
INFLECTIONS OF TORIC VARIETIESDavid PerkinsonTo William FultonLet V = fm0; : : : ;mtg be a set of distinct lattice points in Zn�0 with m0 = ~0.Associated with V is an a�ne monomial mapv: C n ! C t+1x 7! (1; xm1 ; : : : ; xmt)where xmi stands for the monomial xmi11 xmi22 � � �xminn . (The ordering of the latticepoints will not be important. The lattice point m0 = ~0 is included anticipatingthe move to projective space.) As will be described carefully in x1, the span ofthe derivatives of v up to order k at a point p, determines the osculating space oforder k at p. If the dimension of this osculating space is smaller than expected, wesay that v is in
ected at p. In this paper, we show how in
ection points are relatedto the lattice points, V , and use this information to characterize toric varieties withcertain extreme in
ectional behavior.The following two theorems are examples of previous work in which varieties arecharacterized by their in
ectional behavior:Theorem 0.1. ([F, K, P, T]) Let t = �n+kk � � 1, and let X � Pt be a smooth,projective n-fold whose k-th osculating space is all of Pt at all points of X ; then Xis isomorphic to Pn embedded via the k-fold Veronese mapping.Theorem 0.2. ([B, P, T]) Let t � 2, and let X � P2t+1 be a smooth, projectivesurface not contained in a hyperplane, such that the dimension of its k-th osculatingspace is 2k at all points of X and for all k � t; then X is isomorphic to P1 � P1embedded via all global sections of pr�1OP1(1) 
 pr�2OP1(t). So X is a rationalnormal scroll of degree 2t.These two theorems are proved using sophisticated machinery (in the former case, aresult of Mori characterizing projective space as the only variety with ample tangentbundle, and in the latter, adjunction theory.) However, in all cases, the varietiesand embeddings turn out to be toric. As might be expected, if we are willing torestrict our attention to toric mappings, we can establish these theorems by fairlyeasy combinatorics characterizing polytopes with certain properties.In x1, we show that the dimensions of the osculating spaces of v are given bythe Hilbert function of the set of lattice points, V . In x2 we discuss extending themonomial mapping to a mapping of a toric variety into projective space. In x3,our main result is to describe toric varieties of dimensions two and three embed-ded in projective space so that the osculating spaces up to a certain order are as1



2 DAVID PERKINSONlarge as possible at all points of the variety and strictly smaller than possible forhigher orders (cf. Theorem 3.2 and Theorem 3.5). In the case of dimension two, weshow that the variety must be the projective plane (embedded via a Veronese), aHirzebruch surface, or one of three exceptions. The exceptional cases are non-ruledvarieties whose second-order osculating spaces have dimension strictly less than �veat all points. One of these cases was �rst noticed in [Tog], and the other two arenew.Acknowledgments. I would like to thank the Matematisk Institutt of the Uni-versity of Oslo, Norway, for providing a stimulating and beautiful place in which towork. Particular thanks go to Ragni Piene for many useful conversations. Thanksalso to Reed College students Oliver Gugenheim and Chris Fesler for helping me tostart on the ideas worked out in this paper and to Douglas Squirrel for substantialhelp with the proof of Theorem 3.5. A version of Proposition 1.1 appears as partof Gugenheim's undergraduate thesis, [Gug]. Finally, thanks to Reed College forproviding time and support through a Vollum research grant.x1 In
ections of a�ne monomial mapsFor a 2 Zn�0, we denote the a-th partial derivative of v in the following way:va := 1a! @jajv@xa11 : : : @xannwhere jaj = Pni=1 ai and a! = a1! � � � an!. To study the in
ections of v, de�ne foreach integer k � 0 the matrix of k-jets of vJkv := (va)0�jaj�kwhose rows are the partial derivatives of v up to order k, written in any order. Thek-th osculating space of v at the point p 2 C n , Osck v(p), is the span of the vectorsva(p) for 1 � jaj � k, translated out to v(p). Hence, Osc1 v(p) is the tangent spacefor v at p, and Osck+1 v(p) is determined by the �rst-order in�nitesimal motionsof Osck v(p). Since ~0 is included in V , v is linearly independent from the va withjaj > 0. Hence, rkJkv(p) = 1 + dim(Osck v(p)). If this rank is not as large aspossible, i.e., is less than �n+kk �, then we say that p is an in
ection point. In general,the rank of Jkv will have a generic value|which might be less than maximal, andso v will be in
ected everywhere|but might drop below this generic value at specialpoints. We call these special points proper in
ections or just in
ections, again. (Foran arbitrary mapping v:X ! Pt, of a smooth variety into projective space, one mayde�ne osculating spaces similarly after taking local coordinates on X and lifting toC t+1 . It is a standard result that the osculating spaces are independent of thechoice of local coordinates, and it is clear that dimensions of the osculating spacesdo not change after an a�ne change of coordinates in the target space, C t . We arechoosing to avoid the machinery of principal parts or jet bundles as an unnecessarycomplication for the purposes of this paper.)As a further measure of in
ection, let F ik v denote the i-th Fitting ideal of Jkv,the ideal generated by the determinants of i� i-minors of Jkv. There are inclusionsF i+1k v � F ik v[ [F i+1k�1v � F ik�1v



INFLECTIONS OF TORIC VARIETIES 3The rank of Jkv(p) is the largest r such that F rk v(p) = (1). Note that the Fittingideals are monomial ideals (this can be easily seen by direct computation, or byappealing to the natural torus action on C n ). This means that we can realize allpossible ranks for Jkv(p) by only looking at those p whose coordinates are zeros andones. In other words, the rank of Jkv(p) only depends upon the smallest coordinate
at, fxi1 = � � � = xis = 0g, to which p belongs.main question: What is the relation between V , i.e., the set of lattice pointsserving as exponents for v, and the in
ections of v?To start, we can evaluate a partial derivative of a monomial x`:xà = 1a! @jajx`@xa1 � � �@xan (1)= �`1a1� � � ��`nan�x`�a= �à�x`�awhere the multinomial coe�cient is de�ned to be zero if ai > `i for some i. Aneasy consequence is that rkJkv(0) = jfmi 2 V j jmij � kgj (2)Remark. The a�ne version of Theorem 0.1 follows: if the k-th osculating spaces ofv: C n ! C t+1 all have dimension t, then (2) says that t+1 = jfmi 2 V j jmij � kgj.If t = �n+kk �� 1, we are forced to take V = fm 2 Zn�0j jmj � kg.Having determined the smallest possible rank, we now determine the largest.Proposition 1.1. The generic rank of Jkv isrk Jkv(1; : : : ; 1) = HV (k)where HV is the a�ne Hilbert function of V , i.e., HV (k) is the codimension in thelinear space of polynomials in n variables and of degree less than or equal to k ofthose polynomials that are satis�ed by the lattice points V � Zn � C n .proof: From (1), the column of Jkv(1; : : : ; 1) corresponding to the monomial xmihas the form �mia �0�jaj�k = ��mi;1a1 � � � ��mi;nan ��0�jaj�kBut n�x1a1� � � � �xnan�o0�jaj�k forms a basis for the space of polynomials of degree � kin x1; : : : ; xn. Therefore, the linear relations among the rows of Jkv(1; : : : ; 1) cor-respond to polynomials of degree � k passing through V . �Hence, �nding a monomial map whose osculating spaces have �xed generic dimen-sions is the same as �nding a set of lattice points with a certain Hilbert function.(For the extension of this result to toric mappings, see Remark 2.3.)In what follows, we will only need to know the generic rank of Jkv and its rankat the origin, but for completeness, we will extend Proposition 1.1 to determine



