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ABSTRACT. Curves in Grassmannians are analyzed using the special structure of the
tangent bundle of a Grassmannian, resulting in a theory of inflections or Weierstrass
behavior. A duality theorem is established, generalizing the classical duality theorem
for projective plane curves. The appendices summarize basic information about
principal parts bundles and their application to studying the inflections of curves in
projective space.
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Introduction

This paper develops Joe Harris’s idea for classifying curves in Grassmannians
based on the special structure of the tangent bundle of a Grassmannian. A map of
a curve, X, into a Grassmannian is given by a vector space, V', of globally spanning
sections of some vector bundle, £, on X. To this, we associated a sequence of
vector bundle quotients

called derived bundles and define higher differential ranks and torsion sheaves. Our
goal is then to explain the geometry behind these constructions. The main tools
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2 DAVID PERKINSON

we use are principal parts bundles and the closely related osculating bundles, in the
spirit of Piene’s work [Pil]. Main facts about these bundles are relegated to the
appendices and are assumed throughout the main body of the paper.

Derived bundles are defined in §1 and their connection with principal parts bun-
dles is presented in §2. Piene’s osculating bundles appear in §4. They are used
to formulate a key result, Theorem 4.2, which states that the surjections between
derived bundles, (x), lift to give surjections between osculating bundles

(%) Vx — E — GHE;) — G*(Ez) — ...

This property is used to characterize derived bundles in Theorem 4.6. It is also the
key idea behind Theorem 5.1, which is a refinement of the normal form for a curve
in a Grassmannian due to Griffiths and Harris, [GH2].

The normal form for curves in Grassmannians can be interpreted to explain the
geometric meaning of derived bundles and differential ranks. Locally, a curve in
a Grassmannian is given by the span of vectors parametrized by the curve. It
might happen that some of these vectors are derivatives of others. Roughly, the
differential rank is the minimum number of vectors needed such that they, along
with their derivatives up to various orders, determine the map to the Grassmannian.
The higher differential ranks express the orders of the derivatives. This is made
precise by Theorem 5.1.

In certain situations, a calculation of ranks will show that the surjections to the
osculating bundles in (%) are isomorphisms. This is the idea behind Theorem 6.2.1,
which is used to recover a result of Griffiths and Harris, [GH2, p. 386] characterizing
curves with differential rank one: each comes from a curve in projective space by
taking a cone over an associated map of some order. An associated map of order ¢
for a curve in projective space sends a point on the curve to its ¢-th osculating space
(the space spanned by the derivatives of order < ¢ of a local parametrization of the
curve).

The formalism of our vector bundle constructions suggested one of the main
results of the paper, a duality theorem for curves in Grassmannians, Theorem 7.1.
In the case where FE is an osculating bundle for a curve in projective space, this result
specializes to give Piene’s duality theorem, [Pil], which is the modern expression
of the classical duality theorem for curves in projective space. (The most special
case is the fact that the double dual of a projective plane curve is the curve, itself.)
As an application, we discuss the birationality of the associated maps, (Proposition
3.3.1).

The torsion sheaves measure the inflectionary behavior of a curve in a Grass-
mannian. In the special case of a curve in projective space, their lengths are known
as stationary indices: these are the numbers appearing in the generalized Pliicker
formulas describing the way a curve flexes.

The paper ends with several examples: curves in Grassmannians coming from
taking “joins of lines”; curves of degree three; a relation between the degree of
a bundle generated by global sections and its possible differential ranks; and the
sequence of differential ranks and torsion numbers (lengths of torsion sheaves) pos-
sible on the projective line.

E. Ballico has continued the study initiated in this paper, [Bal], and has gener-
alized some of the results to higher dimensional varieties, [Ba2].
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1. Derived Bundles

We study a map of a smooth curve over an algebraically closed field, £, into
the Grassmannian of r-dimensional quotients of an n-dimensional vector space V'
over k:

(1.1) [ X—=>GV,r)=G1P(V)=G

or equivalently, a surjection

(1.2) »:Vx =V, 0x - FE

where E is a vector bundle of rank » on X. The universal exact sequence on G
(1.3) 0—=+S—=Ve—-Q—0

where () is the universal r-quotient, pulls back to

(1.4) 0> Sg—Vxy 5 E—0
where Sg is the kernel of ¢. The tangent map
Tx — f*Tq = f*Hom(S,Q) =2 Hom(Sg, E)
is the same as a map
(1.5) 0=04:5 — Qx/ QF

where Qx/ = T);/lk is the cotangent bundle.

Definition 1.6. The differential rank of ¢ (or f) is the rank of the image of 0.
The torsion sheaf for ¢ (or f)is the torsion subsheaf of the cokernel of 0.

The differential rank of ¢ is the rank of 0 restricted to a generic fiber. At special
fibers, the rank of @ may drop, this being measured by the torsion sheaf.

The map 0 is now used to construct a sequence of related maps to Grassmanni-
ans.

Definition 1.7. The first derived bundle of ¢ is the vector bundle
E| = (cok(@) ® Q;(}k> [torsion
Tensoring the natural map Qx/, ® £ — cok(d) by Q)_{}k and composing with ¢

induces a surjection
¢1: Vx — By
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which factors through ¢. There is a corresponding map f(1): X — G(V,rank(Ey)).
One may now repeat the process with F; in place of E. Inductively, define the
t-th derived bundle of ¢, E;, to be the first derived bundle of ¢;_1. The bundle FE;

comes with a surjection
qbi: VX — Ei

and a corresponding map
fa): X — G(V,rank(E;))

Define the i-th differential rank of ¢, drk;(¢), to be the differential rank of ¢;_,
and the i-th torsion sheaf, tor;(¢), to be the torsion sheaf of ¢;_1. The i-th torsion
divisor is defined to be )\ length(tor; ¢ ) - « and the i-th torsion number is the
degree of this divisor.

Thus, letting ¢g = ¢, the previously defined differential rank and torsion sheaf
of ¢ may be called the first differential rank and first torsion sheaf, respectively. In
sum, we have associated with each map of X into a Grassmannian, a sequence of
maps of X into other Grassmannians, a corresponding sequence of surjections

(1.8) Vx = F—E - Ey— -
and a sequence of torsion sheaves on X. The i-th differential rank is
dI‘k,‘ q5 =rk E,'_l —rk Ez

Remark 1.9. Tensoring (1.5) by Q)_(}k defines a map

Tx/x ®Sgp — FE

whose cokernel modulo torsion is E;. We used 0 to define the derived bundles
instead of this map because it arises more naturally when using principal parts
bundles to study differential ranks, (§2).

2. Principal Parts Bundles and a Description of 0 in Local Coordinates

Although 0:Sp — Qx/;, ® E, used to define the derived bundles, was defined
by identifying the tangent bundle of the Grassmannian with a space of maps, we
will mostly use an alternate description using P*(E), the first order principal parts
of E. This is given in Proposition 2.1. The proof of Proposition 2.1 shows that
the map 0 is closely related to the second fundamental form homomorphism on the
Grassmannian.

The section ends with a description of 0 in local coordinates. It will be used
later to state Theorem 5.1 giving the normal form for a curve in a Grassmannian
and leads to a geometric explanation of the differential rank.
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Proposition 2.1. There is a commutative diagram with exact rows

0 —— SE — Vx ¢ s B s 0
(2.2) la lyl H
0 —— Qx/,® E —— PY(E) » E > 0

where the bottom row is the fundamental exact sequence and v' is the Taylor series
map (A.6). Thus, 0 is the Taylor series map v! restricted to Sg.

Proof. The Taylor series map lifts ¢, giving a map of exact sequences as shown
except we must verify that the induced map Sg — x/; ® £ is 0. There is a
diagram similar to (2.2) on the Grassmannian. The map Vg — @ to the universal
r-quotient factors through the first order principal parts of ) to give

0 —— S — Vg > (Q > 0
) s .
0 —— Qe ®Q —— PYQ) y Q > 0

Let df: f*Qq/r, — Qx/i be the cotangent map. Pull back (*) to the curve and
use the natural map f*P'(Q) — PY(E), (A.2.4), to get the commutative diagram

0 —— SE — Vx * . B > 0
s ]

0 —— f*Qop®E —— f*PHQ) » E > 0
N

0 —— Qxp®E —— PYE) » B > 0

The composite of the middle vertical maps is the Taylor series map v'; so it suffices
to show that the composite of the vertical maps on the left is 9. We see this by
noting the connection between § and the standard identification: T = Hom(S, Q).
Tensoring the map § of () by @* induces a map a: S ® Q* — Qg which one may
check, using local coordinates, is an isomorphism. The dual of « is the standard
identification. [

Applying the snake lemma to (2.2) gives

Corollary 2.3. Derived bundles can be calculated from the Taylor series map,
vl Vx — PYE):

(1) cok(d) = cok(vl);

(2) By = (cok(yl) ® Q)_(}k) /torsion;

(3) tory(¢) is the torsion subsheaf of cok(vl);

(4) drki(¢) = rk(imv?) —rk .

Hence, the first torsion sheaf of ¢ measures where v! drops rank.
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Remark 2.4. The map 0: S — Qg ®(Q introduced in the proof of Proposition 2.1
is called the second fundamental form homomorphism. It differs by a factor of -1
from the second fundamental form of [AK]. As part of the proof of Proposition 2.1,
we showed that 0 may described as the pullback via f of the second fundamental
form on G, composed with df ® 1 where df: f*Qg/r — {2x/ is the cotangent map.

Local Description of 0. We now use Proposition 2.1 to give a description of 0
in local coordinates. Looking locally, we may assume X = Spec A and identify Vx
with A®™ (choosing a basis for V), E with A®", and Sg with A®"~". The map ¢
becomes the matrix M = (a;;) whose rows will be denoted by v; fori =1,...7r. Let
L = (b;;) be the inclusion S — Vx and denote its columns by w; fori =1,... ,n—r.
Recall the standard derivation, d: A — €4/,. We may assume that €24/ is trivial
with generator dz. For a € A, define a’ by the equation

da = d'dz

Define v, = (aly,...,a’ ). Finally, identifying P'(E) with (A97)92 = A9?" a5 in

9 Yin

(A.4), diagram (2.2) becomes

0 — pon—r L1 Uil e N/C L
o
2.5 la: ol l Ur H
(2.5) (v;-wj) 0/1
v
0 —— A% . A ——

o Tl

where I, is the r x r identity matrix. For details, see (A.4) and (A.6.4.3). Since
v; - w; = 0, the following “dual” description comes from the product rule:
(2.6) 0= (v} wy) = (—v; - w))
where wj = (b, ..., b,;).

For a “more local” description of 0, take A to be the local ring at some point
x € X with local parameter z. The completion of A is then isomorphic to the
power series ring k[[z]], and the inclusion of A into its completion allows us to view
the v;’s and w;’s as functions of z. The derivatives we must take are then just
ordinary derivatives of power series. Finally, looking in the fiber at z, we get a
nice interpretation of 9. Consider the parametrized family of (n — r)-dimensional
subspaces of V:

A(z) = span{wi(2),...,w,_(2)}

In the fiber at x,

(2.7) 9: A(0) — V/A(0)
> wi(0) = > w;(0)
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Dually, using (2.6), take the parametrized family of r-dimensional subspaces of V*

Y (z) =span{vy(2),...,v.(2)}
and in the fiber at x,
(2.8) 0:Y(0) — V*/71(0)
>0 (0) = a0 (0)
This agrees with [GH2, p. 384, 2.1]. At most points, the rank of this map is the

differential rank of ¢. At special points, the rank may drop, and this is measured
by the torsion sheaf.

3. Functorial Properties of Derived Bundles

We consider two types of functorial properties of derived bundles: one coming
from maps between bundles, and the other from maps between curves. As an
application, the latter can be used to show that the associated maps, (B.4), are
birational.

Proposition 3.1. Let V, W be k-vector spaces and E, F' be vector bundles on X.
Suppose there is a commutative diagram

VX L)WX

al v

E 1 F

where the vertical maps are surjective. Then there are maps between derived bundles
fi+ E; — F; such that
Vx % Wx

¢i71l lwifl

By % B,

l l

commutes for i > 1. (The vertical maps are the natural ones. Define Ey = E,

Fo=F, fo =f, ¢o = ¢ and b9 = .) There are also maps between torsion
sheaves:

gt tori(¢) — tori(1))
(1) If f is surjective, so are the f;. In this case, for all i > 1,

rk B —rk F > zi:(drkj(@ — drk;(¢))

(2) If f is an isomorphism and ¢ is surjective, then the f; and g; are isomor-
phisms;



8 DAVID PERKINSON

Proof. The proof is a straightforward diagram-chase using (2.2) and the functori-
ality of principal parts bundles and Taylor series maps (Appendix A). O

Corollary 3.1.1. With the notation of Proposition 3.1, if drky ¢ = rk E and f is
surjective, then drky ¢ =k F'.

Proof. This follows immediately from (1). The hypotheses imply that E; = 0 and
f1 1s surjective. Thus, Fy = 0 and the result follows. [

Proposition 3.2. Let Y be a nonsingular projective curve over k, E a bundle
onY, and ¢y:Vy — E any surjection with V a k-vector space, as usual. Let
f: X — Y be a finite, separable morphism with X a nonsingular projective curve
over k. Pulling ¢y back via f gives ¢x: Vx — f*E, and we may consider its
derived bundles (f*E);.

(1) f(E:) 2 (f*E); (as quotients of Vx );
(2) length(tor;(¢x)) = length(f* tor;(dy)) + drk;(¢y) length(€2x/y).

Proof. Since E; = (E;—1)1, it suffices to show (1) for the case i = 1. We can show
(1) using local coordinates, but it is easier to use the duality theorem, (7.1). On
Y, there is the exact sequence, (1.4),

(%) 0—=+Sg—=W —=FE—0

Consider diagram (2.2) for the dual of this sequence:

0 —— B Uy g » 0
() Jow o

0 —— Qy/,®Sy —— PY(SE) » S5 > 0
Corollary 7.1.3 of the duality theorem says that

ker Oy, = (E1)*
Pulling back () to X gives the exact sequence
(1) 0— f*Sg = Vx — f*E—0
Consider (2.2) for the dual of this sequence:
0 ——  fEr I, yp U e L

0 Jons E |

0 —— Qx/p ® f*Sy —— PYf*Sy) —— f*Sy —— 0

Corollary 7.1.3 says that
ker 9y = ((f"E)1)”

Thus, we need to show that (f*ker dy, )* = (ker 0y, )* as quotients of Vx.
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There is a natural map, f* Pl(S]*;;) — Pl(f*S]*;;), (A.2.4). By Proposition A.3.4
and (A.6.3.5), it induces a map from the pullback of (xx) via f to (). In particular,
there is a commutative diagram

j*o
frkerdy, — fPE* = f*Qy ® f*S%

l H Jrer

ker&/,X E—— f*E* EEm— QX/k®f*SE'

By

Since f is separable, the cotangent map df: f*Qy/, — Qx/ is injective, ([H, p.
300]). Further, f is flat, ([H, p. 299]), hence f*kerdy, = ker f*0y, . Therefore,
it follows from the snake lemma that the left-most vertical map is an isomorphism
compatible with the natural maps to V. Taking duals gives (1).

To prove (2), we proceed as in the proof of (1) but without taking duals. Again,
it suffices to prove the result for i = 1. We have diagram (2.2) and its counterpart
on X:

0 —— f*Sg — Vx OX , R > 0
(® Jox E |
0 —— Qx/, ® f*E —— PY(f*E) s f*E > 0

As before, (A.3.4) and (A.6.3.5) give a map of commutative diagrams (2.2) — (®).
In particular, there is a commutative diagram

* f*6¢Y * *
[ —— [y @ [°E

| oo

[*Sp —— Qxu® f*E
6¢X

From this, we get the commutative diagram with exact rows
0 —— f*imdy, —— [*Qy; @ f[*E —— [*cokdy, — 0

l oo !

0 —— imdy, —— Qxp®f*E —— cokdp, —— 0

where the left vertical map is surjective. Since df is injective with cokernel Qx/y,
the snake lemma shows there is an exact sequence

0 — f"cokdy, — cokdy, — Qx/y @ fTE —0

Finally, we consider the torsion sheaves in the commutative diagram with exact
rows
0 —— f* tory ¢y —_— f* cok8¢y —_— f*Qy/k@)f*(El) — 0

l l J

0 —— tory ¢X E—— cok8¢x —— QX/k(X)(f*E)l — 0

(2) follows by applying the snake lemma to this diagram and taking degrees. [
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Example 3.2.1. If E = G*(£) for a line bundle £ as in (B.2), then Proposition
3.2 and Theorem 8.1.1 recover Proposition B.3.6 which shows how the inflectional
behavior for curves in projective space changes under covering maps.

3.3. Birationality of Associated Maps. Let f: X — P(V) be a map of a
smooth projective curve, birational to its image. Recall the t-th associated map,
fi: X — GLP(V)
x + Osct (f)

sending a point to its osculating space of order ¢, (for definitions, cf. B.4).

Proposition 3.3.1. Suppose that the image of f is not contained in a hyperplane.
Let t < m, and assume that the characteristic of k is zero or greater than t and the
degree of the t-th osculating bundle for f, (B.2). Then the t-th associated map, f¢,
s birational to its image.

