
CURVES IN GRASSMANNIANSDavid PerkinsonJuly 14, 1994Abstra
t. Curves in Grassmannians are analyzed using the spe
ial stru
ture of thetangent bundle of a Grassmannian, resulting in a theory of in
e
tions or Weierstrassbehavior. A duality theorem is established, generalizing the 
lassi
al duality theoremfor proje
tive plane 
urves. The appendi
es summarize basi
 information aboutprin
ipal parts bundles and their appli
ation to studying the in
e
tions of 
urves inproje
tive spa
e. ContentsIntrodu
tion1. Derived Bundles2. Prin
ipal Parts Bundles and a Des
ription of � in Lo
al Coor-dinates3. Fun
torial Properties of Derived Bundles4. Chara
terization of Derived Bundles via Os
ulating Bundles5. Geometri
 Interpretation of the Sequen
e of Di�erential Ranks6. Curves with Di�erential Rank One7. Duality8. Torsion Sheaves9. ExamplesAppendix AAppendix B Introdu
tionThis paper develops Joe Harris's idea for 
lassifying 
urves in Grassmanniansbased on the spe
ial stru
ture of the tangent bundle of a Grassmannian. A map ofa 
urve, X, into a Grassmannian is given by a ve
tor spa
e, V , of globally spanningse
tions of some ve
tor bundle, E, on X. To this, we asso
iated a sequen
e ofve
tor bundle quotients(�) VX = V 
OX �! E �! E1 �! E2 �! : : :
alled derived bundles and de�ne higher di�erential ranks and torsion sheaves. Ourgoal is then to explain the geometry behind these 
onstru
tions. The main tools1991 Mathemati
s Subje
t Classi�
ation. 14H60, 14H55, 14M15. Typeset by AMS-TEX1