4 DAVID PERKINSONthe rank at all points. As noted earlier, is su�ces to consider only points whosecoordinates consist of zeros and ones. We will use the following notation: Given� � f1; : : : ; ng, let p� 2 C n be the point whose i-th coordinate is 0 if i 2 � and1 otherwise. Thus, the generic value of rkJkv along the 
at fxi = 0j i 2 �gis determined by the rank at the point p�. Let � denote the lattice of integerpoints in this 
at. To calculate the rank at p�, we will take slices of the latticewhich are parallel to �. For each positive lattice point in the space normal to �,i.e., for each a 2 �? := fb 2 Zn�0j bi = 0; i 62 �g, we take the slice through a,�a := � + a := fb 2 Zn�0j bi = ai; i 2 �g. By forgetting the components they havein common, we can think of the exponents of v that lie in a particular slice �aas de�ning a monomial map from the smaller space �a 
 C �= C n�j�j . ApplyingProposition 1.1 to determine the rank of the (k � jaj)-jets of this new map andsumming over the �rst k + 1 slices gives the result. To formalize this, let � bethe orthogonal projection of C n onto the slice �a 
 C �= C n�j�j and consider theexponents for the new monomial map just described:Va := �((V \�a) [ fag)We have forced Va to include the origin, by adding fag, in order to apply Proposi-tion 1.1. To compensate, de�ne�V (a) := � 0; if a 2 V1; otherwiseProposition 1.2. With notation as aboverkJkv(p�) = Xa2�?;jaj�k(HVa(k � jaj)� �V (a))proof: For each a 2 �? with jaj � k, let Ba be the matrix whose rows are thepartial derivatives, vb, for b 2 �a such that jbj � k. Hence, up to a rearrangement ofrows, Jkv consists of the blocks of rows, Ba. Using (1) to take the partial derivativeof a monomial gives xma (p�) 6= 0 () mi = ai for i 2 � (�)() m 2 �aHence, each column of Jkv(p�) will be nonzero along at most one of the blocks, Ba;therefore, rk Jkv(p�) = Xa2�?;jaj�k rkBa(p�)Consider the map ~v associated with the exponents Va. It follows from (�) thatthe nonzero columns of Ba(p�) come from those components of v of the form xmwith m 2 �a. Hence, disgarding the columns of zeros, Ba(p�) is Jk�jaj~v(1; : : : ; 1)provided a 2 V . The rank of Ba(p�) is then given by Proposition 1.1. If a 62 V , thenit has been added to from Va. So ~v has an \extra" component, and Jk�jaj~v(1; : : : ; 1)has an \extra" row, linearly independent from the others. Thus, in this case,rkBa(p�) = rkJk�jaj~v(1; : : : ; 1)� 1. This accounts for the presence of �V . �



INFLECTIONS OF TORIC VARIETIES 5Remark 1.3. In the case p� = ~0, then � = f~0g, �? = Zn�0, �a = fag, andHVa(k)� �V (a) := � 1; if a 2 V0; otherwiseThus, Proposition 1.2 reduces to (2).x2 In
ections of toric varietiesThis section introduces the notation we use to describe toric varieties and de�nesin
ections for toric mappings. As general references, we use [Ful] and [Oda]. LetX be an n-dimensional toric variety associated with a fan � in an n-dimensionallattice N �= Zn. We will use the notation in [Cox]: M = HomZ(N;Z) is the duallattice; �(k) is the set of k-dimensional cones of �; if � 2 �(k), then �(`) denotesthe `-dimensional cones contained in �; for each � 2 �(1), let n� be the generatorof � \ N and D� be the associated T -invariant Weil divisor; the set of such D�is a basis for the free abelian group of T -Weil divisors, Z�(1). To describe thehomogeneous coordinate ring of X introduced in [Cox], recall the exact sequence0 �!M �! Z�(1) �! An�1(X) �! 0 (3)m 7! Dm =X� hm;n�iD�where An�1(X) is the group of Weil divisors modulo rational equivalence and themap Z�(1) ! An�1(X) sends a divisor to its class. For each � 2 �(1), let x� bea variable. There is a 1-1 correspondence between T -Weil divisors and monomialsin the x�, namely, D = P� a�D� 2 Z�(1) corresponds with xD = Q� xa�� . Thehomogeneous coordinate ring of X is S = C [x� j � 2 �(1)] with grading given bythe class group An�1(X). This means that two monomials xD and xE have thesame degree if [D] = [E] in An�1(X). For each T -Weil divisorD, there is a coherentsheaf, OX (D), and the polyhedronP (D) = fm 2M 
 Rj hm;n� i � �a�; 8� 2 �(1)gwhose elements may be thought of as global sections of OX(D).For the rest of this section, assume that X is smooth and projective. Hence,each OX(D) is a line bundle. Let v:X ! Pt be a toric mapping, i.e., determinedby globally generating sections m0; : : : ;mt of a T -line bundle, OX(D). We identifyeach mi with a point in the polytope, P (D). The fact that these mi globallygenerate OX(D) means that they include the vertices of P (D). In homogeneouscoordinates v:X ! Pt (4)x! (xDm0+D; : : : ; xDmt+D)where Dm =P�hm;n�iD�, as above. Each [Dmi ] = 0 in An�1(X), so v is homo-geneous of degree D.We de�ne in
ections for v by restricting it to the natural a�ne subsets of X .The variety X comes from glueing the X� �= C n for each maximal cone � 2 �(n).



6 DAVID PERKINSONFor each such �, the 1-dimensional cones � 2 �(1) correspond to variables x� inthe homogeneous coordinate ring. Setting the remaining x� = 1 in (4) determinesan a�ne map, v� :X� ! C t+1 , of the sort considered in x1. This map is therestriction of v to X�, lifted to C t+1 . The lattice points determining this a�nemap can be determined from the mi 2 P (D) by translating the vertex of P (D)corresponding to � to the origin and writing the mi's with respect to the basisfor the lattice, fn�j � 2 �(1)g. Restricting v to another maximal a�ne subsetamounts to choosing another vertex of P (D) and writing the mi's with respect tothe corresponding basis for the lattice (cf. Example 2.4).A point p 2 X� is an in
ection point for v if it is an in
ection point for v� .To show that this de�nition is independent of the choice of �, we de�ne the ma-trix of homogeneous k-jets, taking derivatives up to order k with respect to thehomogeneous coordinates: Jhk v := (va)a2Zj�(1)j�0 ;jaj�kProposition 2.1. For each � 2 �(n), the C [x� j � 2 �(1)]-span of the rows of thematrix of homogeneous jets restricted to X�,Jhk vj� := Jhk vjx�=1;� 62�(1)is the same as that of the a�ne jets on X�,Jkv� := (v�a )a2Zn�0;jaj�kProof: One direction is obvious since the rows of the latter matrix are a subset ofthe rows of the former. To show the opposite inclusion, we use \Euler formulas" forX to rewrite the derivatives of homogeneous coordinates in terms of derivatives ofa�ne coordinates. As shown in [B, C], there is one Euler formula for each element� 2 HomZ(An�1(X);Z). If f 2 S is a homogeneous polynomial of degree [E], theEuler formula corresponding to � isX�2�(1)�([D�])x�fx� = �([E])fSince X is smooth, fn�g�2�(1) is a basis for the lattice N . It follows from (3)that [D�]� 62�(1) forms a basis for An�1(X). Hence, for each � 62 �(1), there is anelement � 2 HomZ(An�1(X);Z) such that �([D�]) = 1 and �([D�]) = 0 for allother � 62 �(1). Thus, for any polynomial f of degree [E], after setting x� = 1 wecan solve for fx� using the Euler formula corresponding to � to getfx� = �([E])f � X�2�(1)�([D�])x�fx�In this way, a derivative of any order with respect to the homogeneous variablescan be reduced to an expression only involving the a�ne coordinates. �As an immediate consequence, we see that our de�nition of in
ection does notdepend on a choice of X� :



INFLECTIONS OF TORIC VARIETIES 7Corollary 2.2. The Fitting ideals of Jhk vj� and Jkv� are the same. In particular,rkJhk v(p) = rk Jkv�(p) for all p 2 X� .Remark 2.3. Note that if V = fm0; : : : ;mtg � P (D) is the set of monomialsde�ning v, then dimension of the k-th osculating space at a generic point of Xis again given by the Hilbert function, HV (k). This follows from Proposition 1.1because the set of monomials de�ning any restriction of v to a maximal a�ne openset, X� , di�ers from V by an a�ne change of coordinates, which does not a�ect HV .Example 2.4. (Togliatti's Del Pezzo) Consider the a�ne mapC 2 ! C 6(x; y) 7! (1; x; y; x2y; xy2; x2y2)de�ned by monomials whose exponents form the vertices of the hexagon picturedbelow:
(0,0) (1,0)

(2,1)

(2,2)(1,2)

(0,1)The mapping naturally extends to a mapping of the toric surface, X , with fan,�, determined by the inward normals of the hexagon:
σ1

σ2

σ3

σ4

σ5

σ6The maximal cones are labeled �1; : : : ; �6. The one dimensional cones havegenerators (1; 0), (0; 1), (�1; 1), (�1; 0), (0;�1), and (1;�1) to which correspondthe homogeneous coordinates x1; : : : ; x6, respectively. Choosing the dual basis forM and D3; : : : ; D6 as a basis for A1(X), the exact sequence, (3), becomes
0 �! Z2