Proof. Let f be determined by the surjection

o:Vx — L
The t-th associated map corresponds to the surjection
(%) pt:Vyx — GHL)

(cf. B.4.2.4). The idea of the proof is that the ¢-th derived bundle of u' turns out
to be L. Thus, we can recover f from f;.

At least f; is not constant, for otherwise f(X) would lie in a linear space of
dimension ¢ < m, which contradicts the definition of m. Factor f; as

X%y Ma,

where Y is the normalization of f;(X). Since f; is not constant, g is finite, and
degg < degG'(L£). Hence, with our assumption on the characteristic, g is also
separable; we want to show that it is an isomorphism. The map h corresponds to
a surjection

Vy = F

which pulls back to (%) on X. In Proposition 6.3.1, we will show that the ¢-th
derived bundle of G*(£) is £. Hence, by Proposition 3.2

L= (G"(L)): = g"(Er)

as quotients of V. Therefore, the natural map Vy — E; determines a map hofY
into projective space factoring f:

X5y Mpw)

Since f is birational to its image, deg g = 1. In other words, X =Y, as desired. [J
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4. Characterization of Derived Bundles via Osculating Bundles

This section presents a main result of the paper, Theorem 4.2. It states that the
sequence of derived bundles

Vi B E - B — Ey— ...

lifts through the natural maps from Piene’s osculating bundles

Vi B B = G B — GX(Ey) — ...

This property is used to: characterize derived bundles in Theorem 4.6; give a
geometric interpretation of the sequence of differential ranks in §5, (Theorem 5.1);
and recover a result of Griffiths and Harris describing curves with differential rank
one in §6, (Corollary 6.2.2). We also use Theorem 4.2 to see that the sequence of
differential ranks decreases, (Corollary 4.3).

Osculating Bundles. The following definition is due to Piene, [Pil]:

Definition 4.1. The image of the Taylor series map, V:;): Vx — PY(E), is called

the osculating bundle of order t for ¢. We denote it by G*(¢) or just G'(E) when
¢ is clear from context. (It is a bundle since it is a torsion free sheaf on a smooth
curve.) It comes with a natural surjection

pt: Vx — GHE)

The natural surjections, P*(E) — P*~!(E), induce surjections G*(E) — G'"'(E).
(For the definition of the Taylor series map, cf. (A.6); for generalities about oscu-
lating bundles, cf. (A.8).)

Locally, we think of ¢: Vx — E as being the one-parameter family of subspaces
of V* spanned by the rows of ¢, and we think of ut:Vxy — G'(E) as being the
1-parameter family of subspaces of V* spanned (at a generic point of X) by the
rows of ¢ and their derivatives up to order ¢, (A.6.4).

The immediate connection between osculating bundles and derived bundles is
clear from (2.3) which states that

cok 0 = cok(v?) = cok(GH(E) — PY(E))

and hence
E, = <c0k(G1(E) — PY(E))® Q)_(}k) [torsion

Characterization of Derived Bundles. The next theorem will show that the
map E — E; factors through the natural surjection G*(E;) — E;. Roughly, if we
think of ¢;: Vx — E; and ¢: Vx — E as parametrized families of subspaces of V*
spanned by the rows of ¢; and ¢, respectively, the next theorem says that each
subspace in the family Vx — E contains a subspace spanned by the rows of ¢; and
their derivatives up to order . Theorem 4.6 shows that this property characterizes
derived bundles.



12 DAVID PERKINSON

Theorem 4.2. Assume the characteristic of k is 0 or greater than ¢ + 1. Then
there are surjections G*(E;) — GV (Ej11) compatible with the natural maps from
Vx and compatible with the natural surjections to lower order osculating bundles,
i.e., so that the following diagram commutes

G'(Ej) —— G™Y(Ejp)
GHE) —— G'(Bjt)
In particular, there are maps
Vx — E — GYEy) — G*(Ey) — - -

compatible with the natural surjections from Vx and to the E;’s. These maps are
functorial in E, (3.1).

Proof. For ease of notation, we will construct the maps for £ and E1, but the same
argument works for E; and F;;,. Let 7: E — E; be the natural surjection.
Consider the commutative diagrams, (2.2),

0 —— Sk — Vx * . F > 0
g l oo
0 —— Qx/y® E —— PY(E) » B > 0
and
0 ——  Sg —  Vx P, B > 0
- Jo b
0 —— Qx/® By —— PY(E)) — B > 0

By (A.6.3.4.2), the natural map 7: ¥ — Ej induces a map of commutative diagrams
(%) — (%) which we think of as a 3-dimensional commutative diagram. As part of
this diagram, we have the maps

( * %) SEﬂ>QX/k®EEJl)QX/k(X’E1
The composite is zero since, by definition of 7, the natural surjection
Qx/1 ® E — cok(0)/torsion = Qx/, @ By

is1®m.
Now consider the maps

0 > Sg > Vy ——— E — 0

(1) |
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Chasing the diagram (%) — (#*) and using the fact that the composite (x * *) is
zero gives that the induced map Sgp — P'(F)) is zero. Thus there is an induced
vertical map in (1), E — P(E;). This map factors through the image of Vél to
give the surjection

E — GY(E))

Applying the functor G'( - ) and using the isomorphism of (A.8.3) yields the sur-
jections
GHE) — GYG'(E1)) = G*(Ey)

Applying G*( - ) and (A.8.3) repeatedly gives the desired maps
G(E) — G"(Ey)

The compatibility requirements follow from those in (A.8.2) and (A.8.3). Functo-
riality in £ comes from the functoriality of the maps in (%) and (*%)—which was
already used to construct the map (x) — (**)—and of the maps in (A.8.3). The
restriction on the characteristic comes from (A.8.3). O

Of course, rk(E;) > rk(F;4+1) since E; — E;11, but the differences in these ranks
also decrease:

Corollary 4.3. The differential ranks decrease, i.e., drk; ¢ > drk;41 ¢. (Note that
there is no condition on the characteristic of k.)

Proof. Proposition 4.2 shows that E;_; — Gl(Ei). Thus,

vk B;_; >tk GY(E;)
=1kPY(E;) —tkE;y; (2.3)
=2rkB; — vk E; =
drk; ¢ =rk E; 1 — vk E; > vk E; — vk B = drk;4q1 ¢ O

The following proposition is a useful technical tool:

Proposition 4.4. Consider G'(E)y, the first derived bundle of p*: Vx — GY(E).
(1) The surjection GY(E) — G*"Y(E) factors through the natural map G*(E) —
G'(E); to give surjections

G'(E) — GY(E), — G Y(E)

These maps are compatible with the natural surjections to lower order os-
culating bundles; i.e., the following diagram commutes

G"(E) —— GY(E); —— G7YE)

l l l

GYE) —— G"YE), —— G"(E)
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All these maps are compatible with the surjections from Vx. (1) and (2) are func-
torial in E and hold with E;, j > 0, in place of E. (3) is functorial in E; and holds
with Ej, j > 1, in place of Ey.

Proof. Consider the commutative diagrams, (2.2),

0 —— ker p1 —  Vx —F 5 GYE) —— 0

g o ! |

0 —— Qy/, ® G(E) —— PYGY(E)) —— GYE) —— 0
and

0 — ker =1 — Vx 2L GITYE) —— 0

- - l |

0 — Qx/ ® G HE) — PYG"HE)) — G"HE) — 0

The natural surjection m: G*(E) — G'~!(E) induces a map of commutative dia-
grams (%) — (#%), (A.6.3.4.2). In particular, there are commutative diagrams

ker p* — ker pt =1

(t) 0y l Jam_l

Qx/k ® G'(E) SR LI Qx/1 ® G'~YE)
and

PHG(E) —— G'(B)

®) | &

PYG"HEB) —— G"Y(E)
However, considering the natural maps from Vx shows that m factors through
PY(G*"H(E)) in (}). Chasing the diagram () — (+x) then shows that (1®@m)0d,: =
0 in (f). Therefore, there is an induced map cok(9,:) - Qx/x @G~ (E). Modding
out by torsion and tensoring by Q)_(}k gives

G'(E) — G"(E), — G 1(E)
compatible with the natural maps from Vx. In the diagram

G'(E) —— GYE), —— G YE)

! | |

G~YE) —— G"YE), —— G 2(E)
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the outer square clearly commutes. The middle vertical map comes from (3.1); thus,
the left square commutes. Since the horizontal arrows are surjections, this means
the whole diagram commutes. This proves (1). Since (x) and (xx) are functorial in
E, (A.6.3.4.2), so are the maps we have constructed.

To prove (2), apply G*( - ) to (1) with i = 1 to get G'(GY(E);) - G'(E).
However, by Proposition 4.2 we get a map in the opposite direction: G'(E) —»
GY(GY(E);). Comparing ranks shows that the two maps must be isomorphisms. (A
surjective map of bundles of the same rank must be an isomorphism.) Functoriality
in E follows from the corresponding property in (1) or in (4.2).

Proposition 4.2 says that £ — G!(E1). Applying Proposition 3.1 gives F; —»
GY(E1);. To prove (3), use (1) with ¢ = 1 and with F; in place of F to get
G'(E1)1 — E;. The result follows by comparing ranks as in the previous paragraph.
Functoriality also follows as above.

Finally, replacing F or E; by E; as in the statement of the proposition does not
change the argument we have just given. []

Corollary 4.5. Assume the characteristic of k is zero or greater than i. Then
drk; p*=t > drky pt.

Proof. First note that by Proposition A.8.3, G*(E) = G'(G*"!(E)) as quotients of
Vx. Therefore, by (3.1),
(%) drk; p* = drk; GH(G*H(E))

Now, replace E by G YE) in (1) of Proposition 4.4 to get G (G *(E)); —
G Y(E). Tt follows that,

rk G Y(F) < rk G!
— drk; GHGH(R))
— 1tk G"HE); — dik; GHGTYE))  (2.3)
— kG H(E); — diky pf (%)

=21k G HE) -1tk GTHE), — dtky it =
drk; p'=' =1k G YE) =tk G"YE), > diky pf O

Theorem 4.6. (Uniqueness of Derived Bundles) Assume the characteristic of k is

0 or greater than i. Let F' be a bundle on X with vtk F' =rk E;, and let Vx — F' be
any surjection. Suppose there is a commutative diagram

Vx Vx

L

E —— GYF)

Then F' = E; as quotients of E.
Moreover, suppose there is a string of surjections

Vx - F' = ... - "
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with each F7 a bundle on X with tk F7 = rk Ej;, and suppose there are commutative
diagrams

Vx Vx
| [
E —— GI(FY)

for j =1,...1; then the induced isomorphisms f;: FJ =~ E; are compatible with the
natural surjections

Fi-1 fi—1 s Ej—l

J J

Fi—t g

Proof. Proposition A.8.3 gives isomorphisms G’ (F) = GY(G/~Y(F)) for j = 1,.. .1,
(using the assumption on the characteristic of k). Combining this with Proposition
4.4, (1), yields

(%) G/ (F)1 = GHG™H(F)) — GT7H(F)
Apply this result along with Proposition 3.1, (2), repeatedly:
E - GYF) =
E; - GY(F); = (G'(F)1)i—1  (def. of derived bundles)
- GTHF)ic1 = (G (F)1)ime (%)

— F
This constructs a map E; — F which must be an isomorphism since it is a surjection
of bundles of the same rank.

The compatibility statement follows since the maps of (3.1), (4.4, (1)), and
(A.8.3) respect the surjections G/ (F) — G~} F). O

5. Geometric Interpretation of the Sequence of Differential Ranks

The surjections

Vx 5 E— GHE)) — G2(Ey) — -

of Theorem 4.2 suggest a way of taking local coordinates for ¢. Over the complex
numbers, using different methods, Griffiths and Harris, [GH2], also present these
local coordinates, which they call the “normal form” for a curve in a Grassmannian.
We will see how this normal form is determined by the sequence of differential ranks
of ¢ and show what is “normal” about it.

Diagram (2.2) was used to give an alternate construction of 0. Recall diagram
(2.5), expressing (2.2) in local coordinates on an open affine U = Spec A of X. The
map ¢: Vx — E becomes a matrix with rows v; for ¢ =1,...,7.
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Theorem 5.1. (Normal Form for a Curve in a Grassmannian) Suppose there are
¢ elements uq,...,uy of A9™ such that

_ ’ (i1) / (ie)
(V1,00 y0p) = (U1, U, oyt e Uy Uy ey Uy )

In other words, the rows of ¢ consist of the derivatives of the u;’s. Then

(1)
(2)

(3)

drkl ¢ S f;
If drky ¢ = £, then all the higher differential ranks are determined by

?;1,...,2@.'
drkm¢:|j{j‘ij2m—1}

and shrinking U so that it does not contain points in the support of the tor-
ston sheaves—i.e., excluding a finite number of points—the map ¢;:Vx —
E; restricted to U can be expressed in local coordinates as a matriz with
rows

(ug,ul, .. .,ugil_j), R Y T/ ,ugie_j))
where uz(j”_j) is omitted if i, < j. (These local forms for the ¢;’s are

compatible with the surjections E; — F; 1 in the natural way.)

Suppose that Ey = 0 for some t, (cf. Remark 6.1.2). Near any point not in
the support of a torsion sheaf, it is possible to take coordinates as above so
that drky ¢ = £, i.e., so that the conclusion of (2) holds.

Proof. With the u;’s as above, ul?) . w; = 0 for t =0,...,4;. So the only rows of 0
that are possibly nonzero are

(%)

J

(u;ij+1)-wl,...,U;ij+1)'wn—r)7 .7:1776

Hence, rk(v; - w;) < £. This shows (1).
If drky ¢ = £, then the rows displayed in (x) must be A-linearly independent.
The map F — F1 is defined by tensoring the composite

by Q%7

Qx/ ® E — cokd — (cok 0) /torsion = Qx/p, @ Ey

Thus, by shrinking U if necessary to exclude the torsion of cok d, the

map F — E; becomes a projection

A®T g

onto factors of A®" corresponding to the rows of zeros in 0. Hence, there is a
commutative diagram

i (ig)qt
d):[ul,...,u; 1),...,'U,g,...,ue t/]transpose

VX —

H l

Vx > Eq

¢1:[u1,...,u521_1),...

(ig—1)
7u2,”'7u£ ]transpose



18 DAVID PERKINSON

We use the convention that ug-”_l)
u;’s remaining.

The preceding diagram shows the second part of (2) for j = 1. The first part of
(2) is true by supposition for m = 1. For it to be true for m = 2, we need to show
that drks ¢ = s. We first show that the w;’s and their derivatives up to certain

orders are linearly independent. By (2.3),

is omitted of ¢; = 0. Let s be the number of

rkPY(E) — 1k By = rk(span{vy, ..., v, v}, ...,0.})

= rk(span{uy,..., ugiﬁl), R 77 P u(gi”l)})
But
tkPY(E) —1k By = 27k E — bk E — dik; ) =r 4+ £
. Ce (i1+1) (ie+1) .
By counting, this implies that wy,...,u; S TN Ty are independent.
To ease notation, assume i1,...,i; > 1. Use (2.3) again to get

rk P*(E;) — rk By = rk(span{ui, . . .,ugil), U, ult)Y)
=r—4{+s

But rk Pl(El) = 2rk /1. Therefore,

drkop =1k Ey —tkEe =r— {0+ s —rk E;
=r—L4+s—(r—1{)

=S

as required.

Replacing £ = Ey by E1 and E; by Es in the argument just given shows the
first part of (2) for m = 3 and the second part for j = 2, and so on. Thus, (2)
follows by induction.

We will prove (3) by induction on ¢ where ¢ is the smallest integer such that
Ei11 = 0. The case t = 0 is true trivially. Assume the result true for t = k — 1,
and suppose Ej41 is the last nonzero derived bundle. Let s = drks ¢ = drk; ¢,
and r; = rk E1, and apply the induction hypothesis to ¢,: Vx — E;. Thus, we can
choose local coordinates so that ¢, has the form

_ _ (1) 15 )]transpose
$1 =My = [uy,...,uy ,...,us,...,ugS)] p

We will use the surjections Vx — E — G'(FE;) of Theorem 4.2 to choose local
coordinates for ¢. First, we describe p': Vx — G'(E}) in local coordinates. By
shrinking U, we can write v': Vx — P!(E1) as a block matrix

]

M/

(k) A®™ Ly A9

where M7 is the matrix whose entries are the derivatives of those of M7, (A.6.4.4).
The bundle G'(E}) is defined to be the image of this map. By shrinking U more
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if necessary—to avoid the support of the torsion sheaf—we may assume Gl(El)
is a subbundle of P*(E}), i.e., the quotient is a bundle. Therefore, we can take
coordinates so that the rows of ! consist of those rows of (xx) that are not clearly
linearly dependent, namely,

(i1+1) _

is+1)1transpose
[wy, ..., uq ey U, - ul )]

Counting shows these rows must be linearly independent; the number of rows listed
equals the rank of G'(E}):

rkPY(E;) —1kGY(Ey) =1k Ey =11 — s —
r+ s =1k G'(E))

By Theorem 4.2, the surjection from E to E; factors to give m: E — G(E}).
Shrinking U, trivialize E so that 7 is just projection onto the first factors; then,
locally, there is a commutative diagram

Vx—d)—) E

| [ e 7 0]

Vx —— G'(£1)

w
Therefore, ¢ has the form
i1+1 i1 t
[ul,...,ugl ),...,us,...,ugZ + ),u5+1,...,ur_T1] ranspose
for some uj, j =s+1,...,r —r1. Since r —r; = drk; ¢, ¢ has the desired form. [

Remark 5.2. The key step of the induction argument establishing (3) of the the-
orem was to use the map E — G'(E;) of Theorem 4.2 to choose local coordinates
for £, having already chosen them for E;. Therefore, we regard the maps of The-
orem 4.2

Vx 5 E — GY(Ey) — GX(E) — ...
as the global expression of the normal form for a curve in a Grassmannian.