2 DAVID PERKINSONwe use are prin
ipal parts bundles and the 
losely related os
ulating bundles, in thespirit of Piene's work [Pi1℄. Main fa
ts about these bundles are relegated to theappendi
es and are assumed throughout the main body of the paper.Derived bundles are de�ned in x1 and their 
onne
tion with prin
ipal parts bun-dles is presented in x2. Piene's os
ulating bundles appear in x4. They are usedto formulate a key result, Theorem 4.2, whi
h states that the surje
tions betweenderived bundles, (�), lift to give surje
tions between os
ulating bundles(��) VX �! E �! G1(E1) �! G2(E2) �! : : :This property is used to 
hara
terize derived bundles in Theorem 4.6. It is also thekey idea behind Theorem 5.1, whi
h is a re�nement of the normal form for a 
urvein a Grassmannian due to GriÆths and Harris, [GH2℄.The normal form for 
urves in Grassmannians 
an be interpreted to explain thegeometri
 meaning of derived bundles and di�erential ranks. Lo
ally, a 
urve ina Grassmannian is given by the span of ve
tors parametrized by the 
urve. Itmight happen that some of these ve
tors are derivatives of others. Roughly, thedi�erential rank is the minimum number of ve
tors needed su
h that they, alongwith their derivatives up to various orders, determine the map to the Grassmannian.The higher di�erential ranks express the orders of the derivatives. This is madepre
ise by Theorem 5.1.In 
ertain situations, a 
al
ulation of ranks will show that the surje
tions to theos
ulating bundles in (��) are isomorphisms. This is the idea behind Theorem 6.2.1,whi
h is used to re
over a result of GriÆths and Harris, [GH2, p. 386℄ 
hara
terizing
urves with di�erential rank one: ea
h 
omes from a 
urve in proje
tive spa
e bytaking a 
one over an asso
iated map of some order. An asso
iated map of order tfor a 
urve in proje
tive spa
e sends a point on the 
urve to its t-th os
ulating spa
e(the spa
e spanned by the derivatives of order � t of a lo
al parametrization of the
urve).The formalism of our ve
tor bundle 
onstru
tions suggested one of the mainresults of the paper, a duality theorem for 
urves in Grassmannians, Theorem 7.1.In the 
ase where E is an os
ulating bundle for a 
urve in proje
tive spa
e, this resultspe
ializes to give Piene's duality theorem, [Pi1℄, whi
h is the modern expressionof the 
lassi
al duality theorem for 
urves in proje
tive spa
e. (The most spe
ial
ase is the fa
t that the double dual of a proje
tive plane 
urve is the 
urve, itself.)As an appli
ation, we dis
uss the birationality of the asso
iated maps, (Proposition3.3.1).The torsion sheaves measure the in
e
tionary behavior of a 
urve in a Grass-mannian. In the spe
ial 
ase of a 
urve in proje
tive spa
e, their lengths are knownas stationary indi
es: these are the numbers appearing in the generalized Pl�u
kerformulas des
ribing the way a 
urve 
exes.The paper ends with several examples: 
urves in Grassmannians 
oming fromtaking \joins of lines"; 
urves of degree three; a relation between the degree ofa bundle generated by global se
tions and its possible di�erential ranks; and thesequen
e of di�erential ranks and torsion numbers (lengths of torsion sheaves) pos-sible on the proje
tive line.E. Balli
o has 
ontinued the study initiated in this paper, [Ba1℄, and has gener-alized some of the results to higher dimensional varieties, [Ba2℄.
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knowledgments. I would like to thank my graduate s
hool advisor, WilliamFulton; this paper is based on my Ph.D. thesis. Thanks also to the MatematiskInstitutt of the University of Oslo, Norway|espe
ially Ragni Piene|for providinga pla
e to work and inspiration. Finally, thanks to Reed College for time andsupport through a Vollum resear
h grant.1. Derived BundlesWe study a map of a smooth 
urve over an algebrai
ally 
losed �eld, k, intothe Grassmannian of r-dimensional quotients of an n-dimensional ve
tor spa
e Vover k:(1.1) f :X �! G(V; r) = Gr�1P(V ) = Gor equivalently, a surje
tion(1.2) �:VX = V 
k OX �! Ewhere E is a ve
tor bundle of rank r on X. The universal exa
t sequen
e on G(1.3) 0 �! S �! VG �! Q �! 0where Q is the universal r-quotient, pulls ba
k to(1.4) 0 �! SE �! VX ��! E �! 0where SE is the kernel of �. The tangent mapTX �! f�TG �= f�Hom(S;Q) �= Hom(SE ; E)is the same as a map(1.5) � = ��:SE �! 
X=k 
 Ewhere 
X=k = T�1X=k is the 
otangent bundle.De�nition 1.6. The di�erential rank of � (or f) is the rank of the image of �.The torsion sheaf for � (or f) is the torsion subsheaf of the 
okernel of �.The di�erential rank of � is the rank of � restri
ted to a generi
 �ber. At spe
ial�bers, the rank of � may drop, this being measured by the torsion sheaf.The map � is now used to 
onstru
t a sequen
e of related maps to Grassmanni-ans.De�nition 1.7. The �rst derived bundle of � is the ve
tor bundleE1 = �
ok(�)
 
�1X=k� =torsionTensoring the natural map 
X=k 
 E ! 
ok(�) by 
�1X=k and 
omposing with �indu
es a surje
tion �1: VX ! E1