0BBBBBBBBBB@ 1 00 1�1 1�1 00 �11 �1
1CCCCCCCCCCA���������! Z6 0BBBB@ 1 �1 1 0 0 01 0 0 1 0 00 1 0 0 1 0�1 1 0 0 0 11CCCCA��������������������! Z4 �! 0



8 DAVID PERKINSONChoosing D = D3 + 2D4 + 2D5 +D6, the polytope P (D) is the convex hull of theexponents with which we started. The extension of the mapping to X is given inhomogeneous coordinates, (4), byv:X ! P5(x1; : : : ; x6) 7! (x3x24x25x6; x1x4x25x26; x2x23x24x5; x21x2x5x26; x1x22x23x4; x21x22x3x6)Our original map is the restriction of v to X�1 (lifted to C 6 ) which we get by settingx3 = � � � = x6 = 1. To restrict v to X�2 , we set x1 = x4 = x5 = x6 = 1,v�2 : C 2 ! C 6(x2; x3) 7! (x3; 1; x2x23; x2; x22x23; x22x3)The exponents for this a�ne restriction come from the original exponents by thefollowing a�ne change of coordinates: translate the vertex (1; 0) to the origin anduse the �rst lattice points lying along the two edges of P (D) emanating from thisvertex as a basis for the lattice. Using Proposition 1.1, Proposition 1.2, and (2), orby direct calculation, we �nd the dimensions of the osculating spaces. By symmetry,we need only consider v�1|the a�ne map with which we started|and by thediscussion in x1, we need only consider the points (0; 0), (1; 0), and (1; 1):k Osck v�1(0; 0) Osck v�1(1; 0) Osck v�1(1; 1)1 2 2 22 2 4 43 4 5 5� 4 5 5 5Dimensions of the osculating spaces of Togliatti's Del PezzoThe �rst osculating spaces are all two-dimensional since v is an embedding. Wewould expect the generic second osculating space to have dimension 5. However, thesix exponents happen to lie on a conic, so the dimension is 4. The exponents placeindependent conditions on higher degree curves. By (2), the dimension of the k-thosculating space at the origin is found by counting the number of exponents, m,with jmj � k.The unusual in
ectionary behavior in this example was �rst noticed in [Tog].It is a special projection|the exponent (1; 1) 2 P (D) is not included|of the DelPezzo surface of degree 6 in P6.x3 Characterization of toric varieties with special in
ectionary behaviorUsing the notation of the last section, let X be a smooth, projective, toric n-fold,and let v:X ! Pt be a toric embedding determined by sections of a line bundleOX(D). We identify the sections with a set of lattice points V � P (D) �M �= Zn.Assume that v spans Pt. In this section, we will characterize v with osculatingspaces of certain dimensions. The idea is to apply the results in x1 relating thedimensions with Hilbert functions of lattice points to determine P (D) and V , fromwhich X and v can be reconstructed (cf. [Ful,x3.4]).veronese. First, we have the toric version of Theorem 0.1:



INFLECTIONS OF TORIC VARIETIES 9Theorem 3.1. Let t = �n+kk � � 1 and suppose that Osck v(p) = Pt for all p 2 X .Then X = Pn, and v is the k-fold Veronese embedding.proof: Translate any vertex of P (D) to the origin and take the �rst lattice pointsalong the one-dimensional faces emanating from the vertex as a basis for the lat-tice (possible since X is smooth). As discussed in x3, we can think of the pointsof V , after the a�ne change of coordinates, as de�ning an a�ne map as in x1, therestriction of v to a maximal a�ne subset of X . According to (2), we must includethe lattice points m 2 Zn�0 with jmj � k. However, since there are t + 1 = �n+kk �of these, there can be no other lattice points in V . So, up to an a�ne change ofcoordinates, P (D) and V , hence X and v, are determined. �surfaces. Consider the case where X is a surface and, at all points of X , theosculating spaces for v are as large as possible up through order s� 1 and strictlysmaller than possible for order s.Theorem 3.2. Suppose that dim(Osck v(p)) = �2+kk �� 1 for k = 1; : : : ; s� 1, andthat dim(Oscs v(p)) < �2+ss ��1 for all p 2 X . Up to an isomorphism in the categoryof toric mappings to projective space, the following are the only possibilities:(1) X is P2, v is the (s� 1)-th Veronese embedding, and P (D) is
(0,0) (s-1,0)

(0,s-1)

V consists of all lattice points in P (D).(2) X is a Hirzebruch surface Fb (including the case F0 = P1 � P1), and P (D)is
(0,0) (a,0)

((s-1)b+a,s-1)(0,s-1)

for integers a � s � 1, b � 0. V can be any subset of the lattice points ofP (D) containing all points \out to level s�1" as described in the beginningof the proof.(3) s = 2, the surface X is P1�P1 blown up at two T -�xed points, v is a specialprojection to P5 of the Del Pezzo surface of degree 6 in P6, (cf. Example 2.4),and P (D) is
(0,0) (1,0)

(2,1)

(2,2)(1,2)

(0,1)V consists of the vertices of P (D).



10 DAVID PERKINSON(4) s = 2, the surface X is the blow-up of the preceding example in two T -�xedpoints, v embeds X as a surface of degree 14 in P7, and P (D) is
(0,0) (1,0)

(2,1)

(3,3)

(3,4)(2,4)

(1,3)

(0,1)V consists of the vertices of P (D).(5) s = 2, the surface X is the blow-up of the preceding example in four T -�xedpoints, v embeds X as a surface of degree 48 in P11, and P (D) is

(0,0) (1,0)

(2,1)

(4,4)

(5,6)

(6,9)

(6,10)(5,10)

(4,9)

(2,6)

(1,4)

(0,1)V consists of the vertices of P (D).proof: Translate a vertex of P (D) to the origin. Since X is smooth, the generatorsof the 2 edges emanating from the vertex must form a Z-basis for the lattice, M .With respect to this basis, the condition that rk Js�1v(p) = �1+ss�1� for all p implies,by (2) from x1, that the sections determining v must include all those correspondingto lattice points (a; b) with a+ b � s� 1. We say that V includes all points out tolevel s�1 with respect to the chosen vertex. The fact that rkJsv(p) < �2+ss � for all pmeans that the lattice points determining v must satisfy a polynomial of degree sin two variables, say F . This reasoning allows us to construct the possibilities forP (D) and the lattice points, V .So far, we know that V (after the a�ne change of coordinates described above),must include (a; b) such that a+ b � s � 1. To construct P (D), go out along oneof the edges emanating from the vertex (0; 0) to the next vertex, say (a; 0), wherea � s � 1. Since X is smooth, the next edge emanating from this vertex passesthrough a lattice point of the form (b; 1).



INFLECTIONS OF TORIC VARIETIES 11
(0,0) (a,0)

(b,1)We divide the problem into four cases:Case i. b > a, s > 2. In this case, including all points out to level s � 1 withrespect to the vertices (0; 0) and (a; 0) implies that V must include (b � 1; 1) aswell as (b; 1). This means that there are at least s+1 elements of V along the liney = 1. Hence, the curve of degree s containing V must have a linear component:F = (y � 1)G for some polynomial G of degree s � 1 passing through the pointsV not on the line y = 1. However, there are at least s points of V lying along thex-axis. Thus, G = yH where H has degree s� 2 and passes through the remaininglattice points. Continuing this reasoning now for the lines y = 2, y = 3, etc., showsthat v is a mapping of a Hirzebruch surface as described in the statement of thetheorem.Case ii. a > s � 1, s � 2. The analysis here is similar to that for Case i. Sincewe must have points out to level s � 1 with respect to the vertex (0; 0), there aremore than s elements of V along the x-axis and y must be a factor of F . Continue,showing that y�1; : : : ; y�(s�1) are factors. The only possibility is the Hirzebruchsurface, again.Case iii. a = s� 1, s > 2. Given the above cases, we may assume that each edge ofP (D) contains exactly s lattice points and that b � a. The edge emanating from(a; 0) is forced to connect with the vertex lying on the y-axis, (0; s� 1). The onlypossibilities are F0 = P1 � P1 (if b = a) and the Veronese (if b < a).Case iv. s = 2. This last case is more di�cult. First, given the above cases and thefact that the toric variety is smooth, we can assume that besides (0; 0), (1; 0), and(0; 1), the set V contains lattice points of the form (b; 1) and (1; c) with b; c > 1.Fixing b and c, there is a unique conic passing through these pointsQ = (c� 1)x(x� 1) + (b� 1)y(y � 1)� (b� 1)(c� 1)xyThe lattice points on Q are easy to describe. It happens that if p is a latticepoint on Q, then the horizontal line through p (if not tangent) meets in anotherlattice point, and similarly for vertical lines. Starting with (0; 0), the horizontal andvertical lines meet Q in (1; 0), (0; 1), respectively. Repeating for the points (1; 0)and (0; 1) gives the points (1; c) and (b; 1), respectively, and so on. In this way, weget all of the lattice points on Q.
(0,0) (1,0)