Example 5.3. In light of (2) of the theorem, we might say that taking derived
bundles, “chops off” highest order derivatives. Suppose that the map ¢ has differ-
ential rank four, given in local coordinates (away from the torsion sheaf) by

_ P I ’ / 1transpose
¢ — [Ulv Uy, Uy, Uy , U2, Uy, Uy, U3, Ug, U4, U4]

Then ¢, comes from decreasing the orders of the derivatives each by one.:

_ / " / transpose
¢1 — [Ulv Uy, Uy, U2, Ug, U3, ’LL4]

and the second differential rank is also four. Repeat to get

¢2 — [Uh u/17 uz]transpose

The third differential rank is two. Finally,
¢3 = [u1]

The fourth differential rank is one, and all higher differential ranks are zero. If the
local description of the original ¢ also included a constant vector, us, then us would
appear in each of the local descriptions of the ¢;’s; the differential ranks would not
change, (6.1.2).
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Example 5.4. Let f:C — G(C*,3) be determined by the map

1 2z 22 23
0 1 22 =
. 00 1 =2
¢z: C > (Cg

In other words, our map ¢: Ve — FE is a map of trivial bundles and has the above
form in the fiber at z € C. Since the kernel of ¢ has rank one, the differential
rank of f must be one. In fact, for z away from the torsion (the third torsion sheaf
is supported at two points), the rows of ¢, span the same space as the following
vector and its first two derivatives

(32, =1+ 62,1 — 32% + 62%, 2> + 32°)

6. Curves with Differential Rank One

One of the original motivations for this paper was to use Piene’s osculating
bundles to show that curves of differential rank one are cones over associated maps.
This fact was originally observed by Griffiths and Harris, [GH2|, using analytic
methods. The result appears as a corollary to Theorem 6.2.1.

We then calculate the derived bundles of the osculating bundles for a curve in
projective space. This calculation allows us to show that the associated maps are
birational, (3.3), and to recover Piene’s duality theorem for curves in projective
space from our duality theorem for curves in Grassmannians, (§7).

The section begins by showing how to form cones over curves in Grassmannians.
Forming a cone does not affect the differential ranks or torsion sheaves of the original
curve. The map, f, is cone over a curve in a smaller Grassmannian if its derived
bundles are not eventually zero.

6.1. Cones. Let f: X — G(V,r) and ¢:Vx — FE be as usual, and let W be a
vector space over k of dimension m. The cone over f with vertex W is the map

Cw(f): X =GVeaeWr+m)
r— flx) W

It corresponds to the surjection
P®did
CW,p):VxeWx — Ed Wy

Forming a cone does not change differential ranks or torsion sheaves.

Proposition 6.1.1. The i-th derived bundle of the cone, C(W, ), is the direct
sum of Wx and the i-th derived bundle of the original map, ¢,

(EoWx); 2 E;, & Wx
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These isomorphisms are compatible with the natural surjections between derived
bundles. In particular, drk; C(W, ¢) = drk; ¢ and tor; C(W, ¢p) = tor; ¢ for all i.

Proof. Since the Taylor series map and the natural surjections between principal
parts bundles respect direct sums (A.1.3, A.6.3.1), diagram (2.2) becomes

0 — SE®0 — Vx ® Wx ME@W)(—)O

lc’):c’)d)@c’)zd J{V;@V}d H
0 — Q@ E)® Uy, ® Wx) — PHE)® P (Wx) — Ee&Wx — 0

Hence, cok 0 = cok 0y @ cok 0;q = cok 0y @ (Q2x /1, ® Wx ). Therefore, the torsion of
cok 0 is the same as the torsion of cok dy, and the first derived bundle of C'(W, ¢)
is

(cok d/torsion) @ Q)_(}k = F o Wx

as claimed. Replacing E by E1, E1 by Es, etc., shows that the i-th derived bundle of
C(W, ¢) is as claimed. The statement about differential ranks then follows directly
from the definitions

dI‘ki C(W, ¢) = I'k(E &, WX)i—l - I‘k(E &, Wx)z =rk Ei—l —1k Ez = dI‘kZ ¢

The compatibility statement follows from the corresponding one for diagram (2.2)
by (A.6.3.4.2). O

Remark 6.1.2. (Removing Trivial Factors) Consider the sequence of derived bun-
dles
Vx B E 5B — By — ...

Since these maps are surjections and F has finite rank, eventually Ey = E;; for
g > 0. In this case, drk;+1 ¢ = rk Ey —rk Ey 3 = 0. In other words, drk; ¢, = 0.
The next proposition will show that, with an assumption on the characteristic of &,
E; must be trivial, and is, in fact, the largest trivial factor of E. The preceding
proposition shows that ¢ is a cone over a curve in a smaller Grassmannian.

Proposition 6.1.3. If drky ¢ = 0 and the characteristic of k is zero or greater
than deg E, then f: X — G s a constant map and E s trivial. Conversely, but
with no restriction on the characteristic, if E is trivial, then drky ¢ = 0.

Proof. 1f drky; ¢ = 0, the tangent map Tx — f*Tg is zero. Composing f with the
Pliicker embedding, G — PV, gives a map X — PV determined by

AN AVx = det E =L

where r = rk E. The tangent map of this composite is still zero, so drk; A"¢ = 0.
By Corollary 2.3, (4), the Taylor series map, A"Vx — P'(£), is not generically
surjective. Let im A"V denote the image of the natural map A"V — I['(X, L).
Assuming the characteristic of k is zero or greater than deg F/, Theorem B.2.3 says
that dim(imA"V) < 2, ie., dim(imA"V) = 1. Thus, £ is trivial, and f must
be constant. Since E is generated by global sections and its first Chern class,
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c1(E) = c1(L), is zero, it follows that E must be trivial ([F, 12.1.8]). (To see that
the restriction on the characteristic is needed, consider the Frobenius map.)

On the other hand, if F is trivial, then f is clearly constant and drk; ¢ = 0. The
latter assertion can be seen using local coordinates or by noting that, by (3.1), we
may assume Vx = E. Thus, Sg =0 and drk; ¢ =0. O

6.2. Curves with Differential Rank One. In Theorem 4.2 we showed that the
sequence of derived bundles lifts through natural maps from the osculating bundles:

Vx 5 E— GYE)) —» G2(Es) — ...
In some situations we can calculate the ranks of the osculating bundles to show
that these maps are isomorphisms.

Theorem 6.2.1. Let
Vx 5HE— Ey — -

be the sequence of derived bundles of ¢. Assume

d, fori=1,... m+1

drk; ¢ =
ki ¢ {0 fori>m+1

and assume the characteristic of k is zero or greater than deg Em,+1 and m. Then
there are isomorphisms E; = G™ " (E,,) for all i, compatible with the natural maps
from Vx and with the natural surjections

E; —=— G™YE,)

l l

B,y —— G™"YE,)

Proof. By (6.1.2), Ep,41 is trivial. By (6.1.1), we may assume E,,;1 = 0. (Here,
for the compatibility statement, we use that the Taylor series map and the natural
surjections of principal parts bundles respect direct sums, (A.6.3.1, A.2.6).

Let 2 < m, and consider the exact sequence

Vl_
Vx —5 PY(E;) — cokvy — 0

By Corollary 2.3, (1),

rk F; 11 = rkcok vy, =1k PY(E;) — 1k G'(E;)
= 2k E; — 1k G1(E;)

But, by hypothesis, rk F; 11 = rk E/; — d. Therefore,

rkGH(E;) =1k E; +d =1k E;_;
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By Theorem 4.2,
(%) Ei_1 — GH(Ey)

This map must be an isomorphism since it is a surjection between bundles of the
same rank.

The theorem follows by descending induction. For i = m, (x) says FEp_1 =
GY(E,,) as required. Assume that F; = G™*(E,,) with the desired compatiblilties.
By the isomorphisms of (%) and (A.8.3) we get

Eioy = GY(E) = GHG" 7 (Ey)) = G" 4 (B,)

The compatiblity requirements follow from those of (4.2) and (A.8.3). The re-
striction on the characteristic is used to show that E,,; is trivial and to invoke
(A8.3). O

The following corollary recovers a result of Griffiths and Harris, [GH2, p. 386].
If : X — P(V) is a map of a curve into projective space, recall that the t-the
associated map

gt: X — Gt]P)(V)
x + Oscl (g)

sends a point to its osculating space of order ¢, (B.4). If g corresponds to a surjection
Vx — L for some line bundle on X, Piene has shown that the ¢-th associated map

corresponds to a surjection
VX — Gt (,C)

(cf. B.4.2.4).

Corollary 6.2.2. Assume that the characteristic of k is zero or sufficiently large
(as specified in the proof, below). If drky E =1, then E = G™ (L) ® Wx where L
1s a line bundle quotient of E and W a quotient of V. In other words, f: X — G
1S a cone over an associated map.

Proof. By Corollary 4.3, drk;_; ¢ > drk; ¢. Therefore,

1 fori=1,---,m+1

drk; ¢ =
ki ¢ {0 fore >m+1

for some m. Assume the characteristic of £ is zero or greater than deg E),, 11 and m.
As at the beginning of the proof of the Theorem 6.2.1, we use (6.1.2) to conclude
Ep41 is trivial and use (6.1.1) to reduce to the case where E,,1; = 0. The result
follows from Theorem 6.2.1 withd =1 and £L=F,,. O

Remark 6.2.3. The get a geometric interpretation of Theorem 6.2.1, think of
dm:Vx — E,, as being the 1-parameter family of subspaces of the dual space V*
locally spanned by the rows of ¢,,; then for ¢ < m, Theorem 6.2.1 says that ¢;
corresponds (generically) to the 1-parameter family of subspaces of V* spanned by
the rows of ¢,, and their derivatives up to order m — i. If E,, is a line bundle,
we are taking the derivatives of just one vector, which we think of as tracing out
a curve in projective space. The space spanned by the vector and its derivatives is
an osculating space for the curve.
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6.3. Derived bundles of Associated Maps. The next proposition is, roughly,
the converse to Corollary 6.2.2. It calculates the derived bundles of the osculating
bundles of a curve in projective space.

Proposition 6.3.1. Let L be a line bundle, and let V — I'(X, L) be a map of vector
spaces with image an (m+ 1)-dimensional subspace of generating sections. Assume
that the characteristic of k is zero or that X 1is projective and the characteristic of
k is greater than deg L and m. Then the i-th derived bundle of p™:Vx — G™ (L)
is G™ (L)

G™(L); = G™ (L)

and drk; p™ =1 fori=1,...,m+ 1. (Define G™*(£) = 0.)
Proof. By the uniqueness theorem, (4.6), it suffices to show that for each i,

(*) G™(L) —» GHG™ (L))
and that
(%) rk Gm_i(ﬁ) =1k G"™(L);

Proposition A.8.3 says that G1(G/7(L)) 22 GI(L) if the characteristic of k is zero
or greater than j. It follows immediately by induction that in our case,

G'(G™T(L)) = G™(L)

This shows (x).

The proposition now follows by induction. By Theorem B.2.3, rk G*(£) =i + 1
fori =0,...,m+ 1, (cf. B.2.3.3). Assume that we have shown (xx) for i < k —1
so that G™(L); = G™*(L) for i < k — 1; this is at least true for k=1. By (2.3),

rk G™ (L) = tk PY(G™ (L)1) — rkim v (uf® )

=1tk PH(G™(L)p-1) — tk GH(G™ (L)x-1)
= 1k PH(G™ (L)) — 1tk GHG™ R (L))
=1k PHG™FTL(L)) — 1k G™F2(L)  (A.8.3)
=2(m—k+2)—(m—k+3)
=m—k+1=1kG™ %)

Hence (%) holds for i = k as well, and G™ (L), = G™ %(£). O

7. Duality

This section presents a main result of the paper: the duality theorem for curves
in Grassmannians. It answers two natural questions. First, from the exact sequence

of (1.4)

0= Sg—Vy -3 E—0
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we get the surjection
¢ Vi — S

What are its derived bundles and osculating bundles? Second, what are the kernels
of the natural maps to the derived bundles and osculating bundles of ¢

¢i:Vx — E;,  phVx — GY(E)

If E is the osculating bundle for a curve in projective space, the answer to the
second question is exactly Piene’s duality theorem for curves in projective space,
[Pil]. To prove our duality theorem, we adapt Piene’s proof, which simplifies in the
more general context.

After proving the duality theorem, we recover Piene’s theorem, explaining its
connection to the classical duality theorems of the nineteenth century. We then
consider the special case of a plane projective curve in order to highlight the fact
that these duality theorems are fundamentally an expression of the product rule of
ordinary calculus, (cf. [K2]).

Theorem 7.1. Take the dual of the exact sequence 0 — S — Vx 2 E 0 to
get
¢ Vi — S

with its first derived bundle, (S§)1, and first osculating bundle, G*(S%). Then
ker(pg: Vx — GH(E)) = ((Sp)1)”

and
ker(¢1: Vy — E1) = G'(S})*
Hence, there is a commutative diagram with exact rows:

1

0 —— ((SH)1)* s Vx —— GYE) —— 0
0 —— SE > Vx ¢ s FE  — 0
0 —— GY(S%)* s Vx =2y B — 0

Proof. 1t suffices to establish the bottom rectangle of the diagram: the top then
follows by replacing E by S}, and taking duals. Let K denote the dual of the kernel
of Vi — G'(S%). The natural surjection G'(S%) — S% induces a commutative
diagram

¢

0 —— SE — Vx > B > 0
) | |
0 —— GY(Sy) —— Vx —2 5 K )
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where ¢ and « are the natural maps. We will first show that «a factors through
the surjection £ — E; (as quotients of Vx). The key step—once we set up the
appropriate diagrams and take local coordinates—is just the the product rule of
ordinary calculus. The result then follows by showing that F; and K have the same
rank and, hence, are isomorphic.

Consider the commutative diagram, (2.2),

0 —— Sk — Vx >y B > 0
g b

0 —— Qx/,® E —— PY(E) » B > 0
and the analagous one for 1

0 —— GYSL)* —— Vyx —0 s K » 0
= ool

0 —— Qx;,® K —— PY(K) y K > 0

The map « induces a map of commutative diagrams (x) — (x%) by (A.6.3.4.2). In
particular, we have
Sg —— G'(Sp)"

3¢l law
QX/k QFE &) QX/k QK

By definition, F; = (cok8¢ ®Q)_(}k) [torsion. Thus, to show that « factors

through FE4, it suffices to show that (1 ® a) o 0y = 0. Chasing around (x) — (¥x),
it suffices to show that the following composite is zero:

IJl
Sg — Vx =5 PY(K)

We will check this using local coordinates. Consider the following commutative
diagram (notation to be explained):

U1
[w1a~~~7wn—r] Uy-

SE > VX > F
®

(54 | H |
1 (o) v

P (Sy)* > Vx > K
[wl7"-7wn77“7w;_7"')w;—,,_r] U]_

Uy
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The composite
(vy)"
Sp — PL(SH)* — Vy

is the same as the composite
Sg — GHSE)* — Vx

of (1) since G'(S%) — S% factors through P*(S%) — S%.

Here is the meaning of the w;’s, v;’s, and w;’s. Given a point x € X, take an
open affine set U = Spec A about x, small enough so that E, Sg, K, and Qx/, are
trivial when restricted to U. Identifying Vx with A®™ and E with A®" on U, the
map ¢ becomes

U1
Uy
Aen 2o, gor
Each v; is a row vector: v; = (a;1,...,ai,) where a;; € A. The u;’s and w;’s

are defined similarly (let £ = rk K), but each w; is a column vector. A local
trivialization of Sg determines one for Sg. This, along with a local trivialization
of Qx/ determines one of P!(S%), (A.4.8), so that locally the Taylor series map
is given by the transpose of [wy,...,w,_p, w],...,w/,_.] as indicated in (* * %),
(A.6.4.4). (For the definition of the derivative w, cf. (A.4.1) and (A.6.4.2).)

With similar notation, our problem is to show that the following composite is
Z€e10:
transpose

[wi,...;wn—r] [wt,...,ug,ul,...,up]

SE >VX >P1(K)

From (* * %), we know that each dot product w; - u; = w} - u; = 0. By the product
rule, it follows that w; - u} = 0 as required.

We have shown that « factors through £ — FE;. Hence, there is a commutative
diagram
$1

0 —— kedy —— Vx —2s Bl —— 0

l H J

0 —— GY(S)" —— Vx y K > 0

It remains to be shown that rk K = rk E;. (Then E; — K is an isomorphism since
it’s a surjective map of bundles of the same rank.) Calculate:

rk K =n —rkG'(Sg)
=n —1kP'(S}) + rk(SH)1 (2.3)
=n— 21k SE +rk(Sg)]
=n —rk S — drk; Sg
=1k £ —drk; Sj
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Thus,

E,—- K =

tk iy =tk E —drky E >k K =1k E —drk; S =

drk, Sy > drk; E
with equality if and only if tk F; = rk K. To see that we get an equality here,
dualize everything; consider the exact sequence

0B vy sy o
Repeating the whole argument with ¢+ in place of ¢ gives that
drk; £ > drk; Sg

and we are done. [

The theorem can be used to calculate the kernels of the maps to the derived
bundles and osculating bundles. This corollary and the one following it suggest
alternative definitions of derived bundles.