4 DAVID PERKINSONwhi
h fa
tors through �. There is a 
orresponding map f(1): X ! G(V; rank(E1)).One may now repeat the pro
ess with E1 in pla
e of E. Indu
tively, de�ne thei-th derived bundle of �, Ei, to be the �rst derived bundle of �i�1. The bundle Ei
omes with a surje
tion �i:VX �! Eiand a 
orresponding map f(i):X �! G(V; rank(Ei))De�ne the i-th di�erential rank of �, drki(�), to be the di�erential rank of �i�1and the i-th torsion sheaf, tori(�), to be the torsion sheaf of �i�1. The i-th torsiondivisor is de�ned to be Px2X length(tori �x) � x and the i-th torsion number is thedegree of this divisor.Thus, letting �0 = �, the previously de�ned di�erential rank and torsion sheafof � may be 
alled the �rst di�erential rank and �rst torsion sheaf, respe
tively. Insum, we have asso
iated with ea
h map of X into a Grassmannian, a sequen
e ofmaps of X into other Grassmannians, a 
orresponding sequen
e of surje
tions(1.8) VX �! E �! E1 �! E2 �! � � �and a sequen
e of torsion sheaves on X. The i-th di�erential rank isdrki � = rkEi�1 � rkEiRemark 1.9. Tensoring (1.5) by 
�1X=k de�nes a mapTX=k 
 SE �! Ewhose 
okernel modulo torsion is E1. We used � to de�ne the derived bundlesinstead of this map be
ause it arises more naturally when using prin
ipal partsbundles to study di�erential ranks, (x2).2. Prin
ipal Parts Bundles and a Des
ription of � in Lo
al CoordinatesAlthough �:SE ! 
X=k 
 E, used to de�ne the derived bundles, was de�nedby identifying the tangent bundle of the Grassmannian with a spa
e of maps, wewill mostly use an alternate des
ription using P1(E), the �rst order prin
ipal partsof E. This is given in Proposition 2.1. The proof of Proposition 2.1 shows thatthe map � is 
losely related to the se
ond fundamental form homomorphism on theGrassmannian.The se
tion ends with a des
ription of � in lo
al 
oordinates. It will be usedlater to state Theorem 5.1 giving the normal form for a 
urve in a Grassmannianand leads to a geometri
 explanation of the di�erential rank.



CURVES IN GRASSMANNIANS 5Proposition 2.1. There is a 
ommutative diagram with exa
t rows(2.2) 0 ����! SE ����! VX �����! E ����! 0??y� ??y�1 


0 ����! 
X=k 
 E ����! P1(E) ����! E ����! 0where the bottom row is the fundamental exa
t sequen
e and �1 is the Taylor seriesmap (A.6). Thus, � is the Taylor series map �1 restri
ted to SE.Proof. The Taylor series map lifts �, giving a map of exa
t sequen
es as shownex
ept we must verify that the indu
ed map SE ! 
X=k 
 E is �. There is adiagram similar to (2.2) on the Grassmannian. The map VG ! Q to the universalr-quotient fa
tors through the �rst order prin
ipal parts of Q to give(�) 0 ����! S ����! VG ����! Q ����! 0??yÆ ??y�1G 


0 ����! 
G=k 
Q ����! P1(Q) ����! Q ����! 0Let df : f�
G=k ! 
X=k be the 
otangent map. Pull ba
k (�) to the 
urve anduse the natural map f� P1(Q)! P1(E), (A.2.4), to get the 
ommutative diagram0 ����! SE ����! VX �����! E ����! 0??yf�Æ ??yf��1G 


0 ����! f�
G=k 
 E ����! f� P1(Q) ����! E ����! 0??ydf
id ??y 


0 ����! 
X=k 
 E ����! P1(E) ����! E ����! 0The 
omposite of the middle verti
al maps is the Taylor series map �1; so it suÆ
esto show that the 
omposite of the verti
al maps on the left is �. We see this bynoting the 
onne
tion between Æ and the standard identi�
ation: TG �= Hom(S;Q).Tensoring the map Æ of (�) by Q� indu
es a map �:S
Q� ! 
G=k whi
h one may
he
k, using lo
al 
oordinates, is an isomorphism. The dual of � is the standardidenti�
ation. �Applying the snake lemma to (2.2) givesCorollary 2.3. Derived bundles 
an be 
al
ulated from the Taylor series map,�1: VX ! P1(E):(1) 
ok(�) = 
ok(�1);(2) E1 = �
ok(�1)
 
�1X=k� =torsion;(3) tor1(�) is the torsion subsheaf of 
ok(�1);(4) drk1(�) = rk(im �1)� rkE.Hen
e, the �rst torsion sheaf of � measures where �1 drops rank.