(0,1) (b,1)

(1,c)



12 DAVID PERKINSONWe want to show that to build P (D) starting with the initial �ve points, wemust take all the lattice points on Q; hence, b; c must be such that Q is an ellipse(since X is projective, P (D) must have a �nite number of vertices, for instance).Translating any lattice point of Q to the origin, we now show that the latticepoints on Q which are adjacent to that point will form a basis for the lattice.Hence, thinking of the lattice point as vertex of a potential P (D), the smoothnesscondition is satis�ed. Consider consecutive lattice points, (x1; y1), (x2; y2), and(x3; y3) along Q:
(x 1,y1)

(x 2,y2)

(x 3 ,y3)

and assume the smoothness condition is satis�ed at (x2; y2):det�x3 � x2 y3 � y2x1 � x2 y1 � y2� = 1It is easy to check that the intersection of a vertical line through any point (x; y)on Q meets Q again at (x; 1 + (c � 1)x � y), and the intersection of a horizontalline through (x; y) meets Q again at (1 + (b � 1)y � x; y). Drawing the verticallines through the (xi; yi) gives a sequence, (xi; 1+ (c� 1)xi� yi) with i = 1; 2; 3, ofconsecutive lattice points on Q for which the smoothness condition is still satis�ed:det�x3 � x2 (c� 1)(x3 � x2)� (y3 � y2)x1 � x2 (c� 1)(x1 � x2)� (y1 � y2)� = det�x3 � x2 �(y3 � y2)x1 � x2 �(y1 � y2)� = �1Similar reasoning holds for horizontal lines. Since any sequence of consecutivelattice points on Q comes from repeatedly intersecting with horizontal or verticallines starting with the sequence (b; 1), (1; 0), (0; 0)|for which the smoothness con-dition holds|the smoothness condition is satis�ed for any three consecutive pointsalong Q, as claimed.Let p0, p1, and p2 be adjacent lattice points of P (D) and lying consecutivelyon Q. Thinking of p2 as the vertex, the lattice points p3 for which p3 � p2, p1 � p2forms a basis for the lattice lie on a line passing through p0. This line intersectsQ in at most one other point. Hence, it must lie consecutively along Q with p1and p2. This shows that to build P (D) starting from our initial �ve points, we musttake consecutive lattice points along Q. The construction can only work when Qis an ellipse, i.e., when the discriminant of Q is less than 0. This means that(b� 1)(c� 1) < 4, which implies (b; c) 2 f(2; 2); (2; 3); (3; 2); (2; 4); (4; 2)g. The caseof b = c = 2 gives Togliatti's surface, (3); b = 2, c = 3, gives (4), (isomorphic tob = 3, c = 2); and b = 2, c = 4, gives (5), (isomorphic to b = 4, c = 2). �Remark 3.3. Restricting to the category of toric varieties, Theorem 0.2 is easilyestablished as a corollary to Theorem 3.2. Let t � 2, and let v:X ! P2t+1 bean embedding with dim(Osck v(p)) = 2k for k � t at all points p 2 X . ApplyTheorem 3.2 with s = 2 to narrow the possibilities. We then look for polytopes



INFLECTIONS OF TORIC VARIETIES 13P and a subset of lattice points V , including the vertices of P , satisfying twoproperties:(1) Translating any vertex of P to the origin, and choosing the adjacent latticepoints as a basis for the lattice, the number of (a; b) 2 V with a+ b � k is2k + 1 for k � t, (cf. x1, (2));(2) HV (k) = 2k, k � t, (Proposition 1.1, Remark 2.3).It is straighforward to check that the only possibility is as stated in Theorem 0.2.The following conjecture can be similarly established for toric varieties:Conjecture. ([P, T]) Let t � 2, and let X � P2t+2 be a smooth, projective surfacenot contained in a hyperplane, such that the dimension of its k-th osculating spaceis 2k at all points of X and for all k � t. Then X is isomorphic to a P1-bundle, theHirzebruch surface, F1 , embedded as a scroll via the natural mapX = F1 �= P(OP1(t)�OP1(t+ 1))! P(H0(OP1(t)) �H0(OP1(t+ 1))) �= P2t+2In fact, it turns out that the conjecture does not hold outside of the toric setting.R. Piene and H. Tai (personal communication) have found special (non-toric) pro-jections of Veronese embeddings which satisfy the hypotheses of the conjecture.Unlike our toric examples, the hypotheses hold for these projections with k � t+1,not just k � t.These counter-examples to the conjecture are at least projections of toric vari-eties, and one might get the impression that placing many restrictions on the oscu-lating spaces of an embedding at least forces the variety to be rational. However,[Dye] has given examples of embeddings of irrational varieties with very special os-culating spaces including a non-ruled surface in P5 whose second osculating spacesare all of dimension � 4.3-folds. We consider the same problem for 3-folds. Assume that at all points ofthe 3-fold, X , the osculating spaces are as large as possible up through order s� 1and are strictly smaller than possible for order s. As in the proof of Theorem 3.2,we talk about lattice points of a polytope having a certain \level" with respect toa vertex (cf. V.3 in the proof of Theorem 3.5).Theorem 3.5. Suppose that dim(Osck v(p)) = �3+kk �� 1 for k = 1; : : : ; s� 1, andthat dim(Oscs v(p)) < �3+ss ��1 for all p 2 X . Up to an isomorphism in the categoryof toric mappings to projective space, the following are the only possibilities:(1) X is P3, and v is the (s� 1)-th Veronese embedding. P (D) is the tetrahe-dron:
(0,0,0)

(0,s-1,0)

 (0,0,s-1)

(s-1,0,0)V consists of all lattice points in P (D).(2) X is an equivariant �ber bundle over P1 with �ber equal to one of the toricvarieties appearing in Theorem 3.2. The polytope P (D) is a truncated



14 DAVID PERKINSONcylinder over one of the polygons in Theorem 3.2. Hexagons, octagons, anddodecagons are allowed for the base of the cylinder only in the case s = 2,(cf. Remark 3.6). V is any subset of the lattice points in P (D) containingall points out to level s� 1.(3) X is a P1-bundle of the form P(OS(E) �OS(E0)) for some ample divisorsE, E0 on an arbitrary smooth toric surface S, (cf. Remark 3.6). P (D) hasthe form
z = 0

z = 1

z = s-1

z = 0

z = 1

z = s-1The shaded polygon, in the plane z = 0, represents P (E), and the dashedpolygon, in the plane z = 1, represents P (E0). The top face, in the planez = s� 1, also has the form P (E00) for a divisor E00 on S. The set V is anysubset of the lattice points in P (D) containing all points out to level s� 1.(4) s = 2, and X is P3 blown up in four points. P (D) is the truncated tetrahe-dron:
(1,0,0)

(0,1,0)

(0,0,0) (2,0,1) 

(0,2,1)

 (0,0,1)

(2,1,2)

(1,2,2)(0,2,2)

(0,1,2)

(1,0,2) (2,0,2)V consists of the vertices of P (D).(5) s = 2 and P (D) is the join of two hexagons sharing an edge:
(0,1,2)

(0,0,1)

(0,0,0)

(0,1,0)

(0,2,1)

(0,2,2)

(2,2,0)

(1,2,0)(1,0,0)

(2,1,0)V consists of the vertices of P (D).(6) s = 2, and X is P1�P1�P1 blown up in six points. P (D) is the truncatedoctahedron:
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(0,0,0) (0,1,0)

(1,1,0)(1,0,0)

(2,2,1)

(0,2,1)(0,0,1)

(2,0,1)

(3,2,2)

(2,3,2)

(1,3,2)

(0,2,2)(0,1,2)

(1,0,2)

(2,0,2)

(3,1,2)

(3,3,3)

(1,3,3)(1,1,3)

(3,1,3)
(3,3,4)

(2,3,4)(2,2,4)

(3,2,4)

V consists of the vertices of P (D).(7) s = 2 and P (D) is constructed from eight dodecagons, six octagons, andtwenty-four triangles:
(4,9,0)