Corollary 7.1.2. Let the characteristic of k be zero or greater than i. There are
exact sequences

and dually,

0 — ((Sp)i)* — Vx 25 Gi(E) — 0
Proof. Apply the duality theorem to each E; successively, and use Proposition A.8.3
to say that G'(G*~1(S%)) = G*(S%).

To define the derived bundles of ¢, we looked at the cokernel of 0: Sg — EQ{Qx -
The next corollary shows what happens if we consider the kernel instead.

Corollary 7.1.3. ker(9:Sg — E ® Qx/;) = ((Sp)1)* = ker(p': Vx — GYE)).

Proof. Corollary 2.3 gives ker 0 = kerv! = ker u!, and then apply the theorem.
Il

Combining Corollary 7.2.1 with Theorem 6.2.1 gives
Corollary 7.1.4. Assume that

d, fori=1,...,m+1
drk; ¢ = y :
0, fori>m+1
and assume the characteristic of k is zero or greater than deg E,, 11 and m. Then,
fori=1,...,m, there is an isomorphism of exact sequences
0 —— Sp —— Vx —2 E; — 0
| H |
(“;J_ )" T



CURVES IN GRASSMANNIANS 29

7.2. Piene Duality Theorem. (cf. B.5) Let V C I'(X,£) be an (n + 1)-
dimensional vector space of generating sections of a line bundle on X and f: X —
P(V') the corresponding map to projective space. The map of vector bundles cor-
responding to the ¢-th associated map of f is

pt:Vyx — GHL)

Corollary 7.2.1. (Piene Duality Theorem, [Pil]) Let X be a smooth projective
curve, and assume that the characteristic of k is zero or greater than n and the
degree of L. Let K = ker p"~1 with its natural map Vi — K*. Then

ker :U’i — Gn—l—i(K*)

Proof. By Proposition 6.3.1, G*(£) is the (n—i — 1)-th derived bundle of G™*~!(L).
Therefore, the result follows from Corollary 7.1.2. [

In sum, Piene’s theorem is that there is a commutative diagram with exact rows:

Vx —— G"(L) —— 0

H |

0o —— K » Vx 22— G"HL) —— 0
(%) 0 — GHEK*)* s Vx s G —— 0
0 —— G HK*)* yVx 22 L —— 0

The maps on the right-hand side of this diagram correspond to the associated maps

fi: X — GyP(V')

x + Oscl,

sending a point to its osculating space of order ¢. The duals of the maps on the
right, coming from the kernels of the p'’s, correspond to the ¢-th dual maps

fi: X — Grn_t—1P(V7")
T H;

sending a point to the set of hyperplanes containing an osculating space of order .
The map determined by the natural surjection Vg — K™,

ff=rhX =PV
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sending a point to its osculating hyperplane, is called the dual of f. Diagram (x)
shows that

(f)' = fa-t—

and in particular, the double dual of f is f, itself
(S =r

7.3. Duality Theorems and the Product Rule. The key step in the proof of
the duality theorem is just the product rule of ordinary calculus. Its role is most
easily seen in the special case of a curve in the complex projective plane.

Think of the curve as being swept out by a vector, v(z), in affine three-space
where z is a local parameter for the curve. Let w(z) be a vector normal to the
subspace spanned by v(z) and v’(z). Then w(z) sweeps out the dual curve. To find
the dual of the dual curve, repeat this construction with w in place of v. To see
that we get back the original curve, it suffices to check that v(z) is normal to the
subspace spanned by w(z) and w’(z). In other words, we must show that

v(z) -w(z) =0 and v(z) w'(z) =0
By definition of w(z), we know that
v(z) -w(z) =0 and v'(2) - w(z) =0
Therefore, the result follows from the product rule:
0= (v(2) - w(z)) =0'(2) - w(z) + v(2) - w'(2) = v(2) - w'(2)

Let us now compare this rough sketch of a proof of the duality theorem for plane
curves with the duality theorem presented in this section. If the curve is given by
a surjection Vx — L where £ is a line bundle on the curve, let K be the kernel
of the corresponding map to the osculating bundle, p': Vx — G!(£). The duality
theorem says that there is a commutative diagram with exact rows

0 —— K s Vx —— GHL) —— 0
0 —— GYEK™)* y Vx —2 5 L —— 0

Locally, we think of ¢ as the vector v(z). The map p! becomes a matrix with
rows v(z) and v'(z), (at least at a generic point). The vector w(z) gives the map
Vg — K™, defining the dual curve. The exactness of the bottom row of the diagram
is the statement that v is normal to the subspace spanned by w and w’.
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8. Torsion Sheaves

By Corollary 2.3, the torsion sheaves can be calculated using the Taylor series
map v': Vx — P!(E) since cokd = cokv!'. The torsion sheaf measures where the
Taylor series map drops rank. This paper focuses mainly on differential ranks; the
analysis of torsion sheaves is far from complete. What is lacking is a convenient
local parametrization for a curve in a Grassmannian such as that which exists
in the special case of a curve in projective space (B.1). However, it is clear that
torsion sheaves generalize the classical notion of stationary indices, (Theorem 8.1.1),
and thus describe what might be called the inflectionary behavior of a curve in a
Grassmannian. There are other ways of measuring this behavior, and we will briefly
mention these. We end the section by seeing what the duality theorem says about
torsion sheaves.

8.1. Stationary Indices. In the special case of a curve in projective space, the
lengths of the torsion sheaves are the classical stationary indices measuring how a
curve flexes in space.

Let V C I'(X, £) where dimV = n + 1 and £ is a line bundle on the smooth
projective curve X. Assume the characteristic of k is zero or greater than deg £ and
n. By Theorem B.2.3, tkG*(£) =i+ 1 for i = 0,...n. In particular, G"(£) = Vy.
We have defined the map

p" vy — GPHL)

and seen in Proposition 6.3.1 that the string of derived bundles of p"~1 is
Vx =G HL) = G2 L) = ... = L

The inflection numbers, «;, defined and discussed in Appendix B.1, satisfy the
equation

length(cok(G*(L) < PY(L))) = deg P*(L) — Z a;

fore=1,...,t.

Theorem 8.1.1. The i-th torsion number for p»~1 is
length(tor; ") = ap_iy1 — i

the so-called (n — i)-th stationary index.
Proof. Let
Vx 5 E = E — ...
be the sequence of derived bundles for any map ¢. Letting Sg, denote the kernel

of the composite, ¢;: Vx — FE;, there is a commutative diagram

f—)
SEi—l —_— SE

I3

8%—1‘{ Jf’m

Qx/p @ F;_1 — Qx/, Q E;



32 DAVID PERKINSON

with 7o dg, , = 0. This follows from the definition of derived bundles:

Qx/1 ® E; L cok 0y, , [torsion

Thus, there is an induced map
(*) SE:/SE._, > Qx/k @ E;

with cok j/torsion = Qx/, ® E;y1. In our case, E; = G™™""(L), and the Piene
duality theorem (7.2.1) says that Sp, = G'(K*)* where K = kerp”~!, a line
bundle. Therefore, (x) becomes
Gz(K*)*/Gz—I(K*)* i> QX/k: ® Gn_i_l(ﬁ)
with cok j /torsion = G"~*72(L). Counting ranks implies that j is injective.
Consider the exact sequences

0 — GHK™")*/ GHE")" L Oy © GP7YH(L) — cok — 0
and '
0 — torgp1 p" ! — cok — Qx/, ® G 73(L) — 0
Taking degrees yields
length(tor; 1 p" ') = deg(cok) — deg(Qx/i, ® G"'2(L))
= deg(Qx/x ® G"77H(L)) — deg(GH(K*)")
+ deg(G'H(K)*) — deg(Qux/e ® G"T'72(L))
Now use the exact sequence
0— G K"* = Vx =G "HL) =0
and let d; = deg(G*(L)) to get
length(tor; 1 ™ 1) = dp_i—1+ (0 —i)(29 — 2) + dp_i_1
- dn—i - dn—i—Z - (n —7— 1)(29 - 2)
=2dp—i—1 —dp—iy —dp_ij—2+29 —2
= Qi — Op—i_1 (Pliicker formula, B.3.3) O

Remark 8.1.2. Let D; be the divisor corresponding to the i-th torsion sheaf. The
proof of Theorem 8.1.1 can be modified to show that

Di =Y (an—iy1(x) — on_i(w)) -

rzeX

as divisor classes. (The Pliicker formulas can also be interpreted as a statement
about divisor classes.)
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Example 8.2. Another special case where we can calculate the torsion numbers
is when X is a projective curve, rk Vx = 2rk F, and the differential rank of £ is as
large as possible, namely, » = rk F/. In that case, the Taylor series map is injective
and generically surjective. Therefore, the torsion number is

deg P'(E) — deg Vx = deg P! (E)
=degQx/p @ F +deg B (A.3.2)
=2degE +1(29 - 2)

This calculation appears in [Cn|, (also cf. [Pi2]). If this torsion number is zero,
then ¢ = 0 and degF = r. So X = P! and F = &!_,0(n;) with Y. n; = r.
Moreover, since Vx — FE is surjective, each n; is nonnegative and, in fact, positive
since otherwise the first derived bundle would have a trivial factor instead of being
zero, (6.1.1). Thus,

E=0(1)°%"
and V =T'(P, O(1)%").
8.3. Other Measures of Inflection. Canuto [Cn| has suggested three measures
of the inflectionary behavior of a curve in a Grassmannian. The first comes from
embedding the Grassmannian in projective space by the Pliicker embedding and
considering the inflectionary numbers for the curve in that projective space, (B.1).
A second set of invariants of the embedding of the curve are the orders of vanishing
of the sections of E in im(¢: V' — I'(X, E)). The third measure comes from looking
at the order of contact of the Schubert cycles with the curve at a given point. Canuto
shows that these notions are not equivalent for a curve in a general Grassmannian
(as they are for a curve in projective space). We have not analyzed the relation of
those measures of inflection with our torsion sheaves.

8.4. Torsion Sheaves and the Duality Theorem. Take the dual of the exact
sequence 0 — Sg — Vx % E to define a map

¢t Vi — Sy
There are corresponding maps to the osculating bundles, (§4),
Hé)ﬁ Vx — G*(S3)
We use the duality theorem, (7.1), to show
Proposition 8.4.1. Assume the characteristic of k is zero or greater than i. Then

tor; ¢ = tory ,ufﬁL

Proof. By (7.1.2), it suffices to show the result for the case i = 1. Since the torsion
sheaves are supported on a finite set of points, the question is local. Near any point
x € X, take local coodinates as in §2. so that d4 becomes a matrix

A@n—r (Ui'wj) A@r
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Using dual cordinates, the map 041 may be written

A@r (w;'vj) A@n—’r
However, as in (2.6), since v; - w; = 0, the product rule says that

(*) a¢ = (1)/ . w]) — _(Ui . ’LU/-) _ a(t;fnSpose

i J
The local ring at x is a p.i.d., and any linear map between free modules over a p.i.d.
can be diagonalized by changing the basis of the domain and codomain (cf. [J, p.
176]). Therefore, near x, we may assume Oy is a diagonal matrix. In that case, in
light of (*), we see that the cokernels of 4 and dy. are isomorphic. [

9. Examples

This section consists of several examples involving differential ranks and derived
bundles. In (9.2), we describe all surjections of the form

Vpl — 0(1)697“

where O(1) is the tautological bundle on projective space. We think of such a
surjection as a join of lines in projective space and show how to decompose it into
a join of osculating spaces to rational normal curves. In (9.3) and (9.4), we try to
find relations among the differential ranks of a surjection Vx — E, the dimension
of V, and the rank of E. In (9.5), we classify the surjections with deg F = 3 using
differential ranks and torsion sheaves. Finally, in (9.6), we show that every sequence
of differential ranks and torsion numbers (subject to obvious restrictions) can occur
on the projective line.

Example 9.1. From the definition of differential ranks, it is immediate that
drk; ¢ < min{rk Sg,rk E'}

Suppose that tk £ = n — 1, and E is generated by n linearly independent global
sections. Let V C I'(X, E) be the vector space spanned by these sections, and
consider the natural map ¢: Vx — E. It follows that the differential rank of ¢ is
either one or zero. Therefore, either E is trivial (at least in the case where the
characteristic of k is zero, (6.1.3), or E =2 G™ (L) & Wx where £ is a line bundle
quotient £ and W is a quotient of V', (6.2.2). In other words, f: X — G is the cone
over an associated curve.

Example 9.2. Let O(1) be the tautological bundle on P}. We will determine the
differential ranks of any surjection of the form

d): Vpl — 0(1)697'

where V' is some k-vector space of dimension n. (To avoid trivialities, we will always
assume that ¢ is injective on global sections.) Geometrically, we are taking r lines
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in P*~1 all isomorphic to some fixed P!, say ¢;:P* =+ L; CP* L fori=1,...,r,
and considering the map to the Grassmannian of (r — 1)-planes in P"~1

(9.2.1) f:Pt— G, Pt =G(V,r)
p > span{Y1(p),... ,¢r(p)}

It is assumed that the L; and 1; are chosen so that this map is defined everywhere.
We will see that up to a change of coordinates on the Grassmannian, every such
map is formed as follows: Take n — r disjoint linear subspaces of P*~!

a1 a2 Ay, —
Pe, P, .., Pon-r

where > a; = r. (The a; will be determined by the higher differential ranks.) At
each point p € P!, we can chose an osculating hyperplane to the rational normal
curve of degree a; in P so that the span of these hyperplanes will be f(p). Thus,
we may say that f comes from the join of the osculating developables of rational
normal curves in disjoint linear subspaces of P*~ !,

To describe this, let W = T'(P!,O(1)). For each m > 0 consider the natural
evaluation map

S™W = T(PY, O(m)) 2> O(m)

corresponding to the rational normal curve of degree m in P™, and consider the
associated Taylor series map (A.6)

m—1
S™W L— P™HO(m))
corresponding to the (m — 1)-th associated map sending a point on the rational
normal curve to its osculating hyperplane, (B.4, B.3.1).
On P!, every bundle is a direct sum of line bundles; so

ker p = @, O(—a;)

where Y a; = deg O(1)®" =r.

Theorem 9.2.2. Assume the characteristic of k is zero or greater than r. There
are 1somorphisms giving a commutative diagram

2 | |

a;—1 o
DI 54 W = @iy PH(0(ar)
The torsion sheaves, tor; ¢, of ¢ are all zero, and the differential ranks are

drk; ¢ = #{j | a; > i}
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In particular, drky ¢ =n —r.

Proof. From (A.3.2), it follows that the degree and rank of P"™~(O(m)) are both m.
Hence, there is an exact sequence

0 — O(—m) 2 DB, 0(m)) 2" P 1(O(m)) — 0
For m > 0, it is known, ([PS], [Pe2]), that
P"1(O(m)) 2 O(1)"

Therefore the dual map, j*, is injective on global sections. Counting dimensions
implies that it is, in fact, an isomorphism on global sections. Therefore, we can
choose an isomorphism between I'(P!,O(m)) and its dual so that the following
diagram commutes

*

L(P!, O(m))%, —2— O(m)

(P, O(m))pr ——— O(m)

where ev is the natural evaluation map.
Now consider the kernel, K = @;0(—a;), of ¢ and the corresponding exact
sequence

(1) 0= K — Ver 5 01)% -0

Taking global sections shows that I'(P!, K) = 0 since we have assumed that ¢ is
injective on global sections. Hence, a; > 0 for ¢+ = 1,...,n — r. Taking global
sections of the dual of () shows that the natural map V* — (P!, K*) is injective.
Counting dimensions as before, shows that it is an isomorphism. Therefore, up to
an automorphism of V', the map VJ;, — K™ is

O L (P, O(a:)) = &1 Ofas) = K

1=

Therefore, the required isomorphism, (%), follows from ().

To see the claim about the torsion divisors and differential ranks, first note that
taking derived bundles and differential ranks commutes with direct sums. This
follows, for example from (2.3) and the fact that the Taylor series maps respect
direct sums, (A.6.3.1). The evaluation map

(P, O(m))p — O(m)

corresponds to a rational normal curve. It is well-known that such curves are
noninflectionary, (B.3.1). This means that each associated Taylor series map

VTP, O(m))pr — PH(O(m))

is surjective (for i < m), i.e., G'(O(m)) = P*(O(m)). Thus, it follows from Propo-
sition 6.3.1, that the j-th derived bundle of P*(O(m)) is P*~7(O(m)). The claim
about the higher differential ranks follows. The fact that the torsion sheaves of ¢
are zero follows by direct calculation (or by Theorem 8.1.1). [
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Remark 9.2.3. Further calculations in [Pel] indicate that the differential ranks
in the case just considered determine the generality of the positions of the lines, L;.