6 DAVID PERKINSONRemark 2.4. The map Æ:S ! 
G=k
Q introdu
ed in the proof of Proposition 2.1is 
alled the se
ond fundamental form homomorphism. It di�ers by a fa
tor of -1from the se
ond fundamental form of [AK℄. As part of the proof of Proposition 2.1,we showed that � may des
ribed as the pullba
k via f of the se
ond fundamentalform on G, 
omposed with df 
 1 where df : f�
G=k ! 
X=k is the 
otangent map.Lo
al Des
ription of �. We now use Proposition 2.1 to give a des
ription of �in lo
al 
oordinates. Looking lo
ally, we may assume X = Spe
A and identify VXwith A�n (
hoosing a basis for V ), E with A�r, and SE with A�n�r. The map �be
omes the matrixM = (aij) whose rows will be denoted by vi for i = 1; : : : r. LetL = (bij) be the in
lusion SE ! VX and denote its 
olumns by wi for i = 1; : : : ; n�r.Re
all the standard derivation, d:A! 
A=k. We may assume that 
A=k is trivialwith generator dz. For a 2 A, de�ne a0 by the equationda = a0dzDe�ne v0i = (a0i1; : : : ; a0in). Finally, identifying P1(E) with (A�r)�2 �= A�2r as in(A.4), diagram (2.2) be
omes
(2.5) 0 ��! A�n�r [w1 � � � wn�r ℄�����������! A�n 264v1...vr 375����������! A�r ��! 0??y�=(v0i�wj) ??y26666666664v1...vrv01...v0r

37777777775 


0 ��! A�r �������������!" 0: : :Ir # A�2r �������!� Ir ... 0 � A�r ��! 0where Ir is the r � r identity matrix. For details, see (A.4) and (A.6.4.3). Sin
evi �wj = 0, the following \dual" des
ription 
omes from the produ
t rule:(2.6) � = (v0i � wj) = (�vi � w0j)where w0j = (b01j; : : : ; b0nj).For a \more lo
al" des
ription of �, take A to be the lo
al ring at some pointx 2 X with lo
al parameter z. The 
ompletion of A is then isomorphi
 to thepower series ring k[[z℄℄, and the in
lusion of A into its 
ompletion allows us to viewthe vi's and wj 's as fun
tions of z. The derivatives we must take are then justordinary derivatives of power series. Finally, looking in the �ber at x, we get ani
e interpretation of �. Consider the parametrized family of (n � r)-dimensionalsubspa
es of V : �(z) = span fw1(z); : : : ; wn�r(z)gIn the �ber at x, �: �(0) �! V=�(0)(2.7) P�iwi(0) 7!P�iw0i(0)



CURVES IN GRASSMANNIANS 7Dually, using (2.6), take the parametrized family of r-dimensional subspa
es of V ��(z) = span fv1(z); : : : ; vr(z)gand in the �ber at x, �: �(0) �! V �=�(0)(2.8) P�ivi(0) 7!P�iv0i(0)This agrees with [GH2, p. 384, 2.1℄. At most points, the rank of this map is thedi�erential rank of �. At spe
ial points, the rank may drop, and this is measuredby the torsion sheaf.3. Fun
torial Properties of Derived BundlesWe 
onsider two types of fun
torial properties of derived bundles: one 
omingfrom maps between bundles, and the other from maps between 
urves. As anappli
ation, the latter 
an be used to show that the asso
iated maps, (B.4), arebirational.Proposition 3.1. Let V , W be k-ve
tor spa
es and E, F be ve
tor bundles on X.Suppose there is a 
ommutative diagramVX `����! WX�??y ??y E f����! Fwhere the verti
al maps are surje
tive. Then there are maps between derived bundlesfi : Ei ! Fi su
h that VX `����! WX�i�1??y ??y i�1Ei�1 fi�1����! Fi�1??y ??yEi fi����! Fi
ommutes for i � 1. (The verti
al maps are the natural ones. De�ne E0 = E,F0 = F , f0 = f , �0 = � and  0 =  .) There are also maps between torsionsheaves: gi: tori(�) �! tori( )(1) If f is surje
tive, so are the fi. In this 
ase, for all i � 1,rkE � rkF � iXj=1(drkj(�)� drkj( ))(2) If f is an isomorphism and ` is surje
tive, then the fi and gi are isomor-phisms;