(2,6,0)

(1,4,0)(0,0,0)(1,0,0)

(2,1,0)

(4,4,0)

(6,9,0)

(6,10,0)

(0,6,2)

(0,9,4)

(0,10,5)(0,9,6)(0,6,5)

(0,4,4)

(0,1,2)

(0,0,1) (0,1,0) (0,4,1)

(7,24,6)

(5,20,5)

(4,17,4)(3,12,2)

(3,10,1)

(5,10,0)

(7,14,1)

(8,17,2) (9,22,4)

(9,24,5)

(7,11,1)

(5,6,0)

(3,3,1)

(3,4,2)(4,8,4)

(5,11,5)

(7,16,6)

(9,19,5)

(9,18,4) (8,14,2)

(2,17,8)

(3,19,9)(3,18,9)

(2,14,8)

(1,11,7) (0,10,6) (1,14,7)

(7,27,9)
(6,25,8)

(6,24,7)

(8,25,6)

(9,27,7)

(9,28,8)
(8,28,9)(8,24,9)

(9,24,8)

(9,22,7)

(8,18,6)

(6,16,7)

(6,18,8)
(7,22,9)

(5,24,9)

(2,12,3)

(1,10,3)

(4,22,9)(4,18,9)

(1,3,3)

(2,4,3)

(5,19,9)

(9,27,9)

(9,18,3) (9,19,3)

(9,28,9)

V consists of the vertices of P (D).(8) s = 2 and P (D) is constructed from four dodecagons, four hexagons, andtwelve triangles:
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(0,6,5)

(0,9,6)

(0,10,6)

(0,10,5)

(0,9,4)(0,6,2)(0,4,1)(0,1,0)

(0,0,0)

(0,0,1)

(0,1,2)

(0,4,4)

(4,14,5)

(2,13,6)

(1,12,6)

(1,8,2)

(2,8,1)

(4,9,0)

(5,10,0)

(6,12,1)

(6,13,2)

(5,14,4)

(4,4,0)

(2,1,0)

(1,0,0)

(1,4,0)

(2,6,0)

(6,10,0)

(6,9,0)

(5,6,0)

(1,2,2)

(2,2,1)

(6,10,1) (6,12,2)

(2,12,6)

(1,10,6)

V consists of the vertices of P (D).(9) s = 2 and P (D) is the join of two dodecagons sharing an edge:
(0,9,6)

(0,6,5)

(0,4,4)

(0,1,2)

(0,0,1)

(0,0,0)

(0,1,0)
(0,4,1)

(0,6,2)

(0,9,4)

(0,10,5)

(0,10,6)

(6,10,0)

(5,10,0)

(4,9,0)

(2,6,0)

(1,4,0)(1,0,0)

(2,1,0)

(4,4,0)

(5,6,0)

(6,9,0)

V consists of points out to level two from the vertices of P (D), and anynumber of the lattice points along the edges joining the dodecagons.(10) s = 2 and P (D) is constructed from two dodecagons, six octagons, andtwelve triangles:



INFLECTIONS OF TORIC VARIETIES 17
(2,1,0)

(3,3,0)

(3,4,0)

(2,4,0)

(1,3,0)
(0,1,0)

(0,0,0)

(1,0,0)

(5,10,6)

(6,12,6)

(6,13,6)
(5,13,6)

(4,12,6)

(3,10,6)

(3,9,6)

(4,9,6)

(6,12,4)

(5,9,2)

(4,7,1)(0,3,1)

(0,4,2)

(1,7,4)

(2,9,5) (6,13,5)

(4,4,1)(0,0,1)

(2,6,5) (6,10,5)

(6,9,4)
(6,9,3)

(6,10,3)
(5,6,2)

(1,4,4)
(0,3,3)

(0,4,3)
(0,1,2)

V consists of the vertices of P (D).(11) s = 2 and P (D) is constructed from six octagons, and eight triangles:
(2,4,0)

(1,3,0)

(0,1,0)(0,0,0)

(1,0,0)

(2,1,0)

(3,3,0) (3,4,0)

(0,3,1)(0,0,1)

(3,3,1) (3,6,1)

(0,4,2)(0,1,2)

(3,4,2) (3,7,2)

(1,6,3)

(0,4,3)(0,3,3)

(1,3,3)

(2,4,3)

(3,6,3) (3,7,3)

(2,7,3)V consists of the vertices of P (D).(12) s = 2 and P (D) is constructed from three octagons, two hexagons, and sixtriangles:
(0,0,1)

(0,0,0)
(0,1,0)

(0,3,1) (0,4,2)
(0,4,3)

(0,3,3)

(0,1,2)

(1,0,0) (1,2,2)

(1,3,0) (1,5,2)

(2,5,1)(2,4,0)

(3,4,0)

(3,3,0)

(2,2,1)(2,1,0)V consists of the vertices of P (D).(13) s = 2 and P (D) is the join of two octagons sharing an edge:



18 DAVID PERKINSON
(0,3,3)

(0,1,2)

(0,0,1)

(0,0,0)

(0,1,0)

(0,3,1)

(0,4,2)

(0,4,3)

(3,4,0)

(2,4,0)

(1,3,0)(1,0,0)

(2,1,0)

(3,3,0)

V consists of points out to level two from the vertices of P (D), and anynumber of the lattice points along the edges joining the octagons.(14) s = 2 and P (D) is constructed from one dodecagon, three octagons, fourhexagons, three quadrilaterals, and six triangles:
(1,6,3)

(0,4,3)(0,3,3)

(1,4,3)

(2,6,3) (2,7,3)

(1,6,2)

(0,4,2)(0,1,2)

(1,2,2)

(4,8,2) (4,9,2)

(2,7,1)

(0,3,1)(0,0,1)

(2,2,1)

(5,8,1) (5,10,1)

(4,9,0)

(2,6,0)

(1,4,0)

(0,1,0)(0,0,0)

(1,0,0)

(2,1,0)

(4,4,0)

(5,6,0)

(6,9,0) (6,10,0)

(5,10,0)

V consists of the vertices of P (D).(15) s = 2 and P (D) is constructed from one dodecagon, seven hexagons, andsix triangles:
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(5,6,0)

(6,9,0)

(6,10,0)

(5,10,0)(4,9,0)

(2,6,0)

(1,4,0)

(0,1,0)

(0,0,0)

(1,0,0) (2,1,0)

(4,4,0) 

(4,6,1)

(4,8,1)(2,6,1)

(0,2,1)

(0,0,1) (2,2,1)

(2,4,2)

(2,5,2)(1,4,2)

(0,2,2)

(0,1,2) (1,2,2)V consists of the vertices of P (D).(16) s = 2 and P (D) is constructed from six octagons, eight hexagons, andtwelve quadrilaterals:
(2,4,0)

(1,3,0)

(0,1,0)(0,0,0)

(1,0,0)

(2,1,0)

(3,3,0) (3,4,0)
(3,6,1)

(1,4,1)

(0,2,1)(0,0,1)

(1,0,1)

(3,2,1)

(4,4,1) (4,6,1)

(3,7,2)

(2,6,2)

(0,2,2)(0,1,2)

(2,1,2)

(3,2,2)

(5,6,2) (5,7,2)

(4,9,4)

(3,8,4)

(1,4,4)(1,3,4)

(3,3,4)

(4,4,4)

(6,8,4) (6,9,4)

(5,10,5)

(3,8,5)

(2,6,5)(2,4,5)

(3,4,5)

(5,6,5)

(6,8,5) (6,10,5)

(5,10,6)

(4,9,6)

(3,7,6)(3,6,6)

(4,6,6)

(5,7,6)

(6,9,6) (6,10,6)V consists of the vertices of P (D).(17) s = 2 and P (D) is constructed from one octagon, four triangles, fourhexagons, and a square:
(3,4,0) 

(2,4,0) (1,3,0)

 (0,1,0)

 (0,0,0)

 (1,0,0) (2,1,0)

(3,3,0)

(2,4,1)(0,2,1)

(0,0,1) (2,2,1)

(1,3,2)(0,2,2)

(0,1,2) (1,2,2)