Example 9.3. For ¢: Vp: — E, if the dimension of V' is large enough relative to
the degree of E, then the differential rank must be greater than one. Consider the
line bundle O(d) on P! with d > 0. Let V C T'(P!, O(d)) be a sub-vector space of
dimension n + 1 of globally generating sections, i.e., so that the corresponding map

¢I Vpl — O(d)
is surjective. We have the osculating bundle of order r, (§4 and A.8):
p':Ver — G"(O(d))

Proposition 9.3.1. Assume that the characteristic of k is zero or greater than d;
then

deg G"(O(d)) > (r +1)(n—1)

Proof. By Theorem B.2.3, rk G*(O(d)) =i + 1 and

deg G*(O(d)) = (i +1)(d — i) — Z a;

j=1
for i = 1,...,n where the o; are the inflectionary numbers for ¢. In particular,
(%) deg G"(O(d)) = (r + 1)( Za,

and Vp1 = G"(O(d)) so that
(xx) Z a; = (n+1)(d—n)

Combining (x) and (x) and using the fact that a; < a;41 gives

( * %)
degG"(O(d)) = (r+ 1)(d—r) = (n+1)(d—n) +arp1+ - +an

)
> (r 4+ 1)(d— 1) — (n+ D(d = 1) + (0 — )
Again using that o; < ajy1, (%) yields
ra, > (r+1)(d—r) —deg G"(O(d))
Along with (x * ), this says
degG"(O(d)) > (r+1)(d—7r)— (n+1)(d —n)

" (n - T) ((r+1)(d—r) — deg G"(O(d)))

_—

deg G"(O(d)) > (r +1)(d — r) — (%) (n +1)(d — n)
> (r+1)(d - 1)
>(r+1)(n—r) O
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Note. To see that equality is possible in Proposition 9.3.1, let d = n and V =
(P, O(n)). Then G"(O(n)) = P"(O(n)), (cf. B.3.1), and degP"(O(n)) =
(r4+1)(n—r), (cf. A.3.2).

Corollary 9.3.2. Assume the characteristic of k is zero. Let E be a vector bundle
of rank r on P, and let V C T'(P', E) be a subspace of dimension n of generating
sections. If the corresponding surjection

Vpl — F
has differential rank one, then

degE>r(n—r)

Proof. This follows directly from Corollary 6.2.2 and Proposition 9.3.1. [

Example 9.4. Corollary 9.3.2 shows that if n is large enough compared to the
degree of E, then drk; ¢ > 1. It would be nice to find similar bounds for n deter-
mining when drk; is larger than any given value. At one extreme, if V = ['(P!, F)
with E any bundle (with no trivial factors) generated by global sections, then ¢ has
full differential rank, i.e., drk; ¢ is as large as possible, namely rk E/, and E; = 0.
The reason for this is that if £ = @]_,O(n;), then by (A.6.3.1), the Taylor series
map 1/(}) breaks up into a direct sum of the Taylor series maps

v I(PY, O(ng))pr — PHO(ny))

fori =1,...,r. Each of these Taylor series maps is surjective (by direct calculation
or (B.3.1)). Thus, by (2.3), B4 = 0.

We might expect that if £ is a bundle with no trivial factors on an arbitrary
curve, X, and generated by global sections, then the natural map I'( X, E)x — F
would have full differential rank. But this is not the case:

Proposition 9.4.1. Let E be an indecomposable bundle of rank r on an elliptic
curve X with 2r > degEE > r. Then E is generated by global sections, but the
natural evaluation map

»:T'(X,E)x = F
does not have full differential rank, i.e., E1 # 0.

Proof. First note that such bundles, E, exist, ([Br]). If ¢ had full differential rank,
then, by definition, the map

0:Sg — QX/k QRF
is generically surjective. This says that
dimI'(X, E) > 2r

(cf. 9.1). In our case, deg F > r implies that F is generated by global sections
and dimI'(X, F) = degE < 2r, ([Br, Lemma Al]). Hence, ¢ cannot have full
differential rank. [
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Example 9.5. We classify all surjections Vx — E where X is an arbitrary smooth
projective curve and deg F = 3. First, consider the bundle £ = O(1) @ O(2) on
PL. We want to see which differential ranks and torsion numbers are possible for a
surjection

¢:Vor — E

We may assume by (3.1) that V C T'(P!, E). To simplify matters, also assume that
the characteristic of k is zero.

dimV =5: IfdimV = 5, then V = I'(P!, F), and ¢ is the ordinary evaluation map.
It can be represented by the matrix

r y 0 0 O
0 0 22 zy o?

Hence, the corresponding map f:P' — G1P* comes from joining points on a line
in P* with matching points on a conic in a disjoint plane. The union of the lines
f(p) is a rational normal scroll. It is straightforward to check that drk; ¢ = 2, and
that there is no torsion.

dim V = 4: In this case, drk; = 2 and tor; ¢ has length two. If the differential rank
were one, then F; would be a line bundle, and comparing ranks, the natural map
E — G'(F}) of (4.2) would be an isomorphism. Proposition 9.3.1 shows this is not
possible. Thus, drk; = 2 and

0: SE — QX/k QR F
is injective and generically surjective. The first torsion number is
length(cok 0) = deg(Q2x/, ® E) — deg Sg = 2

The torsion sheaf can be supported at one point, e.g.,

|z y 0 O
(*) ¢ = [0 22 xy oy ]
or it can be supported at two points, e.g.,

|z 0 y O
() ¢ = [0 2y oy ]

Direct calculation shows that in (x), tor; ¢ is supported at the point y = 0 and in
(%) it is supported at the points = 0 and y = 0.

Consider the maps f, g: P! — G1P3 corresponding to (), (x*), respectively. The
associated locii

{f(p) }pEJP’lv {g(p)}pEPl

are the two types of cubic ruled surfaces in P2, (cf. [E, §37]). The former comes from
projecting the rational normal scroll of degree three in P* that we just considered
from a point lying on a tangent to the scroll. The latter comes from projecting
from a general point.
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dimV = 3: If dimV = 3, then S = O(-3) is a line bundle; so drk; ¢ = 1. By the
Piene duality theorem, (7.2.1), there is a commutative diagram

0 —— 0O(-3) —j—>VP1—¢—>E——>O

l H l

0 —— GLOB) —— Vir — 2 B, —— 0

The map P! — P2 corresponding to ¢, is the dual of that corresponding to j*: V* —
O(3) = Sy,. So there are two possibilities, depending on whether j* represents a
nodal cubic or a cuspidal cubic. If the former, then E; = O(4) since the dual of
the nodal cubic is a quartic. From the exact sequences

(1) 0— Sp 2 Qx/r ® E — cokd — 0
and
(1) 0 — tory ¢ — cokd — Qx/, @ E1 — 0

it follows that tor; ¢ = 0.
If j* corresponds to a cuspidal cubic, then F; 22 O(3) since the dual of a cuspidal
cubic is a cuspidal cubic. The exact sequences (1), () show that length(tor; ¢) = 1.

9.5.1. Arbitrary Curves of Degree Three. Let E be a vector bundle of rank r
and degree three on an arbitrary curve, X, and let V' C I'(X, E) be a subspace of
generating sections with evaluation map

P Vx - E

To avoid trivial cases, assume that the corresponding map
[ X = G(V,r)

expresses X as a cubic curve in PV, ie., f is birational to its image. Therefore,
X is either a twisted cubic or a plane cubic. So either X is rational, and we are
reduced to the case just considered in example (9.5), or X is elliptic. If X is elliptic,
write £ = @™, E* where each E' is indecomposable. Since each E* is generated by
global sections, either E* 22 Ox or deg E* > rk E*, ([Br, Lemma Al]). Therefore,
forgetting about trivial factors, (6.1), there are two possibilities:

Plicker
U, PN

a) F is a line bundle and ¢ corresponds to a smooth plane cubic.

b) E is an indecomposable bundle of rank two. Then dimI'(X, E) = 3, ([Br, A.4));
so V =T(X, F). By the duality theorem, (7.2.1), there is a commutative diagram

¢

0 —— O(-3P) > Vx > E —— 0
| H |
0 —— GHO(BP))* » Vx y By —— 0

for some point P € X. By (B.3.4) and Theorem B.2.3, G'(O(3P)) = P1(O(3P)).
Therefore, deg Ey = deg G'(O(3P)) = 6. The map f: X — G1P? from ¢ gives the
envelope of tangent lines to a plane elliptic sextic. From the sequences (1) and (1),
it follows tor; ¢ = 0.
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Example 9.6. If the characteristic of £ is zero or greater than ¢, then any sequence
of differential ranks
dy > 2>dg >diy1 =0

can occur. For example, on P!, consider the bundle
E = @25 PHO(i + 1))k —dir)
For each i, there is the natural Taylor series map
v:T(P', 0%+ 1))pr — PY(O(i + 1))
Take a direct sum of d; 1 — d;12 copies of this map and then sum over ¢ to get

¢C V]pl = @5;31*(}}»17 O(Z + 1))®(di+1—di+2) . Ny

By (A.6.3.1) and Proposition 6.3.1
Ej = &= P (O(i + 1)) ®diri—di)
Therefore,

dI‘kj d) =rk Ej—l —rk Ej
t

|
—

t—1
(1 =5+ 2)(dit1 — dig2) = ) (i —J +1)(diy1 — dit2)
1 i=j

I
i

-
|
—

= (dit1 — diy2)

7j—1

i

Example 9.7. Any sequence of nonnegative integers
ki,... kn

can occur as the sequence of torsion numbers at a point. To see this, let

i
a; = E krn—jt1
i=1

for 2 =1,...,n, and define the map

f:C — G(CoH1) = p"

z s (1,20 p2tae o pbtan)
Let £ be the line bundle, C x C, on C, and consider the map of §4,
“n—l:cn+1 — Gn_l(ﬁ)

It suffices to check the following
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n—1

Claim. The i-th torsion number of p 1S Qp—jt1 — Qi = Kj.

Sketch of Proof. We need a local version of Theorem 8.1.1. The map ¢ of (A.7)
induces a commutative diagram with exact rows

0 —— GYGFY L) ——  PFL) —— ok —— 0
L Js s
0 —— PYG* (L) —— PYP" (L) —— P'(cokp ) —— 0

The map « comes from the Taylor series map C*t' — PY(G*~'(£)). By Propo-
sition 6.3.1, the i-th derived bundle of ™~ is G"™“"'(£). Hence, cok & modulo
torsion is Qx5 ® G 2(L), (cf. 2.3).

By (A.8.3), G'(G*~1(L)) = G¥(£). Therefore, in the diagram, cok; is the cok-
ernel of the i-th Taylor series map, i = k — 1,k. Theorem B.2.3, (cf. B.2.3.3)
yields

(%) length, (coky) = g + -+ + ay

Similarly, length,(cokg_1) = a1 + -+ 4+ ag_1; hence, the fundamental exact se-
quence, (A.3.2), shows that

(xx) length, (P*(cokg_1)) = 2(a1 + + ... p_1)
By Proposition A.7.8, ¢ is an inclusion. Thus, the snake lemma gives an exact

sequence
0 — coka/ker 8 — cokd — cok 5 — 0

The proof of Proposition A.7.8 shows that cokd = Qx/, ® P*=2(£). Hence,
cok ar/ ker 3 is torsion free; it is the (n — k + 1)-th derived bundle of "~ 1, Qx/), ®
GF=2(L), and ker 3 is the corresponding torsion divisor. The map, cok a/ ker 8 —
cok d is just the natural inclusion, G*~2(L) — P¥=2(L) tensored by Qx5 Hence,

length,(cok ) = a1 + -+ - + ax_2
It follows from (x) and (xx) that the (n — k + 1)-th torsion number is
length, (ker 8) = oy — a1

as required. [
Appendix A

Contents

Introduction.
A.1. Definition of the Principal Parts Sheaf
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A.2. Functorial Properties

A.3. Fundamental Exact Sequence

A.4. Local Trivialization of P*(E)

A.5. The Bimodule Structure on P*(F) and the Map d-.
A.6. The Taylor Series Map, v*

A.7. PV (F) = P™(P™ (F))

A.8. Osculating Bundles

Introduction. This appendix gathers together the main facts about principal
parts sheafs and is intended as a technical reference for the paper. For the most
part, it is a compilation of results found in [G], [K1], and [Pil], worked out in the
detail necessary for our applications. Propositions 7.8 and 8.3, used throughout the
paper, are new results.

A.1l. Definition of the Principal Parts Sheaf. Let u: X — S be a morphism
of schemes and F an Ox-module. Let A be the ¢-th infinitesimal neighborhood
of the diagonal. It is defined as a subscheme of X xg X by the ideal Z!*! where
7 is the ideal of the ordinary diagonal A = A(p). In the following diagram, let ¢
denote the inclusion map and 7y, 7o the natural projections:

A(t) —i—>XXSX£—>X

(1.1) a [

X — S

Let p=mi 04 and ¢ = mg 0 1.

Definition 1.2. P*(F) = p,¢*F = m1, (Oxxx /I ® n3F) is called the sheaf of
t-th order principal parts of F over S or the t-jets of sections of F over S.

Applying 714 the the natural surjection
(%) Oxxx /T @ T3 F — Oxxx/I' @ 3 F
gives a map
(1.3) PY(F) — P"Y(F)
which is a surjection since the sheaves on (%) are supported on A and 71|a is a

homeomorphism. Since tensor products respect direct sums, so does this surjection.

A.2. Functorial Properties. F — P’(F) is a covariant functor from the cate-
gory of Ox-modules to itself. In this section we summarize its most basic properties.

2.1. If X is noetherian, u of finite type, and F quasi-coherent, then P*(F) is
quasi-coherent. If X is noetherian, X — S proper, and F coherent, then P*(F)
is coherent, ([H, IL.5.8]). For X — S smooth, if F is locally free, so is P*(F),
(Proposition 3.3).
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2.2. Since ¢* and p, preserve direct sums, so does P*(- ).

2.3. If we restrict PY( - ) to act on locally free sheaves, then it is exact. This is
because pulling back locally free sheaves is always exact and p, is exact since it is
a homeomorphism.

2.4. Let f: X — Y be a morphism of schemes over S. There is a map
f*P(F) = PY(f*F)

This map is mentioned in [K1] and in [Pil]; we construct it in the proof of Propo-
sition 3.4, below. In particular, if X — S is a finite type, separated morphism of
noetherian schemes, e.g., a variety over a field, and U C X is an open subscheme,
then P*(F)|y = PY(F|y): this follows from a commutativity property of pullbacks
and pushforwards, ([H, I1.9.3]). We will only need this result in the special case
where X — S is smooth and F is locally free, (Corollary 3.5).

2.5. It is clear from the definition of the natural surjection P*(F) — P*~!(F) of
(1.3), that it is functorial, i.e., given a map of sheaves F — G, there is a natural
commutative diagram

PY(F) —— PY9)
P'"HF) —— P"Y(Q)
2.6. It is also clear that the natural surjections of (1.3) preserve direct sums.

A.3. Fundamental Exact Sequence. Assume now that Z is locally generated
by a regular sequence, e.g., X — § smooth, and assume F is locally free of rank r.
Apply 71, (- ® m3F) to the exact sequence

(3.1) 0—>It/It+1—>Oxxx/Zt+l—)OXX)(/It—)O
to get the fundamental exact sequence
(3.2) 0 — S*(Qx/s) ® F — PHF) — P"H(F) = 0.

where S*(Q2x/s) denotes the t-th symmetric power of the relative cotangent bundle.
One assumes that Z is locally generated by a regular sequence so that Zt/Zt+! =
St(Q), ([F, A.6.1]). Note that 7. preserves the exactness of (3.1) since the sheaves
involved are supported on A which is homeomorphic to X. By induction and the
fact that P°(F) = F we get

Proposition 3.3. Suppose X has dimension n. Let X — S be smooth and F a
locally free sheaf of rank r on X. Then P*(F) is locally free of rank r - ("jt)

Given a map as in (2.4), there is a corresponding map between fundamental
exact sequences:
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Proposition 3.4. Let X and Y be smooth S-schemes and F a locally free sheaf
onY. If f: X =Y is a morphism of S-schemes, the map of (2.4) induces a map
of exact sequences

0 — SHf*Qys) ® f*F — f*PYF) — F*P"NF) — 0

(%) lst(df)®id l l

0 — SYQx/s)® f*F —— PYf*F) — P"Hf*F) — 0

where df: f*Qy s — Qx5 is the cotangent map.

Proof. Using the notation in (A.1), let 7x ; = m; for i = 1, 2. There is corresponding
diagram for defining principal parts bundles on Y with projections my;, ¢« = 1,2.
Let 7 (respectively, J) be the ideal of the diagonal in X x ¢ X (respectively, Y xgY).
The map f induces a commutative diagram

0 — Jt/ gttt — Oy xy /Tt — Oyxy/J! — 0

l l l

0 — (f X f)*It/It+1 — (f X f)*OXxx/It+1 — (f X f)*OXxx/It — 0
Apply f*my1.( - ® 7y, F) to this diagram to get

0 — SHf*Qyys) @ f*F — f*PH(F)

! !

0 — frrye((f x ))IITH @75, F) — [ Tyae((f x [ Oxxx/TH @ 75, F)
(continuing from above)

— P — 0

J

i — f*ﬂ'Y,l*((f X f)*OXxX/It®7T;;,2f) — 0

Again, we are using the smoothness of Y’ — S to identify J*/ 7"+ with S*(Qy/s).
We also use the standard fact that taking symmetric powers commutes with pull-
backs.

