polytope P comes with a corresponding subset of lattice points, V,
such that V.1-V .4 are satisfied for an § = s* + 1.

In the case of the tetrahedron, (1), reversing the process would imply that P
was proper, a contradiction. In the case of a truncated cylinder over one of the
polygons from Theorem 3.2, reversing the process one step results in a P which
is either proper, combinatorially inequivalent to P*, or for which 14 necessarily
violates V.3. For instance, suppose P* is a truncated cylinder over a quadrilateral:

(0,at+b(s*-1),0)

(s-1,000 J (s*-1,80)

If P comes from moving the upper or lower faces out one unit, then V could not
satisfy V.3 given that the base quadrilateral has not increased in size. The same
argument holds for moving the left or right faces out one unit, or the back face in
the case where a = s* — 1. If a, b, and the height are large enough, moving the
front or back face out may produce a proper polytope, a contradiction. In the case
where s* =2, a =1, and b > 0, moving the front face out gives a polytope that is
not combinatorially equivalent to P*.

Finally, if P* is one of the polytopes (4)—(17), reversing the process gives a
polytope that is not combinatorially equivalent to P*.

P* improper, s* = 2: Suppose P* is improper and s* = 2. This case subsumes

the case of s = 2. Let f* be the quadric containing P*, which is a factor of the
original f. We may assume that z = 0 is a supporting plane of an improper face
of P* and, by V.2, the first lattice points along the edges emanating from the face in
z = 0 lie in the plane z = 1. It follows that, up to a constant factor, f* = z(z — 1).
Going backwards from P* to P, trying to add a face in a plane not parallel to z =0
at any step would give rise to a polytope for which V.3 could not hold. Hence, the
edges emanating from the face in z = 0 terminate in the plane z = s — 1 and, up
to a constant factor, f = Hf;& (z — 1), as claimed. This determines P. Its shape
is determined by the face in z = 0 and the convex hull of the lattice points of V'
lying in the plane z = 1. These two polygons give rise to the same toric surface, .S,
i.e., one polygon can be derived from the other by sliding each edge in a direction
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normal to that edge. Another way to say this is that the two polygons have the
forms P(E) and P(E") for two ample divisors E, E' on the toric surface S, (cf. §2).
The toric variety determined by P is P(Os(E) & Og(E')), giving (3). O

Remark 3.6. In this remark, we describe more carefully the mappings in Theo-
rem 3.5, (2), i.e., those coming from truncated cylinders. In R®, with coordinates
x,y, %, let P be a polygon sitting in the z,y-plane. Assume that P is a polygon
allowed by Theorem 3.2, i.e., it gives rise to a mapping of a surface with special
osculating spaces. The cylinder over P is C(P) = {p+ (0,0,2)|p € P, z € R}. To
truncate C'(P) so that the corresponding toric 3-fold is smooth, fix a vector (e, €', 1),
where e,¢’ are arbitrary integers, and let II be the plane normal to (e,e’,1). The
truncated cylinder corresponding to II consists of the points of C'(P) on or between
P and II. The truncated cylinders in Theorem 3.5 are exactly those constructed in
this way.

The one-dimensional cones of the fan, A, for the 3-fold corresponding to one
of these truncated cylinders are the one-dimensional cones of the fan, A”, for the
toric surface corresponding to P (sitting in the z,y-plane in R*) and two more,
generated by (0,0,1) and —(e,e’,1). The projection map R* — R, forgetting the
first two coordinates, maps A onto the fan, A’ C R for P*. Let A’ be the subfan
of A with one dimensional cones generated by (0,0,1) and —(e,e’,1). Then

A={¢"+0",6' € A, 0" € A"}

Thus, according to [Oda, Proposition 1.33], the toric variety corresponding to the
truncated cylinder is an equivariant fiber bundle over P! with fiber isomorphic to
the toric surface corresponding to P. The bundles appearing in Theorem 3.5, (9),
can be analyzed similarly.
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