20 DAVID PERKINSONV consists of the vertices of P (D).proof: Arguing as at the beginning of the proof to Theorem 3.2, the problem isequivalent to �nding all sets of lattice points V in R3 with convex hull a polytope, P ,such thatV.1. P is 3-valent, i.e., three edges emanate from each vertex;V.2. translating any vertex to the origin, the �rst lattice points along the threeedges emanating from the vertex form a Z-basis for the lattice Z3 � R3(ensuring that the associated toric variety is smooth);V.3. V includes all lattice points out to level s � 1 with respect to each vertex:translating any vertex of P to the origin and letting x; y; z be the �rstlattice points along the three edges emanting from the vertex, the set oflattice points, V , must include those points corresponding to ax+ by + cz,for a; b; c non-negative integers with a+ b+ c � s� 1;V.4. the lattice points in V must satisfy a non-zero polynomial in three variableswith degree � s.Let F be a (two-dimensional) face of P . The points of F\V , thought of as sittingin a two-dimensional lattice in the plane supporting F , determine a mapping of atoric surface. We say F is proper if, up to a change of coordinates of the two-dimensional lattice, F \ V has one of the forms of Theorem 3.2 (for the same s):a certain triangle, a family of quadrilaterals, and a certain hexagon, octagon, ordodecagon (the last three are possibilities only when s = 2). We say P is properif each of its faces is proper; otherwise P is improper. We divide the problem intofour cases: I. P proper, s > 2; II. P proper, s = 2, but no octagons or dodecagonsare allowed as faces of P ; III. P proper, s = 2, and P must include an octagon ordodecagon as a face; and IV. P improper.Case I. (P proper, s > 2) Since P is proper and s > 2, each face of P must bea triangle or a quadrilateral. Euler's formula shows that the only such 3-valentpolytopes are formed by: (i) four triangles (a tetrahedron); (ii) two triangles joinedby three quadrilaterals (a truncated triangular cylinder); and (iii) six quadrilaterals(a box). We consider these cases separately.(i). (four triangles) There is one possibility: a tetrahedron with s lattice points oneach edge. In order to satisfy V.3, the set V must contain all the lattice pointson or in the tetrahedron. It is then easy to check that V.1{V.4 are satis�ed. Thisgives (1), the Veronese embedding.(ii). (two triangles, three quadrilaterals) Since P is 3-valent, if two triangles meet,they must share an edge and P is forced to be a tetrahedron. Hence, in the presentcase, the two triangles do not touch. We may assume that the coordinate planesx = 0, y = 0, and z = 0 form three of the �ve supporting planes for P and that thebottom face (in the plane z = 0) is the triangle with vertices (0; 0; 0), (s� 1; 0; 0),and (0; s � 1; 0), surrounded by quadrilaterals. The remaining triangle must alsohave s lattice points per side. Using the restriction on the quadrilateral facescoming from Theorem 3.2, the vertices of this triangle must have the form (0; 0; a),(s � 1; 0; b), (0; s � 1; c) for integers a; b; c � s � 1. We may assume that a is nolarger than b and c. Again using the restriction on the shapes of the quadrilateralfaces, it follows that b = (s�1)e+a and c = (s�1)e0+a for some integers e; e0 � 0.It is straightforward to check that the resulting polytope satis�es conditions V.1and V.2. The lattice points in the base of the cylinder satisfy a polynomial of



INFLECTIONS OF TORIC VARIETIES 21degree s in two variables, and all the lattice points in the polytope satisfy this samepolynomial. Thus, any set of lattice points in the polytope meeting condition V.3also meets condition V.4. There is no restriction on the height of the truncatedcylinder. This example falls under (2) in the statement of the theorem.(iii). (six quadrilaterals) We may take one vertex of the box, P , to be the originand the coordinate planes x = 0, y = 0, z = 0, as three of the six supportingplanes. We may take the vertices of the bottom of the box (in the plane z = 0)to be (0; 0; 0), (s � 1; 0; 0), (0; a; 0), (s � 1; (s � 1)e + a; 0) for integers e � 0 anda � s� 1. Ruling out the case of a box with s lattice points per side, assume thatthe bottom is choosen so that a > s� 1. The restriction coming from Theorem 3.2for the shape of the quadrilateral in the plane x = 0 forces (0; 0; s�1) to be a vertexof P and the remaining vertex in this plane to have the form (0; (s� 1)e0+a; s� 1)for some integer e0 such that (s� 1)e0+a � s� 1. Since the edge along the bottomconnecting (s� 1; 0; 0), and (s� 1; (s� 1)e+ a; 0) has length > s� 1, the height ofthe face attached to the bottom along this edge must be s�1. This forces z = s�1to be a supporting plane for P and the remaining vertex in the plane y = 0 to havethe form ((s�1)e00+ s�1; 0; s�1) for some integer e00 � 0. To make the top of thebox proper, we must take (s� 1)e0 + a = s� 1 or e00 = 0. In the former case, theremaining vertex has the form ((s� 1)(e00 + 1); (s� 1)(e+ 1); s� 1), in the latter,(s � 1; (s � 1)(e + e0) + a; s � 1). In either case, we get a truncated cylinder overthe face supported by y = 0.It is straightforward to check that the resulting polytopes satisfy conditions V.1and V.2. As in case (ii), any set of lattice points satisfying V.3 will also satisfy V.4.This example falls under (2).Case II. (P proper, s = 2, but no octagons or dodecagons are allowed as facesof P ) In this case, P may have faces that are triangles, quadrilaterals, or hexagons.From Euler's formula, the possibilities for the number of triangles and quadrilateralsis the same as in Case I. However, given an acceptable number of triangular andquadrilateral faces, there are an in�nite number of combinatorially di�erent 3-valentpolytopes that can be built by adding hexagons, [Gr�u, pp. 253{281]. Only �nitelymany of these give rise to lattice points satisfying our conditions. We consider threecases, as above.(i). (four triangles) As argued in Case I, (i), if two triangles touch, P must be atetrahedron. So suppose that no two triangles touch. Up to a change of coordinatesof the lattice, we may assume that the polytope contains a triangle surroundedby three hexagons with coordinates as shown below (the coordinate planes aresupporting planes):
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 (1,0,0)

(0,1,0) 

(0,0,0)

      β = (2,0,1) 

γ = (0,2,1)

α = (0,0,1)       

            (2,1,2)

(1,2,2)(0,2,2)

(0,1,2)           

(1,0,2) (2,0,2)These lattice points sit on only one quadric,Q = �x+ x2 � y + y2 � z + z2 + xy � xz � yzAt each of the vertices labelled �, �, 
, we must �t triangles since a hexagonadded there would not have vertices lying on the quadric. For example, if a hexagonwere to sit at � = (0; 0; 1) it must also include the adjacent vertices (1; 0; 2) and(0; 1; 2). Lying in the plane determined by these vertices, the remaining vertices areforced to be (2; 1; 4), (1; 2; 4), and (2; 2; 5), none of which lie on the quadric. Hence,the triangle with vertices �, (1; 0; 2), and (0; 1; 2) lies on the polytope and, similarly,there are triangles at vertices � and 
. Now, since the polytope is 3-valent, z = 2must be a supporting face which closes the polytope with a hexagon. The resultis (4), a truncated tetrahedron. The vertices form a set of lattice points satisfyingcondition V.3. They lie on a unique quadric Q, and thus satisfy V.4. None of theremaining lattice points from the polytope|the centers of the four hexagons|lieon Q. Finally, it is straightforward to check that V.2 is satis�ed.(ii). (two triangles, three quadrilaterals) Suppose that a triangle touches twoquadrilaterals. Using 3-valency and properness, and considering the supportingplanes of the polytope, we see that the only possibility is a truncated cylinder overthe triangle.Now suppose that a triangle touches exactly one quadrilateral and, hence, twohexagons. We may assume that the con�guration is as in the diagram:
(0,0,0)

    (0,0,1)

(1,0,0)
(0,1,0) 

α = (0,1,2)  

δ = (2,1,0)

γ = (0,2,1)

   β = (0,2,2)

ε = (2,2,0) φ = (1,2,0)