Now use the maps

f*7TY,1* — 7TX,l*(f X f)*
(f X f)'my s =mxof"
WY,].*(f X f)* - f*7rX,1*

[ fe—1
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(For the first map, cf. [H, I1.9.3].) Applying these to the first sheaf on the bottom
of the previous diagram yields

Py ((f X IHIH @ 73, F) = fraya(f x I /IH @ frry.my o F
= [*fomx 1T /T @ mx 1 (f X f) 1y o F
— WX,l*It/It—i_l Y 7TX,1*7T;(72f*]:

=S5Qx/s® f*F

Similarly, f*my,1.((f X [)«Oxxx [T+ @ 7}, F) = PY(F). Finally, a similar argu-
ment applies to the sheaf on the bottom right of the diagram. We thus get (). The
left-most vertical map of (x) has the right form since df comes from the natural
map

J/T* = (f x [Z/T°

while the left-most vertical map of the first diagram of this proof is obtained by
taking symmetric powers of this map

THTH=SUT/T?) = (f x [)SUT/T?) = (f x L' /TH

(cf. [F, B.7.1]). O

Corollary 3.5. Let U be an open subset of a smooth S-scheme X, and let F be a
locally free sheaf on X. Then

PH(F)|r = P (Flv)

Proof. Apply Proposition 3.4 to the inclusion f:U — X. The case t = 1 follows
from the 5-lemma and the fact that Qp/s = Qx/s|u. The general case follows
from Proposition 3.4 by induction using the 5-lemma and the fact that pullbacks
commute with taking symmetric powers:

St (Quys) = SHf*Qxys) = 5 (Qxss) O

Note. As mentioned earlier, Corollary 3.5 is true more generally for X — S a
finite type, separated morphism of Noetherian schemes and F any sheaf. However,
we will not need this in the paper.

A.4. Local Trivialization of P*(E). Let X — S be smooth and E be a bundle
(locally free sheaf) on X. This section gives local coordinates for the jets of sections
of E. To make notation simpler, we will mainly consider the case where X — S
has relative dimension 1, e.g., a nonsingular curve over an algebraically closed field.
Remark 4.9, at the end of this section, discusses the modifications necessary for
higher relative dimensions.

Let U = Spec A be an open affine subset of X and V = Spec B be an open affine
subset of S with U C u=1(V). Let I denote the kernel of the map

ARpA— A
a®br— ab
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So I = Iy, and I/I2 = Q|y, the relative cotangent bundle of X — S restricted to
U. The ideal I is generated by {da},ca where da =1® a —a ® 1, ([M, Chapter
9]). With this notation, the exact sequence (3.2) restricted to U and with F = Ox
becomes

0— I'/ 1" = (Aep A)/I'"™ — (A®p A)/I' =0

We are free to identify Q®*|y with It/ I*+! since X — S is smooth. (We have also
used that P*(E)|y = P*(E|y), (2.4).)

Now take U small enough so that Q|y is trivial with generator dz = 1®2z—2®1.
By induction on ¢, it follows that (A®p A)/I*T! is a free A-module with basis the
image of {(dz)*}!_,. Define a map 9,: A — A by the formula db=1®b—-b®1 =
0,bdz. Inductively, define

(4.1) LA — A
by 0'b = 0,(0:'b). Finally, define the map

(4.2) Bi: (A A)/IHT! — A®HH
1 1
a®b + a(b,0,b, 5831), . H3;1))
Note 4.3. In order for this map to make sense, we make the assumption that the

characteristic of each residue field of S is zero or greater than .

Note 4.4. If X is a nonsingular curve over an algebraically closed field k¥ = S,
the completion of the local ring Ox , at a point # € X is the ring of formal power
series k[[z]] in a local parameter z. By including Ox , in its completion, we may
interpret 0°b as formal differentiation with respect to z.

We will see that ; is well-defined as part of

Proposition 4.5. f; is an isomorphism.

Proof. It suffices to show that f;(dz’) = (0,...,0,1,0,...,0) with the 1 in the
(j+1)-th component. Since dz!*! — 0, 3; is well-defined. The (£+1)-th component
of B:(dz7) is

Bi(de)op1 = B(1® 2 — 2@ 1) )11

j .
_ i (TN e i
B Z( D <z> TRAE

2=0

’ AN (i—i

R 1)

e ()0

where (Z) =0 for b > a. However,

S () (7)) = et

=1

_{1 j=t
=1 0 j#¢
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as required. [

Let E be an arbitrary vector bundle of rank r. Using (2.2) and the fact that
PY(E)|y = P*(E|y), Proposition 4.5 allows us to construct a local trivialization of

P*(E). Use the notation from above and assume, in addition, that a trivialization
Ely =2 OF" is chosen. Then

A®A
F(U, Pt(E)) = ﬁ ®4 A®T & <

AR A
Jt+1

or g
) B y (A@t-l-l)@T

where we consider (A ® A)/I*™! as a right A-module for the purpose of tensoring
over A. By abuse of notation, we will call the composite of the above maps

(4.6) B T(U,PY(E)) — (A®HH)®"
Restricting (3.2) to U gives an isomorphism of exact sequences

0 — IU,Q®®FE) — I'(UPYE)) — I'(UP"YE) — 0

(4.7) lm Jﬁt lﬂt_l

0 —— A% (asmner T gener g

The inclusion of A®? in A®*! as the first ¢ factors induces a map (A%%)®" —
(A®HHL)®T oiving a splitting of the rows of (4.7). In sum, we have

Corollary 4.8. A choice of a local trivialization of Qx/s and E determines a

local trivialization of Pt(E) for each t and local splittings of the fundamental exact
sequence (3.2).

Remark 4.9. The analysis given in this section requires little change if the dimen-
sion of X is n > 1, the main difference being that in defining the map f; of (4.2),
one must consider all mixed partials with respect to the local coordinates on X. To
be specific, consider the case of P* (L) where L is a line bundle. Take an open affine

U = Spec A so that L]y = Oy and Q|y = I//\I/2 as before. Take U small enough so
that Q|y is trivial, say OF" = Q|y;. Take the images of the standard basis elements
of O,eja" to get generators dz; = 1® z; —dz; ® 1, i = 1,...n for Q|y. Define a map

(4.10)
n—ti—t)

Be: (A® A) /It —5 A8(

il -] ’ 0<j<t, {i1,...,i; }C{1,...,n}
where 0;b is defined by the formula db =1b—-b® 1 = Z?:l 0;bdz;. As before,
one may verify that £; is an isomorphism. If E is any bundle on X, it is locally the
direct sum of line bundles, and one takes a direct sum of 3;’s to get a trivialization
of P*(E)|y. The analogue of (4.6) is

(4.11) By T(U,PL(E)) — (42("7"))er
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Diagram (4.7) becomes

0 — IU,SYN) ® E) — T'(U,PYE)) — T'(U,P"Y(E) — 0

(4.12) |2 | =

0 — (A®(n+f_1))€ar _ (AEB("#))EBr LE'L (AEB(";F_tIl))ear 0

n+t—1

i1 ) factors.

where 7 is the projection onto the first (

A.5. The Bimodule Structure on P'(F) and the Map d’. Recalling the
notation of Definition 1.2, P*(Ox) = p.«(Oa,) = p«(Ox ®Ox /T"). By definition
of p, there is a map

Ox —>p*((’)A(t)) = Pt(OX)

defining the (usual) left module structure on P*(Ox). By slight abuse of notation,
we write

(5.1) Ox — (Ox®OX)/It+1 :Pt(OX)
a—~a®l

On the other hand, we can derive the following map from ¢, (|G, 16.7.5.1]):

(5.2) dt: Ox — (OX X Ox)/zt—H
a—1®a

This defines the right module structure on P*(Ox).
As pointed out in [G, 16.7.2.1], basic properties of pullbacks and pushforwards
yield an isomorphism

(5.3) PY(F) 2 PY(Ox) ®oy F

where in order to tensor over Ox, P*(Ox) is considered as a right Ox-module.
Thus, P*(F) inherits a bimodule structure from P*(Ox). One way to see (5.3) is
to check—using the notation of (A.1)—that the natural map

P OXx)®F = 1. ((Ox ®0x) /T @ F — m1.((0x ® Ox) /T @73 F) = P(F)
is an isomorphism. By abuse of notation, we will sometimes write

Ox®0
t X X
PP =—Fm

®F
Define a map ([G, 16.7.5.1]):

(5.4) d =d': F — P"(F) =2 P'(Ox) ®o, F
s—>(1lel)®s
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This is a map of Ox-modules if P*(F) is considered as a right module. The maps
d* are compatible with the natural projections pry: P*(F) — P*"1(F), (1.3). That
is to say, pry od! = dt— 1.

Consider the case of a line bundle £ on a nonsingular curve X over an alge-
braically closed field. Using the trivialization described in (A.4) with £ = L,
identify £ with A = Oy (U) and P*(£) with A®*+! via B;, (4.6). Then the map d;
may be thought of as taking truncated Taylor expansions of sections of £

(5.5) dt: A — A%
1

1
a— (a,0,a, 5822@, ce, Zata)

A.6. The Taylor Series Map, v'. With the notation of A.1, the natural maps
u*u, — mo,my and 1 — 4,2* may be used to define what we will call the t-th Taylor
series map, (cf. [K1], [Pil)):

(6.1) v utulF — mms F
— T1alal Ty F

>~ P*(F)
If V is a sheaf on S and ¢: u*V — F any map, then there is a natural map
Vx =u*"V — v u,u*V — v u,F

Composing this with the Taylor series map yields a map Vx = u*V — P*(F) which

will also be called a Taylor series map and be denoted by 1/}; or just v? if ¢ is clear

from context. If we consider P*(F) as a left Ox-module (as usual), then v* is an

Ox-module map.
If X is a noetherian scheme and S = Spec B, then the Taylor series map is
v HY(X, F) @ Ox — PY(F)
(cf. [H, 8.5]). With the notation of (A.5), we may write this as

(6.2) H(X, F) ®p Ox — P'(F) = P'(Ox) ®oy F
sPR1I—1R®R1Rs

Therefore, we can also construct v* by taking global sections of d*: F — P*(F) and
then evaluating

HY(X, F) @5 Ox 5 HO(X, PH(F)) ®5 Ox — PY(F)

6.3. Functorial Properties of the Taylor Series Map.
6.3.1. The Taylor series map preserves direct sums since pullbacks, pushforwards,
and the map 1 — 7,¢* preserve direct sums.
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6.3.2. The Taylor series map is compatible with the natural surjections Pt(}" ) —
P!~ (F). To see this, let iy: Ay — X X5 X denote the inclusion of the thickened
diagonal (cf. A.1). The compatibility of the Taylor series map comes from applying
71«( - )73 to the natural commutative diagram of functors

1 —— gl

H |

. .
1 — 414ty

and composing with the map u*u, of (6.1).
6.3.3. If 7 — G is a map of sheaves on X, the naturality of the map u*u, — w77
gives a commutative diagram

w u, F —— PYHF)

(6.3.3.1) l l

uw*u,G — PY(G)

where the horizontal maps are the Taylor series maps and the vertical maps are the
natural ones.
In the paper, (6.3.3.1) is most often used in the following form:

Proposition 6.3.3.2. Let V and W be sheaves on S, and let F and G be sheaves
on X. Suppose we are given a commutative diagram of sheaves on X:
Vx — Wx

l l

F—— g
Then the following diagram commutes
Vx —— Wx

l l

PY(F) —— PY(9)
where the vertical maps are the Taylor series maps and the horizontal maps are the
natural ones.

Proof. This follows immediately from the expression for v* given in (6.2). O

6.3.4. Let Sg be the kernel of the map Vx — F from Proposition 6.3.3.2. Assume
in addition that X — S is smooth and F is locally free. The compatibility of
the Taylor series map with the standard projections, (6.3.2), gives a commutative
diagram that is used repeatedly in the paper:

0 —— SE — Vx s F > 0

(6.3.4.1) | | |

0 —— Qx/s@f" _— Pl(f)

v
N
v
=)

The bottom row of this diagram is the fundamental exact sequence (3.2). This
diagram is functorial in F:
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Proposition 6.3.4.2. With the notation as in (6.3.3.2), assume in addition that
X — S is smooth and that F and G are locally free. Let Sy (respectively, Sg)
denote the kernel of the given map Vx — F (respectively, Wx — G ). Consider the
natural commutative diagrams with exact rows

0 —— Sr — Vx > F > 0
() | /| H

0 —— Qx/s®F —— PYF) v > 0
and
(4 | 2| H

0 —— Qxs®G —— PYG) > G > 0

where the bottom rows of these diagrams are the fundamental exact sequences of
(A.3). Proposition 3.4 induces a natural map of commutative diagrams (x) — (x%).

6.3.5. Taylor series maps are compatible with the maps of (2.4), f*P!(F) —
P*~1(F). This is immediate from the construction of the maps of (2.4), given in
the proof of Proposition 3.4.

6.4. Description of the Taylor Series Map in Local Coordinates. Let
u: X — S be smooth of some relative dimension, F be locally free of rank r, and
V be a locally free Og-module of rank n. Assume we are given a map

o:Vx =u*V — F

We now want to give a careful local description of v*(¢) = vt. So we may assume
X and S are rings, A and B, respectively, and that F = A®" Vyx = A®" and
¢ is given by a matrix M = (a;;): A®" — A®". Define P*(A%") = I'(X, P*(F)),
and define ! accordingly. Let d: A — € 4/ be the standard derivation. Our
smoothness assumption means that 4,p is a free A-module with generators, say,
dz;. Define the map

A A

inductively as follows

(6.4.1) da = Zazia dz;
0.0 = 0.,(07a)

Note 6.4.2. If A is a discrete valuation ring and B = k is a field isomorphic to the
residue field of A, then the completion of A is isomorphic to the power series ring
k[[2]]. Emdedding A into its completion, d?a; can be thought of as the ordinary
J-th derivative of a power series. This interpretation will be relevant when X is a
smooth curve over an algebraically closed field and we consider a Taylor series map
at a fiber over a point in X.

To make the local description more intelligible, we will start out with the easy
case of relative dimension and r both equal to one, then work our way up to the
general case.
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Proposition 6.4.3. Let B — A be a map of rings with the characteristic of each
residue field of A and B either zero or greater than t. Assume S 4/p has rank one,
generated by the single element dz, and suppose given a map

M:A®" — A
where M = |ay,...,an], a; € A. Then the corresponding t-th Taylor series map
has the form
[ aq g, W
8za1 v 3zan
%8220,1 e %Of,an
lagal %aﬁan_

v(M): AP 8 > PP(A) =2 ADIHL

Proof. Let e; be the i-th standard basis vector for A®™. Define I as in (A.4) so
that Q4/p = I/I?%. By the description in (6.2),

Vi) =(1®91)®a € (AR A)/I'" e A
=1®a; € (A® A)/I"T = P'(A)
Using f3; of (4.2) to trivialize P*(A) yields

latai)

1
vi(e;) = (a;, 0,04, —0%ay, . . ., M

2177
as required. [

We will now consider the case where X — S has relative dimension one but r,
the rank of F, is arbitrary. Locally, F = A®" and the local description of the
Taylor series map follows directly from Proposition 6.4.3.

Proposition 6.4.4. Let B — A be a map of rings with the characteristic of each
residue field of A and B either zero or greater than t. Assume S 4/p has rank one,
generated by the single element dz, and suppose given a map

M: A®" — AT

where M = (a;5), a;j € A. Then the corresponding t-th Taylor series map is a block
matrix
- M
o, M
502M

19tM
Vt(M):AEBn -tz ll Pt(AEBr) o (AGBT)EBH—I

where OFM = (0%a;;); ;.
Proof. This follows directly from Proposition 6.4.1 and the fact that v* preserves
direct sums, (6.3.1). O

Finally, we consider the case of arbitrary relative dimension. It is the same as
(6.4.4) except we must take all mixed partials of the entries of ¢ with respect to
local parameters for X.
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Proposition 6.4.5. Let B — A be a map of rings with the characteristic of each
residue field of A and B either zero or greater than t. Assume Qa,p has rank k,
generated by dzq,...,dz, and suppose given a map

M: AP — AT

where M = (a;5), a;j € A. Then the corresponding t-th Taylor series map is a block
matriz

0<i<t, {i1,. -, ij}C{1,...,n} k+t)
t

v (M): A" » PH(A®T) = (A%T)®(

where Oy, -+ 0y M = (0z,, -+ 0z, 0ij)ij- Each (%
the block matriz v*(M).

0i, ---az-].M) s a row of

Proof. For the case r = 1, proceed as in the proof to Proposition 6.4.1 using the
map [ of (4.10). (The n of (4.10) is our k.) Then, for general 7, use the fact that
vt preserves direct sums, (6.3.1). O

A.7. prt (F) — P”(P”’ (F)). There is a natural map, (|G, 16.8.9.1)),
(7.1) 8 = bnr: P (F) = PP (F))
functorial in F, making the following diagram commute

dn+n’ ,
F o T P"T(F)

(7.2) | E

P™(F) —— P"(P"(F))

r
din ()

Using (5.3) and the notation of (A.5), the map is given by

(7.3)
- Ox®0x

P (F) = Trdn 41 ® F

Ox ® Ox Ox ® Ox
_’Z'n—i—l _’Z'n’—i—l
(@)@ f—=(a®1)R(1b) R f

® F = P*(P" (F))

(As in (A.5), we are abusing notation slightly.) As noted after (5.3), we must be
careful of the module structure when taking these tensors. Thus,

(@@b)@cf=(a®ch)® f e (Ox®0x)/I" 1o F
and

()@ (c®def=(a®bc)@(1®de) R f

Ox®0x Ox®0
—@®1)®(bcode)® f e XIn+1X® ;n,ﬂX@}'
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Here a, b, ¢, d, e (respectively, f) represent sections of Ox (respectively, F) over
some open set of X.