8 DAVID PERKINSONProof. The proof is a straightforward diagram-
hase using (2.2) and the fun
tori-ality of prin
ipal parts bundles and Taylor series maps (Appendix A). �Corollary 3.1.1. With the notation of Proposition 3.1, if drk1 � = rkE and f issurje
tive, then drk1  = rkF .Proof. This follows immediately from (1). The hypotheses imply that E1 = 0 andf1 is surje
tive. Thus, F1 = 0 and the result follows. �Proposition 3.2. Let Y be a nonsingular proje
tive 
urve over k, E a bundleon Y , and �Y :VY ! E any surje
tion with V a k-ve
tor spa
e, as usual. Letf :X ! Y be a �nite, separable morphism with X a nonsingular proje
tive 
urveover k. Pulling �Y ba
k via f gives �X : VX ! f�E, and we may 
onsider itsderived bundles (f�E)i.(1) f�(Ei) �= (f�E)i (as quotients of VX);(2) length(tori(�X)) = length(f� tori(�Y )) + drki(�Y ) length(
X=Y ).Proof. Sin
e Ei = (Ei�1)1, it suÆ
es to show (1) for the 
ase i = 1. We 
an show(1) using lo
al 
oordinates, but it is easier to use the duality theorem, (7.1). OnY , there is the exa
t sequen
e, (1.4),(�) 0 �! SE �! VY �! E �! 0Consider diagram (2.2) for the dual of this sequen
e:(��) 0 ����! E� ��Y����! V �Y  Y����! S�E ����! 0??y� Y ??y�1 


0 ����! 
Y=k 
 S�E ����! P1(S�E) ����! S�E ����! 0Corollary 7.1.3 of the duality theorem says thatker � Y = (E1)�Pulling ba
k (�) to X gives the exa
t sequen
e(y) 0 �! f�SE �! VX �! f�E �! 0Consider (2.2) for the dual of this sequen
e:(z) 0 ����! f�E� ��X����! V �X  X����! f�S�E ����! 0??y� X ??y�1 


0 ����! 
X=k 
 f�S�E ����! P1(f�S�E) ����! f�S�E ����! 0Corollary 7.1.3 says that ker � X = ((f�E)1)�Thus, we need to show that (f� ker � Y )� �= (ker � X )� as quotients of VX .



CURVES IN GRASSMANNIANS 9There is a natural map, f� P1(S�E)! P1(f�S�E), (A.2.4). By Proposition A.3.4and (A.6.3.5), it indu
es a map from the pullba
k of (��) via f to (z). In parti
ular,there is a 
ommutative diagramf� ker � Y ����! f�E� f�� Y����! f�
Y=k 
 f�S�E??y 


 ??ydf
1ker � X ����! f�E� ����!� X 
X=k 
 f�S�ESin
e f is separable, the 
otangent map df : f�
Y=k ! 
X=k is inje
tive, ([H, p.300℄). Further, f is 
at, ([H, p. 299℄), hen
e f� ker � Y = ker f�� Y . Therefore,it follows from the snake lemma that the left-most verti
al map is an isomorphism
ompatible with the natural maps to V �X . Taking duals gives (1).To prove (2), we pro
eed as in the proof of (1) but without taking duals. Again,it suÆ
es to prove the result for i = 1. We have diagram (2.2) and its 
ounterparton X:(~) 0 ����! f�SE ����! VX �X����! f�E ����! 0??y�X ??y�1 