INFLECTIONS OF TORIC VARIETIES 23The supporting plane determined by points �, �, and � forces �� to be an edge. Thesupporting plane determined by �, 
, � forces 
� to be an edge. Thus, the polytopeis what might be called the join of two hexagons sharing an edge, (5). It is easy tocheck that the smoothness property holds at each vertex. For instance, translatingthe vertex � = (0; 1; 2) to the origin, the adjacent lattice points|including thepoint (1; 1; 1) on the edge ��|form a basis for the lattice:det0@ (0; 0; 1)� �(0; 2; 2)� �(1; 1; 1)� �1A = 0@ 0 �1 �10 1 01 0 �11A = 1For the �nal possibility, if there is a triangle which does not touch a quadrilateral,we repeat the argument just given in (i) to get a truncated tetrahedron, (4).(iii). (six quadrilaterals) There are three cases to consider. First, suppose thatat least three quadrilaterals meet at a point. By considering supporting planesand using 3-valency, we are reduced to the case of no hexagons: Case I, (iii).Second, suppose that no three quadrilaterals meet at a point and there is set oftwo quadrilaterals meeting at a point. By 3-valency, the quadrilaterals that meetmust share an edge. Since no three quadrilaterals meet, there is a hexagon at bothvertices along this edge. It is straightforward to check that this forces the polytopeto be a truncated hexagonal cylinder, an instance of (2). Finally, suppose thatno two quadrilaterals meet. Since each quadrilateral is surrounded by hexagonshaving two lattice points on each edge, the quadrilaterals must also have exactlytwo lattice points on each edge. Starting with a square surrounded by hexagons, weproceed as in the latter part of Case II, (i), arriving at (6), a truncated octahedronas stated in the theorem.Case III. (P proper, s = 2, and P must include an octagon or dodecagon as aface) This case involves a long and tedious search, greatly facilitated by the useof a computer. The basic idea is that the points of V must lie on a quadric, andthere are not too many choices for a quadric containing a dodecagon or an octagon.Trying to construct a polytope one face at a time soon determines the quadriccompletely and allows us to specify the possibilities. We will give an outline ofthe search and examples illustrating all of the techniques needed. The problemis divided into six cases: (i) two dodecagons meet, (ii) two octagons meet, (iii) adodecagon and octagon meet, (iv) a dodecagon and hexagon meet, (v) an octagonand hexagon meet, and (vi) none of the above.(i). (two dodecagons meet) First note that taking any vertex of the dodecagon ofTheorem 3.2 as the origin and the adjacent lattice points as a basis for the lattice,there are two possibilities: the original dodecagon or its 
ip about the diagonal,y = x. Thus, in our case, we consider two possible orientations for the dodecagonswhich meet. We may assume that one dodecagon sits in the plane z = 0 and includesthe lattice points (0; 0; 0), (1; 0; 0), (0; 1; 0), (2; 1; 0) (the rest are determined). Andwe may assume that the second dodecagon sits in the plane x = 0 and includes thelattice points (0; 0; 0), (0; 1; 0), (0; 0; 1). However, there are two possible orientationsfor the second dodecagon: it can include the vertex (0; 2; 1) or its 
ip, (0; 1; 2). Theformer case, pictured below, will be called orientation 1:
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(0,0,0)

(1,0,0)

(2,1,0)

α = (0,1,0)

(1,4,0)

(0,0,1) (0,2,1)

(0,1,4)

x

y

z

The quadrics containing these two dodecagons have the form
Q = 9ax2 � 9axy + bxz + 3ay2 � 3ayz + az2 � 9ax� 3ay � az

for a; b 2 C . What are the possibilities for the remaining face meeting the do-decagons at vertex �? There are two possible dodecagons (di�ering by orientation)that could �t there, but it is straightforward to check that neither of these wouldhave lattice points lying on Q. Similarly, there are two possible octagons, neither ofwhich would lie on Q. The same holds for the unique hexagon that could �t there.Hence, a quadrilateral or a triangle must �t at �.If a triangle �ts at �, 3-valency would require that (2; 6; 0), (1; 4; 0), (0; 2; 1), and(0; 4; 4) be co-planar, but they are not. Thus, a quadrilateral is forced at �. Thequadrilateral and the set of exponents, V , must contain the point (1; 5; 1), forcingb = 0 in Q. A priori there are many possibilities for the shape of the quadrilateral.Larger quadrilaterals would need to contain the next point out along either the edgecontaining (0; 2; 1) and (1; 5; 1) or the edge containing (1; 4; 0) and (1; 5; 1), namely:(2; 8; 1) or (1; 6; 2), respectively. However, it is easy to check that these points arenot zeroes of Qjb=0. Hence, the quadrilateral has vertices (0; 1; 0), (0; 2; 1), (1; 4; 0),and (1; 5; 1), as pictured below:
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(0,0,0)

(1,0,0)

(2,1,0)

(0,1,0)

β = (1,4,0)

(0,0,1) (0,2,1)

(0,1,4) (0,4,4)

(1,5,1)

x

z

It is now easy to check with a computer that a dodecagon must �t at vertex �,having orientation 1 with respect to the dodecagon it meets along the edge joining(1; 4; 0) and (2; 6; 0), and a quadrilateral must �t at the origin, containing exactly4 lattice points. By symmetry, the whole �gure must consist of quadrilaterals anddodecagons, each quadrilateral surrounded by 4 dodecagons and each dodecagonsurrounded by 6 quadrilaterals and 6 dodecagons. If the �gure were to close up togive a polytope, consideration of Euler's formula would lead to a contradiction, aswe now explain.Let R be any 3-valent, 3-dimensional polytope, and let pk be the number of facesof R having k edges. A simple consequence of Euler's formula relating the numbersof vertices, edges, and faces, taking 3-valency into account, is the following relation:3p3 + 2p4 + p5 = 12 +Xk�7(k � 6)pk(In fact, there is a sort of converse. Eberhard's theorem, [Gr�u, p. 254], states thatgiven any �nite sequence of non-negative integers pk, for k 6= 6, there is a 3-valent,3-dimensional polytope, possibly containing hexagons, such that pk is the numberof faces with k edges.) In our case, the formula reads2p4 = 12 + 6p12Combined with the additional fact that 4p4 = 6p12, coming from the arrangement ofquadrilaterals and dodecagons, we get a contradiction. Thus, orientation 1 does notproduce an acceptable polytope (although it produces interesting a�ne mappings).Now consider orientation 2, pictured below:
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(0,0,0)

(1,0,0)

(2,1,0)

α = (0,1,0)

β = (1,4,0)

(2,6,0)

(0,0,1) (0,4,1)

(0,1,2)

x

y

z

As in the case of orientation 1, there is a quadric, Q, with two parameters,containing the vertices of the two dodecagons. One may check that either a hexagon,a quadrilateral, or a triangle must �t at vertex �. The quadrilateral and the hexagonlead to �gures that do not close, as in the case of orientation 1 (using Eberhard'stheorem again). So suppose that a triangle �ts at �. The triangle does nothingto specialize the quadric, Q, so we need to look at vertex �. A triangle is ruledout by 3-valency, but it turns out that a dodecagon, an octagon, a hexagon, or aquadrilateral are possibilities (i.e., consistent with Q) at �. The dodecagon leadsto a �gure which does not close, but the octagon, hexagon, and quadrilateral leadto polytopes for which V.1{V.4 hold. These are (7), (8), and (9), respectively.(ii). (two octagons meet) Proceeding as in (i), there are two orientations for themeeting octagons. One produces no examples, the other produces (10), (11), (12),and (13). As in (i), in the second orientation, we �t a triangle at one of the verticeson the edge shared by the octagons, then we �nd that a dodecagon, an octagon, ahexagon, or a quadrilateral can �t next to this triangle. Unlike (i), the dodecagonleads to an acceptable polytope.(iii). (a dodecagon and octagon meet) Again, as in (i), there are two orientations.One produces no examples (giving a �gure which does not close, as before), andin the other we can �t a quadrilateral or a triangle next to the meeting dodecagonand octagon. The quadrilateral leads to a �gure which does not close, so we do notget an example. On the other hand, next to the triangle, we can �t a dodecagon,an octagon, or a hexagon; the dodecagon and octagon lead to examples we havealready seen, and the hexagon produces (14).(iv). (a dodecagon and hexagon meet) There is only one orientation to consider.A dodecagon, a quadrilateral, or a triangle must �t next to the meeting dodecagonand hexagon. The dodecagon was already considered in (i) and did not lead toan example. The quadrilateral leads to a �gure which does not close. Finallythe triangle yields several possibilities. A dodecagon, an octagon, a hexagon, or aquadrilateral can �t next to the triangle. The dodecagon and octagon then produceexamples we have already seen. The hexagon produces (15). The quadrilateral doesnot produce an example.(v). (an octagon and hexagon meet) This case is similar to (iv). An octagon, aquadrilateral, or a triangle can �t next to the meeting octagon and hexagon. Theoctagon was considered in (ii) and did not lead to an example. The quadrilateralgives (16). Next to the triangle, there can be a dodecagon (reducing to (iii)), an