We will need to know that ¢ is compatible with the Taylor series map. Consider
the Taylor series maps

wru F — PV (F)
and ’ ,
u u, P (F) — P"(P" (F))

Applying u*u, to the first of these maps and using the natural map 1 — u,u* gives
the left vertical map in the following diagram

wuF  —— PM(F)

(7.4) l l
w*u, PV (F) —— P™(P"™ (F))

The horizontal maps are Taylor series maps. Using (7.3) , it is clear that this
diagram commutes, i.e., d is compatible with Taylor series maps.

It also clear from (7.3) that 0 commutes with the natural surjections from ¢-
jets to (¢t — 1)-jets in several senses. For example, there are natural commutative
diagrams:

/ [ ’
P () e prer ()

(7.5) l l

’

I 0 —1 r_
prtr—lF) 222 PP TH(F))
and

PP (F)) — P"THP"(F))

(7.6) | [

Pn(Pn’_l(f)) T Pn—l—n'—l(f)

n,n’—1

Remark 7.7. Letting n = 1, (7.6) shows that Pl(P”’ (F)) — Pl(P"’_l(}_)) factors
through the surjection Pl(P"’(}_)) — p™ (F).

We will need the following technical result:
Proposition 7.8. Assume that the characteristic of S is zero or greater than n+1.

If X — S is smooth of relative dimension one, and F is a locally free sheaf on X,
then the map 6: P"TH(F) — PYP"™(F)) is an inclusion with a locally free cokernel.

Proof. The compatibility of § with the natural surjections of principal parts bundles
gives a commutative diagram

0 —— S"H(Qx/5) ® F —— P""HF) —— P*(F) —— 0

(7.8.1) l l H

0 —— Qxs®P"(F) —— P'PYF) —— PY(F) —— 0
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We will now show that since X — S has relative dimension one, that the left-

most vertical map in (7.8.1) becomes Qx /g ® Q?}'/‘S ® F L&, Qx/s @ P"(F) where

i: F ® Q" — P"(F) denotes the natural inclusion of (3.2), and pu: Qx5 — Qx/g is
multiplication by (n + 1). In particular, u ® i is injective; hence the proposition
follows from the snake lemma.

By (7.3) we may write

.OX(X)OX Ox ® Ox Ox ® Ox
0: Tn+2 ®F = T2 ® Tn+1 ®F

(a@b)Rf— (1) (1®b)Q f

We need to find the image of

dZn+1 ® f c (In+1/In+2) ®f _ 9?27;—1 ® F

Calculate

S dz"' e f)=01l®z—2 )" e f
=[(191)®(1®2)-:21)(11)|"'af
=[dzo(1e)+(1e1)ed:]"" e f

A A ntl—k
:(Z<k>dz ® dz"t >®f
:(nk+01)dz®dz"®f

Thus, the left-most vertical map of (7.8.1) is as required. [

A.8. Osculating Bundles.
The following definition is due to Piene, [Pil].

Definition 8.1. Let V be a sheaf on S, let F be a sheaf on X, and let ¢: Vx — F
be a map of sheaves. For ¢t > 0, the image of the Taylor series map I/é): Vx — P! (F)

is called the osculating sheaf of order t for ¢ and denoted by G'(¢) or just G(F)
when ¢ is clear from context. It comes with a natural surjection

,ut: Vx — Gt(f)

The natural surjections, P*(F) — P*~(F), induce surjections, G*(F) — G'~(F).

Proposition 8.2. Let V, W be sheaves on S, and let F, G be sheaves on X.
Suppose there is a commutative diagram

VX L)WX

s |v

F 1o g
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Then there are maps between osculating sheaves f; : G*(F) — GY(G) such that

VX L) WX

Bt (¢)l lut(‘ﬁ)

GHF) — aYg)

J l

G (F) - 6E)

commutes fort > 1. The bottom vertical maps are the natural surjections, and the
composition of the vertical maps on the left (respectively, right) is py—1(¢) (respec-

tively, pe—1(¢)).
For (2) and (3) below, assume that F and G are locally free.

(1) If £ is surjective, then so are the fy.
(2) If f is injective, so are the fy.
(3) If f is injective and £ is surjective, then the f; are isomorphisms;

Proof. The maps £ and f give rise to a commutative diagram, (6.3.3.2)

VX L) WX

ut(¢)l lvt(w)
PY(F) —— PYG)

Taking images of the vertical maps defines f;. The required compatibility with
the natural surjections follows from the corresponding fact for principal parts of
sheaves, (6.3.2).

(1) is clear from the definition of f;.

Restricted to locally free sheaves, P*( - ) is an exact functor (2.3). This accounts
for (2), and as a trivial consequence of (1) and (2), we get (3). O

Proposition 8.3. Let F be locally free. There is a surjection
(%) G'(F) — GHG'™(F))

compatible with the natural surjections from Vx . It is functorial in F and is compat-
ible with the natural surjections of osculating bundles, i.e., there is a commutative
diagram

G*HF) —— GHG'(F))

l l

GHF) —— GHG"H(F)

If X — S is smooth of relative dimension one and the characteristic of each residue
field of S is zero or greater than t, then (x) is an isomorphism.

Proof. By (2.3), applying P*( - ) to the inclusion G*~!(F) — P~ (F) yields
(1) GHG'™H(F)) = PHGTH(F)) = PHPTHF))
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On the other hand, we have
(1) GH(F) = PY(F) 5 PY(P'™L(F))

where 0 is the map of (7.1). Since these maps are compatible with the natural
surjections from Vx, GY(F) surjects onto the image of G* (G*~(F)) in P (P~ (F)).
This gives (x). With the additional assumption on X — S and the characteristic
of S, it follows from Proposition 7.8 that § in () is injective. Therefore, in that
case, (k) is an isomorphism.

The functoriality of (x) comes from that of P*( - ) and of §. Compatibility with
the surjections of osculating bundles follows from (7.5). O

Appendix B

Contents

Introduction.

B.1. Inflection Numbers

B.2. Principal Parts

B.3. Examples

B.4. Osculating Spaces, Associated Maps, and Higher Order Duals
B.5. Piene Duality Theorem

Introduction. This appendix is an outline of the basic theory of inflections of
curves in projective space. It is intended as background and a convenient reference.
For the most part, results are presented without proofs. The main theorems are due
to Piene, and details may be found in [Pil] and [Pel|. The two most fundamental
theorems in the theory are Theorem 2.3, stating the degrees and ranks of the
osculating bundles, and the duality theorem in (B.5).

Throughout the appendix, V' denotes a vector space of dimension n + 1 over an
algebraically closed field k, and X is a smooth curve over k. Let

(0.1) fi X —=P(V) =P

be a map to the projective space of quotients of V. There is a corresponding
surjection

(0.2) »:Vx = L

where £ is a line bundle on X. The map on global sections will be denoted

(0.3) Ly:V =T(X,L)

Definition 0.4. If m is the dimension of the smallest linear space containing the

image of f, then f is said to span a P™ or span a linear space of dimension m. The
number m is one less than the dimension of the image of I'y.
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B.1. Inflection Numbers. In this section, we introduce the fundamental in-
variants describing the inflectionary behavior of a curve in projective space. This
material can also be found in [GH1], [Pil], and [L1].

Definition 1.1. Let f span a P™. For each z € X, define integers o; = a;(x) with
O=ap<a; < <ayby

{0, 1+ 1,2+ az,...,m+ ap} = {ord;(0)}oer,(v)

(A Gram-Schmidt-type argument shows that this definition yields m numbers.)
The number «; is called the i-th inflection number for ¢ (or f) at x. If some «;
is nonzero, x is said to be an inflectionary point for ¢ at x. Under appropriate
conditions, (2.3), there will be a finite number of inflectionary points. In this case,
it makes sense to sum an «; over all points to get a global i-th inflection number for
¢, also denoted by «;, and we define the i-th inflection divisorto be Y ai(x)- .
Later we will define a related inflection sheaf, (2.4).

Inflectionary points are also called points of hyperosculation since, at each of these
points, an osculating space meets f(X) with higher multiplicity than expected,
(4.1.1).

Remark 1.2. Let £ = O(D) for a divisor D on X. For x € X consider the
decreasing sequence of integers

ly(n) = dimg{o € [y(V) | 0 € I'(X,O0(D — nx))}

forn =0,1,2,.... If £,(n — 1) # £;(n), then n is called a gap value for ¢ at x.
(Note: If £,(n—1) # £,(n), then £,(n—1) = £, (n) —1, (cf. [H, proof of Proposition
IV.3.1]).) If the gap values are not 1,2, ..., m, then the point z is called a generalized
Weierstrass point. Denote the i-th gap value by a;. The Weierstrass weight for ¢
at x is the integer >"1" (a; — ). In terms of the inflectionary indices, the i-th gap
value is ;1 +¢. The classical situation is when the genus of X is greater than one
and ¢:V — (X, Qx/k) = Qx/k, (3.2); the gap values measure the inflectionary
behavior of the canonical embedding.

1.3. Normal Form. By a normal form for the map f at + we mean a choice of
coordinates for P" that is nice with respect to the inflection numbers. Specifically,
choose a basis, oy, ..., 0, for the image of ¢ such that ord,(o;) =i+ «;. Identify
L, with the local ring at , A = Ox 4, and let z be a local parameter at z. We
can think of the o;’s as elements in the completion A = k[[z]], so that f is given
parametrically by

(1.3.1) ziv(z) =14 2T o gmtem 0., 0)

where “+---” denotes the sum of terms of higher order in z. Thus, if oy > 0, then
f(z) is a cusp of the image of f, and if @3 = 0 but as > 0, then f(x) is an inflection
point of the image of f.

Let zg,...,z, be coordinates on P". The expression (1.3.1) shows that the ¢-
plane {z;y1 = 0,...,2, = 0} meets f(z) with multiplicity ¢ + 1 + o441 along the
branch of f(X) corresponding to .
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1.4. Base Points. We may also define inflection numbers for arbitrary linear
systems or for any map (i.e., not necessarily surjective)

(+) Vy = L

The only difference is that the smallest inflection number «y may no longer be zero.
If £ = O(D) is the line bundle corresponding to a divisor D, and B is the base of
the linear system corresponding to (x), then the map in (%) factors as

v 4 I(X,0(D - B)) — I'(X,0(D))

Letting B;(x) denote the inflection numbers (or divisors) for the surjection, 1, it is
clear from the normal form, (1.3), that

Bi(z) = {

B.2. Principal Parts. The main result of this section is Theorem 2.3, stating the
degree and rank of Piene’s osculating bundles. It leads directly to the generalized
Pliicker formulas, (3.3), and the degrees of varieties associated with the flexing of
a curve in space, (B.4).

For each integer ¢ > 0, the map ¢ of (0.2) can be lifted to the ¢-th order Taylor
series map, (A.6),

(2.1) vt =l Vx — PY(L)

Q;, if  is not a base point

a;(z) — ag(x), if 2 is a base point

where P?(L) is the bundle of ¢-th order jets of sections of £. Locally, we can think
of ¢ as given by a n + 1-tuple of functions in a local parameter for the curve. The
map v' can then be thought of as a matrix with rows consisting of the derivatives
of ¢ up to order ¢, (A.6.4).

Recall from (A.8) that the image of v/* is the t-th osculating bundle for ¢, denoted
by G*(L) (or by G*(¢) or G*(f), if necessary). From v?, there is a natural surjection

(2.2) pt:Vx — GH(L)

(G*(L£) is a bundle since it is a subsheaf of P*(£) and, hence, is torsion free.)

The following theorem, due to Piene [Pil], (with a slight correction due to
Laksov, [L1]), shows how the Taylor series maps, v, are related to the inflection
numbers defined in (B.1). It is the main result from Appendix B needed in the
main body of the paper.

Theorem 2.3. Let X be a smooth projective curve, and assume the characteristic
of k is zero or greater than t and the degree of L. Then

(1) Ift <m =dimg I'y(V) — 1, then v* is generically surjective with
t
length(cok v%) = Z a;(x)
i=1

In particular, tkG*(L) = t 4+ 1, and v is surjective if and only if ¢ is
noninflectionary at x up to ordert.

(2) There is a finite number of inflectionary points.

(3) If t > m, then the image is a trivial bundle of rank m + 1, i.e., imvt =
GHL) =Ty(V)x.
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Remark 2.3.1. To see that the assumption on the characteristic is necessary in
Theorem 2.3 and in Corollary 2.5.3, below, see Remark 3.4.2.

Remark 2.3.2. If X is a smooth projective curve, then with no assumption on
the characteristic of k,
a;(z) < deg L —i

for each z € X. Since a;(x) < a;4+1(x), this means that

ai(z) < deg L —m

for = 1,...,m. This inequality is sharp. For instance, consider the map
Pt — P™
z (1, PLHd=—m) 24(d=-—m) = zm+(d_m))

given by sections of the line bundle O(d). Here, o; = d — m for all i.

Remark 2.3.3. The projectivity assumption can be replaced with the condition
that if the characteristic of k is not zero, then it is larger than m and «,,, + m.

Definition 2.4. From the natural surjection of principal parts bundles, we get the
commutative diagram with exact rows

0 —— GHL) —— PYL) —— cokvt —— 0

l l l

0 —— G"HL) —— P"HL) —— cokpt?

— 0

The vertical map on the right,
cok vt — cok 't

is a surjection whose kernel we call the t-th inflection sheaf of ¢ and denote by
inf*. According to Theorem 2.3, it has length . The divisor corresponding to this
kernel is the ¢-th inflection divisor defined in (B.1).

2.5. Degrees. In (B.4), we will give the standard definitions of the osculating de-
velopables, associated curves, and higher order dual varieties of a curve in projective
space. The following result will give the degrees of these varieties.

Denote the kernel of u? by Ef (L), and consider the exact sequences

t

(2.5.1) 0— EYL) = Vx £5 GHL) — 0
and
(2.5.2) 0 — GY(L) = P*(L) — cokv® — 0

The degrees of G*(£) and E(£) are an immediate consequence of Theorem 2.3.
First we need some notation: if F' is any vector bundle on X, then define ¢;(F) to
be the divisor class corresponding to the line bundle det F'; if F is a torsion sheaf
on X, define [F] to be the class of the divisor ) _ length(F) - z.
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Corollary 2.5.3. Let X be a smooth projective curve of genus g, and assume
the characteristic of k is zero or greater than t and the degree of L. Then for
t S m = dlmk F¢(V) - 1,

A(@(6) = a0 = (5 )ealstin) + (14 Dea(€) ~ ook

as divisor classes. In particular,

deg G'(L) = — deg(E* (L)) = (t—; 1) (29 —2)+(t+1)deg L — Zai

=(t+1)(tg —t+degl) = ) o

=1

Letting t = m, we get

Z Z a;(z) -z = (m; 1>C1(QX/k) + (m+1)ei(L)

i=1zeX

as divisor classes, and taking degrees gives

éai = <m;1>(29—2)+(m+1)deg£

=(m+1)(mg —m+ deg L)

Proof. The corollary follows directly from: Theorem 2.3; the Whitney sum formula
applied to (2.5.1), (2.5.2), and (A.3.2); and the fact that if ¢o: E — F' is a generically
surjective map between bundles of the same rank on a smooth projective curve, then

c1(E) — c1(F) = [cok )]

(ct. [F, A.2.3]). O

B.3. Examples. Here we present several standard examples. As a refinement of
the theory, we consider the effect of covering maps and projections.

Example 3.1. ([GH1, p. 270], [Pil]) Suppose that f has no inflectionary points.
Under the assumptions of Corollary 2.5.3, this means that

< 1
Zai =0= (m;— >(2g—2)+(m+1)deg£
i=1

This is only possible if g = 0 and deg £ = m, i.e., L = O(m). Counting dimensions,
this means that T'y(V) = ['(P*, O(m)), and the map f is just the embedding of
P! as a rational normal curve of degree m in a linear subspace of dimension m in

P(V).
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Remark 3.1.1. For a natural extension of the above example to a characterization
of the Veronese embeddings of any P", cf. [FKPT].
Example 3.2. Weierstrass Points. ((GH1, p. 275]) Let X have genus g > 1, and
consider the canonical morphism
fiX =Pt
determined by the natural surjection

Recall Remark 1.2. The inflectionary points for the canonical morphism are called
Weierstrass points. By definition, £;(0) = g, and since deg Qx/; = 29 — 2, we also
have £,(2g — 1) = 0 for any point x € X. Therefore, there are g gap values at each
point of X. From Corollary 2.5.3, the total weight of all the Weierstrass points,
i.e., the sum of the weights at each point, is

g

Z(ai — Z) = Zai_l

=1

= (g) (29 —2) +9(29 —2)
=(g—-1glg+1)

Example 3.3. Generalized Plicker Formulas. ([GH1, p. 270], [Pil]) Assume that
the characteristic of & is zero or greater than t+1 and the degree of L. Let ¢1(G"(L))

denote the divisor class of the determinant of the osculating bundle of order ¢. From
Corollary 2.5.3,

(3.3.1)  c1(G"HL)) = 2¢1(GH(L)) + 1 (GHL)) = e1(Qxyn) = Y apsr(w) - @

zeX
Letting d; = deg G*(£) and taking degrees in (3.3.1) yields
(332) dt—l - 2dt + dt_|_1 = 2g -2 - (07728}

The expressions (3.3.2) for ¢ > 1 are called the generalized Pliicker formulas. The
number d; is the degree of the osculating developable of order ¢, of the ¢-th associated
map, and of the dual variety of order 4, (4.2, 4.3).