INFLECTIONS OF TORIC VARIETIES 27octagon (reducing to (ii)), a hexagon leading to (17), or a quadrilateral leading tono example.(vi). (none of the above) We are left with the case of a dodecagon or octagon sur-rounded by triangles and quadrilaterals. Using 3-valency, one may check that therecan be no triangle. We get a truncated cylinder over the dodecagon or octagon,instances of (2).Case IV. (P improper). Suppose we have V and P satisfying V.1{V.4. Let f(x; y; z)be a non-zero polynomial of degree � s satis�ed by the points of V , and let F be aface which is not proper. The lattice points in F \V , sitting in the plane supportingF , say �, determine a mapping of a toric surface. If f restricted to � is non-zero,then this surface mapping would satisfy Theorem 3.2 and F would need to beproper. Hence, f contains the equation for � as a factor. In fact, we will see that,up to an a�ne change of coordinates of the lattice in R3 and a constant factor,f =Qs�1i=0 (z � i).If s > 2, let ~V = V n (V \ �), let ~P be the convex hull of the points of ~V , andlet ~f be the polynomial of degree � s� 1 one gets by removing the equation for �from f . We now verify that ~V and ~P satisfy conditions V.1{V.4 with s replacedby s � 1. Making an a�ne change of coordinates, assume for the moment that �is de�ned by z = 0. The diagram below labels consecutive vertices �0, �0, and 
0of F . The �rst lattice points on the edges leaving F from these vertices are �1, �1,and 
1, and the vertices at the end of these edges are �, �, and 
.
α0

α1

α

β0

β1

β

γ
0

γ
1

γ

F

Let �0 = (a; b; 0), 
0 = (c; d; 0), and �1 = (i; j; k). We may assume that �0 =(0; 0; 0). Since P satis�es V.1, it follows that������ a b 0c d 0i j k ������ = ����a bc d ���� k = �1Hence, we may assume that k = 1 and, similarly, all the �rst lattice points on edgesemanating from F lie in the plane z = 1. Thus, chopping o� the face F leaves anew face ~F in the plane z = 1. Also, note that none of these �rst lattice points arevertices of P since s > 2, so the new polytope is combinatorially equivalent to P .The above computation shows that after an a�ne change of coordinates, we cantake the edges (of the truncated polytope) �1�1, �1
1, and �1� to lie along thecoordinate axes. It is then easy to verify V.1{V.3, and of course, V.4 is satis�edwith s� 1 in place of s, using ~f .Removing F from P gives the new polytope ~P . If ~P is not proper and s�1 > 2,we can repeat the process of chopping o� an improper face. Eventually we are



28 DAVID PERKINSONreduced to lattice points V � with convex hull the polytope P �, combinatoriallyequivalent to P and satisfying V.1{V.4 for some integer s� in place of s. Thepolytope P � is either proper, or improper with s� = 2.P � proper: If P � is proper, we have shown that up to a change of coordinatesit must be: (1), a certain tetrahedron (the numbers here refer to the statement ofthe theorem); (2), a truncated cylinder over one of the polygons from Theorem 3.2;or, in the case s� = 2, (4){(17). To rule out each of these possibilities, imaginereversing the process of going from P to P �. This would involve taking a face of P �,whose supporting plane we can take to be z = 0, and extending the edges cominginto this face down to a parallel plane, which we can take to be z = �1. Theresult is an intermediary polytope, ~P , combinatorially equivalent to P and P �, andimproper. The polytope ~P comes with a corresponding subset of lattice points, ~V ,such that V.1{V.4 are satis�ed for an ~s = s� + 1.In the case of the tetrahedron, (1), reversing the process would imply that Pwas proper, a contradiction. In the case of a truncated cylinder over one of thepolygons from Theorem 3.2, reversing the process one step results in a ~P whichis either proper, combinatorially inequivalent to P �, or for which ~V necessarilyviolates V.3. For instance, suppose P � is a truncated cylinder over a quadrilateral:
(s*-1,0,0) (s*-1,a,0)

(0,a+b(s*-1),0)If ~P comes from moving the upper or lower faces out one unit, then ~V could notsatisfy V.3 given that the base quadrilateral has not increased in size. The sameargument holds for moving the left or right faces out one unit, or the back face inthe case where a = s� � 1. If a, b, and the height are large enough, moving thefront or back face out may produce a proper polytope, a contradiction. In the casewhere s� = 2, a = 1, and b > 0, moving the front face out gives a polytope that isnot combinatorially equivalent to P �.Finally, if P � is one of the polytopes (4){(17), reversing the process gives apolytope that is not combinatorially equivalent to P �.P � improper, s� = 2: Suppose P � is improper and s� = 2. This case subsumesthe case of s = 2. Let f� be the quadric containing P �, which is a factor of theoriginal f . We may assume that z = 0 is a supporting plane of an improper faceof P � and, by V.2, the �rst lattice points along the edges emanating from the face inz = 0 lie in the plane z = 1. It follows that, up to a constant factor, f� = z(z� 1).Going backwards from P � to P , trying to add a face in a plane not parallel to z = 0at any step would give rise to a polytope for which V.3 could not hold. Hence, theedges emanating from the face in z = 0 terminate in the plane z = s � 1 and, upto a constant factor, f = Qs�1i=0 (z � i), as claimed. This determines P . Its shapeis determined by the face in z = 0 and the convex hull of the lattice points of Vlying in the plane z = 1. These two polygons give rise to the same toric surface, S,i.e., one polygon can be derived from the other by sliding each edge in a direction



INFLECTIONS OF TORIC VARIETIES 29normal to that edge. Another way to say this is that the two polygons have theforms P (E) and P (E0) for two ample divisors E, E0 on the toric surface S, (cf. x2).The toric variety determined by P is P(OS(E)�OS(E0)), giving (3). �Remark 3.6. In this remark, we describe more carefully the mappings in Theo-rem 3.5, (2), i.e., those coming from truncated cylinders. In R3 , with coordinatesx; y; z, let P be a polygon sitting in the x; y-plane. Assume that P is a polygonallowed by Theorem 3.2, i.e., it gives rise to a mapping of a surface with specialosculating spaces. The cylinder over P is C(P ) = fp+ (0; 0; z)j p 2 P; z 2 Rg. Totruncate C(P ) so that the corresponding toric 3-fold is smooth, �x a vector (e; e0; 1),where e; e0 are arbitrary integers, and let � be the plane normal to (e; e0; 1). Thetruncated cylinder corresponding to � consists of the points of C(P ) on or betweenP and �. The truncated cylinders in Theorem 3.5 are exactly those constructed inthis way.The one-dimensional cones of the fan, �, for the 3-fold corresponding to oneof these truncated cylinders are the one-dimensional cones of the fan, �00, for thetoric surface corresponding to P (sitting in the x; y-plane in R3 ) and two more,generated by (0; 0; 1) and �(e; e0; 1). The projection map R3 ! R, forgetting the�rst two coordinates, maps � onto the fan, �0 � R for P1. Let ~�0 be the subfanof � with one dimensional cones generated by (0; 0; 1) and �(e; e0; 1). Then� = f~�0 + �00j; ~�0 2 ~�0; �00 2 �00gThus, according to [Oda, Proposition 1.33], the toric variety corresponding to thetruncated cylinder is an equivariant �ber bundle over P1 with �ber isomorphic tothe toric surface corresponding to P . The bundles appearing in Theorem 3.5, (9),can be analyzed similarly. References[B, P, T] E. Ballico, R. Piene, and H. Tai, A characterization of balanced rational normalsurface scrolls in terms of their osculating spaces II, Math. Scand. 170 (1992), 204{206.[B, C] V. Batyrev and D. Cox, On the Hodge Structure of Projective Hypersurfaces in ToricVarieties, Duke Math. J. 75 (2) (1994), 293{338.[Cox] D. Cox, The Homogeneous Coordinate Ring of a Toric Variety, J. Algebraic Geom.4 (1995), no. 1, 17{50.[Dye] R. H. Dye, The extraordinary higher tangent spaces of certain quadric intersections,Proc. Edinburgh Math. Soc. 35 (1992), 437{447.[Ful] W. Fulton, Introduction to Toric Varieties, Annals of Math. Studies, 131, PrincetonUniversity Press, 1993.[F, K, P, T] W. Fulton, S. Kleiman, R. Piene, and H. Tai, Some intrinsic and extrinsic charac-terizations of the projective space, Bull. Soc. Math. France 113 (1985), 205{210.[Gr�u] B. Gr�unbaum, Convex Polytopes, Pure and Applied Math., vol. XVI, IntersciencePublishers, John Wiley and Sons, 1967.[Gug] O. Gugenheim, In
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