Example 3.4. FElliptic Curves. Let £ be a line bundle of degree n +1 > 3 on an

elliptic curve E. Consider the inflection numbers «;, ¢ = 1...,n, for the evaluation
map
(%) NE,L)g — L

By Riemann-Roch, a; = 0 for i < n and «a,, < 1 at each point, (cf. 1.2). (We can
also see that o, < 1 by Remark 2.3.2.) Thus, Corollary 2.5.3 says that there are
exactly n + 1 inflectionary points. At each of the inflectionary points, «,, = 1.
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Theorem 3.4.1. (Kato [Ka]) Choose any inflectionary point for (x) to be the
identity in the group E. Then the inflectionary points are exactly the points of
order n + 1.

Proof. Let pg,...,p, be the inflectionary points, and take py = 0 in the group E.
By looking at the normal form, we see that the inflectionary points are exactly the
points where a hyperplane of P(I'(E, £)) meets the image of E under the embedding
determined by (x) with multiplicity n + 1 = deg £, (1.3). Therefore, £ = O((n +
1)po), and (n+ 1)p; ~ (n+ 1)po for each i. In other words, (n + 1)p; = 0 for all i.

Remark 3.4.2. Assuming that the characteristic of & is zero or greater than n+1,
Corollary 2.5.3 and the comments made in the preceding example show that there
are (n+1)? points of ' where «,, = 1. For an elliptic curve in the plane (i.e., n = 2)
in characteristic three, there are three or zero points of order three, depending on
whether the curve is ordinary or supersingular, respectively, ([S, p. 106]). By Kato’s
theorem, this means that there are three or zero points where a; = 1. In any case,
the sum of the inflection numbers is not nine. This shows that the assumption on
the characteristic in Theorem 2.3 and Corollary 2.5.3 is needed.

Example 3.5. Let g}, be a generic non-special linear system of dimension 7 and
degree d without base points on a smooth projective curve X over the complex
numbers. Let f: X — P" be the corresponding map with inflection numbers «;.
Canuto, [Cn], shows that a; = 0 for i = 1,...,7 — 1 for each point of X and that
there are exactly (r + 1)(rg — r + d) points where «, = 1, otherwise «,. = 0.

Example 3.6. Coverings. Let g: X — Y be a finite, separable morphism of smooth
projective curves over k. We want to relate the inflection numbers for a map of Y
into projective space with those of the induced mapping of X.

Suppose we are given a map

fy: Y — P(V)

with corresponding surjection to a line bundle

q5y2 Vy — ,CY
Composing fy and g gives

fx: X = P(V)
and the corresponding surjection

(ZSX: Vx = Lx

where Lx = g*Ly.

Let m+1 =dimy Iy, (V) =dimi [y, (V), and fori =1,...,m, let ax;, ay,; be
the inflection numbers for ¢ x, ¢y, respectively. The following result can be found
in [Pel]:
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Proposition 3.6.1. Let e, be the ramification index at x € X. Then
(1) Forz e X,
axi(r) = ez ayi(g(z)) +es —1
(2) Summing (1) over all points of X gives the following relation for global
inflection divisors:

ZO&X,i'QZZdeg(g) Zayyi-x-l-i- Z(em—l)'ﬂf
zeX zeX zeX

Assume, in addition, that the characteristic of k is either zero or greater than t and
the degree of Lx. Then

(3) Letting E*( - ) denote the kernel of the map to the osculating bundle ut, the
natural map g* P*(Ly) — PY(Lx) of (A.2.4) induces an isomporphism of
exact sequences

0 —— ¢*E'(Ly) —— ¢*V» —— ¢*G'(Ly) —— 0

l H l

0 —— FE(Lx) —— Vx —— G'Lx) —— 0
(4) For any bundle F on X orY, let c1( - ) denote the divisor class of det F.
Then
c1(G'(Lx)) = g"e1(G' (Ly))
In particular,
deg G! (L) = deg(g) deg G'(Ly)

(5) Fort < m, the natural map g* P*(Ly) — PY(Lx) is generically surjective.
The divisor corresponding to its cokernel is

t+1
() S
zeX
(6) For the inflection sheaves, (2.4), there is an exact sequence

0 — g*infy — infy — QF), @ L =0

Remark 3.6.2. Proposition 3.6.1 is closely related to the Riemann-Hurwitz The-
orem. Summing (2) over ¢ yields

(%) izax,i'$=deggi2ay,i-x+(m;1> > (ea—1)-a

1=1 z€X 1=1z€X reX
However, if we assume the characteristic of £ is either zero or greater than m and
the degree of Lx, Corollary 2.5.3 says that

Zax,i = (m; 1> (29(X)—2)+ (m+1)degLx

and similarly for > ay;. Substituting this into (%) and simplifying gives the
Riemann-Hurwitz Theorem:

29(X) —2=degg (29(Y) = 2) + ) (es — 1)



66 DAVID PERKINSON

Example 3.7. Projections. Suppose that V C I'(X, £), and let W be a subspace
of V' of dimension n = dimV — 1 of globally generating sections. Consider the
induced map

bW cev S

The corresponding map, g: X — P(W), is obtained from the original map, f, by
projection from a point. We can compare the inflectionary behavior of f and g.
(For the definition of an osculating space, used in the following proposition, cf.
(B.4).)

Proposition 3.7.1. Let {c;}i=1,.. n and {B;}i=1,.. n—1 be the inflection numbers
for f and g, respectively. If the point of projection is contained in the osculating
space of ordert at x but not in an osculating space of ordert — 1, then

a;(z), fori=1,...;t—1
air1(x) + 1, fori=t,....,n—1

fi(z) = {

Proof. Choose a basis for V, oy, ..., oy, such that ord,(o;) = i + «; and such that
00y+-.y0¢,...,0, is a basis for W. Taking the corresponding normal forms for f
and g, (1.3), we are projecting from the point (0,...,1,...,0)—whose coordinates
are all zero except for the ¢-th—onto the hyperplane {x; = 0}. Since the osculating
space of order i is given by {z;4y1 = -+ - = z,, = 0}, the result is clear. O

Thus, the inflectionary behavior of the projected curve is the same as that for
the original curve except at special points. If a point of the original curve has
some osculating space that passes through the point of projection, the image will
be “more” inflectionary.

Example 3.8. Osculating curves. Let X be an irreducible plane curve, not nec-
essarily smooth. Let X (¢,d) be the subset of the projective space of plane curves
of degree d consisting of curves meeting X with multiplicity at least ¢ + 1. These
curves are said to osculate X with ordert. To study X (t,d), we linearize the prob-
lem, using the d-uple Veronese embedding, v4: P2 — PV, with N = @. Let X
denote the normalization of X, and define the map

A X — X C P? 24 pN

The curves of degree d osculating X with order ¢ are in this way identified with
hyperplanes of PV that meet )\d(f( ) with multiplicity at least ¢ + 1.

Basic results about X (¢,d) appear in [Pel], including a refinement of Cayley’s
formula for the number of sextactic points on a plane curve, ([Cal): those points
where a conic meets the curve with multiplicity at least six.

B.4. Osculating Spaces and Higher Order Duals. We present the standard
definitions of osculating spaces, developables, and associated maps, and we present
a definition, due to Piene, [Pi2], of higher order dual varieties. We then give
Piene’s interpretation of these constructions using osculating bundles along with
her calculation of the degrees of these constructions.
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For the main results of the paper, it is only necessary to be familiar with the
definitions, (4.1), and their interpretation via osculating bundles, Proposition 4.2.4.

As a new example, we consider a curve in projective space, and construct a map
of the curve into a flag variety by considering the flag of osculating spaces of the
curve at each point. We calculate the class of this curve in the intersection ring of
the flag variety, (4.4).

Definition 4.1. (See Proposition 4.2.4 for the interpretation of the constructions
presented here in terms of vector bundles.) With the notation as at the beginning
of this appendix, assume that f: X — P(V') spans a P™. For t < m, the osculating
space of order t at x € X is the unique ¢-plane having maximal order contact with
f(X) at f(z) along the branch corresponding to x. Taking a normal form for f at
x, (1.3), and letting zg, . . ., x,, be the corresponding coordinates on P”, this ¢-plane
is given by {zt41 = --- =z, = 0}. For t > m, define the osculating space of order
t to be the P™ spanned by f. The osculating developable of ordert of f (or f(X))
is the union of the osculating spaces of order t.

Let Osct = Oscl (f) denote the osculating space of order ¢ at x. For t < m,
associate each point of X with its osculating ¢-plane in the Grassmannian of ¢-
planes in P(V') to get the t-th associated map of f

fe: X — GLP(V)
T Osc;(f)

The image of f; will be called the t-th associated curve of f.

The dual variety of ordert for f is the set of hyperplanes—considered as a subset
of the dual projective space P(V*)—containing some osculating space of order ¢.
For ¢ > m, the dual variety of order ¢ is just the (n — m — 1)-dimensional linear
space of hyperplanes containing the P™ spanned by f.

Let HY = H!(f) denote the set of hyperplanes containing the osculating space
of order ¢ at x. Taking a normal form for f at z and coordinates on P" as above,
a hyperplane defined by Z?:o a;x; is in HY if and only if a9 = --- = a; = 0. For
t < m, define the t-th dual map of f by

F X = Goos 1 P(VY)
x> H!
The image of f* is called the t-th dual curve of f.

Remark 4.1.1. Let t < m. If f is birational to its image, then the osculating
space of order ¢ meets f(X) at f(x) along the branch corresponding to x with
multiplicity ¢ +1 4+ a441. For a general map, this number must be replaced by
t —|— 1 + O!t_|_1
deg f

Remark 4.1.2. If X is not smooth, let 7: X — X be the map from the normal-
ization of X, and define all the constructions of Definition 4.1 for f to be those of
fom. In terms of line bundles, we are replacing ¢ by

T™¢: Vg = 'L
Hence, if X is embedded in P™ as a curve with singularities, this definition allows
us to consider the osculating spaces of X along its branches.
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4.2. Modern Viewpoint. In [Pil], [Pi2], Piene has given the modern interpre-
tation of the constructions of Definition 4.1 using her osculating bundles. This
appears as Proposition 4.2.4, below.

Let E*(L) denote the kernel of the natural map to the ¢-th order osculating
bundle, pf, and consider the exact sequence

(4.2.1) 0 — (L) — Vx5 GHL) — 0

This induces maps of projective bundles

(4.2.2) wi:P(GHL)) = P(Vx) = X x P(V) 22 P(V)
and
(4.2.3) 6 P(EHL)Y) = P(V) = X xP(V*) 2 P(V*)

where 7o denotes the second projection in both cases.

Proposition 4.2.4. Assume that X is a smooth projective curve and the charac-
teristic of k is zero or greater than t and the degree of L. Then the image of the
fiber at z, wi(P(G*(L))s), is the osculating space of order t at z, and similarly,
6:(P(E*(L)*)z) = HL. Therefore, the image of w; is the osculating developable of
order t, and the image of 0; is the dual variety of ordert.

For t < m, the map X — GyP(V) induced by pt: X — G'(L) through the
universal property of a Grassmannian s the t-th associated map. Similarly, the
map X — Gp_s 1P(V*) induced by the natural surjection V3 — E'(L)* is the t-th
dual map of f.

Corollary 4.2.5. With the assumptions of Proposition 4.2.4, the osculating devel-
opable and dual variety of order t are vrreducible.

Proof. The osculating developable of order ¢ is the image of P(G*(£)), and the dual
variety of order ¢ is the image of P(E*(£)*). O

Remark 4.2.6. Let X C P" be a smooth embedding of a curve in projective space
determined by sections of a line bundle £. (Note: The discussion given here is easily
generalized to the case dim X > 1.) Define

Y ={(z,H) € X x (P")* | T,X C H}

where T, X is the embedded tangent space to X at . Letting NxP" be the normal
bundle to X in P", we have that Y is isomorphic to P(NxP") over X, ([F, 3.2.21)).
The dual variety to X is usually defined to be the image of the projection ¥ —
(P™)*. However, since T, X is just the first osculating space at x, the dual variety
coincides with our dual variety of order one. In fact, Kleiman, [K1], shows that in
our situation, B'(£) = (NxP™)* ® L. Since £ is a line bundle,

P(E'(L)*) = P(NxP" ® L*) = P(NxP")
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4.3. Degree of the Osculating Developable and the Higher Order Dual.
The next proposition is Piene’s computation of the degrees of the osculating devel-
opables and higher order dual varieties as cycles in the intersection ring of projective
space.

Proposition 4.3.1. Let t < m. Let X be a smooth projective curve of genus g,
and assume that the characteristic of k is zero or greater than t and the degree of
L. Then the dimension of the osculating developable of ordert ist+ 1 , and the
dimension of the higher order dual variety of order t is n —t. In other words,

dim(imw;) =t + 1, dim(iméd;) =n —t

Further,

= )(2g—2)+(t+1)deg£—2ai

1=0

where degw; is the degree of the map from the domain to the image of wy and
similarly for 6¢, fi, and ft.

Remark 4.3.2. Proposition 3.3.1 of the main body of the paper shows that if
the characteristic of k is equal to zero or is larger than ¢ and d; = deg G*(£), and
if f is birational to its image, then f; is birational to its image, i.e., the generic
osculating space of order ¢ is the osculating space of order ¢ at only one point of
f(X). Similarly, f* is birational to its image.

The birationality of w; and d; seems to be a more difficult question. One would
not expect w,,_1 to be birational. For example, the tangent developable to a plane
curve fills the whole plane; the generic point on a tangent line will lie on other
tangent lines as well. (On the other hand, since f,,,—; is birational to its image,
80 18 0;p—1.) What if ¢ < m — 17 This would imply the trisecant lemma: that the
generic secant of a nonplanar curve does not meet the curve again. For a proof of
the trisecant lemma, cf. [L2, Lemma 15].

Example 4.4. Flags. At each point x € X, the osculating spaces form a flag of
linear subspaces of projective space,

{z} C Oscl c Osc2 C ---

Associating a point with its corresponding flag, in this way, determines a map of
the curve into the variety of flags in projective space. We will compute the class
of this curve in the intersection ring of the variety of flags. For simplicity, assume
that f: X — P™ is birational to its image and spans P".
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Let F be the variety of complete flags in P", ([F, 14.7.16]). The points of F' are
the flags of linear subspaces of P"

LocLiC---CL,_1

where dim L; = ¢. Fix such a flag 7o C m; C --- C m,_1. A basis for the intersection
ring of F' in dimension one is

Ui ={(Lo,...,Ln_1) | Li=m fori#j, Lj C w1}
for y =0,...,n — 1. The dual basis in codimension one is
05 ={(Los...; Ln—1) | Li N i1 # 0}
Define
f:X 5 F
n—1)

1
x — (z,0scy,...,Osc

The class of f.(X) in the intersection ring for F is

()] = S (X))

=0

Assume that the associated maps, f;, are birational to their images; for example,
we could assume that the characteristic of k is zero or large enough (Proposition
3.3.1 of main body of the paper). Then, f,(X) £ is the number of osculating
spaces of order i meeting a generic (n — i — 1)-plane; in other words, it is the degree
of the osculating developable and the associated map, d;, (4.3.1). Thus, we find,

F.00)= Y dit

B.5. Piene Duality Theorem. The purpose of this section is to state Piene’s
duality theorem for curves in projective space. This result, found in [Pil], is the
modern expression of the duality theorems of the nineteenth century for curves in
projective space. A main result of our paper is an extension of her duality theorem
to one for curves in Grassmannians.

Let V C I'(X, £) be a vector space of dimension n+ 1 of generating sections of a
line bundle £ on X. The corresponding map, f: X — P(V), spans P(V). In (B.4),
we defined the t-th associated map

fi: X = GLP(V)
sending a point to its osculating space of order ¢, and we defined the ¢-th dual map
fiX = Gy 1 P(VY)

sending a point z € X to the linear space of hyperplanes containing the osculating
space of order ¢ at x.
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Definition 5.1. The dual of f is the map

X =PV

x + Osc? ™!

sending a point z € X to the osculating hyperplane at x. This dual is the (n—1)-th
dual map of (B.4), i.e.,

f* — fn—l

We saw in Proposition 4.2.4, with an assumption on the characteristic of k, that
the associated map corresponds to the map of vector bundles

pt:Vy — GHL)

There is an exact sequence

0— EYL) = Vx £5 GHL) =0
and the t-th dual map, f?, corresponds to the natural surjection
(%) Vi — EY(L)*

By Theorem 2.3, G*(£) has rank ¢ 4+ 1 for t < n. Therefore, E""(£) is a line
bundle.

Theorem 5.2. (Piene Duality Theorem, [Pil]) Let X be a smooth projective curve,
and assume that the characteristic of k is zero or greater than n and the degree of
L. Then the t-dual map of the dual map, f*, is the (n —t — 1)-th associated map
of f. In symbols,

(f*)t - fn—t—l
In particular, the double dual of f is f, itself:

(f )y =7

For more discussion, see §7 of the main body of the paper.
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