0 ����! 
X=k 
 f�E ����! P1(f�E) ����! f�E ����! 0As before, (A.3.4) and (A.6.3.5) give a map of 
ommutative diagrams (2:2)! (~).In parti
ular, there is a 
ommutative diagramf�SE f���Y����! f�
Y=k 
 f�E


 ??ydf
1f�SE ����!��X 
X=k 
 f�EFrom this, we get the 
ommutative diagram with exa
t rows0 ����! f� im ��Y ����! f�
Y=k 
 f�E ����! f� 
ok ��Y ����! 0??y ??ydf
1 ??y0 ����! im ��X ����! 
X=k 
 f�E ����! 
ok ��X ����! 0where the left verti
al map is surje
tive. Sin
e df is inje
tive with 
okernel 
X=Y ,the snake lemma shows there is an exa
t sequen
e0 �! f� 
ok ��X �! 
ok ��Y �! 
X=Y 
 f�E �! 0Finally, we 
onsider the torsion sheaves in the 
ommutative diagram with exa
trows0 ����! f� tor1 �Y ����! f� 
ok ��Y ����! f�
Y=k 
 f�(E1) ����! 0??y ??y ??y0 ����! tor1 �X ����! 
ok ��X ����! 
X=k 
 (f�E)1 ����! 0(2) follows by applying the snake lemma to this diagram and taking degrees. �



10 DAVID PERKINSONExample 3.2.1. If E = Gt(L) for a line bundle L as in (B.2), then Proposition3.2 and Theorem 8.1.1 re
over Proposition B.3.6 whi
h shows how the in
e
tionalbehavior for 
urves in proje
tive spa
e 
hanges under 
overing maps.3.3. Birationality of Asso
iated Maps. Let f :X ! P(V ) be a map of asmooth proje
tive 
urve, birational to its image. Re
all the t-th asso
iated map,ft:X �! GtP(V )x 7! Os
tx(f)sending a point to its os
ulating spa
e of order t, (for de�nitions, 
f. B.4).Proposition 3.3.1. Suppose that the image of f is not 
ontained in a hyperplane.Let t < m, and assume that the 
hara
teristi
 of k is zero or greater than t and thedegree of the t-th os
ulating bundle for f , (B.2). Then the t-th asso
iated map, ft,is birational to its image.Proof. Let f be determined by the surje
tion�:VX �! LThe t-th asso
iated map 
orresponds to the surje
tion(�) �t:VX �! Gt(L)(
f. B.4.2.4). The idea of the proof is that the t-th derived bundle of �t turns outto be L. Thus, we 
an re
over f from ft.At least ft is not 
onstant, for otherwise f(X) would lie in a linear spa
e ofdimension t < m, whi
h 
ontradi
ts the de�nition of m. Fa
tor ft asX g�! Y h�! Gtwhere Y is the normalization of ft(X). Sin
e ft is not 
onstant, g is �nite, anddeg g � degGt(L). Hen
e, with our assumption on the 
hara
teristi
, g is alsoseparable; we want to show that it is an isomorphism. The map h 
orresponds toa surje
tion VY �! Ewhi
h pulls ba
k to (�) on X. In Proposition 6.3.1, we will show that the t-thderived bundle of Gt(L) is L. Hen
e, by Proposition 3.2L = (Gt(L))t �= g�(Et)as quotients of VX . Therefore, the natural map VY ! Et determines a map ~h of Yinto proje
tive spa
e fa
toring f :X g�! Y ~h�! P(V )Sin
e f is birational to its image, deg g = 1. In other words, X = Y , as desired. �



CURVES IN GRASSMANNIANS 114. Chara
terization of Derived Bundles via Os
ulating BundlesThis se
tion presents a main result of the paper, Theorem 4.2. It states that thesequen
e of derived bundlesVX ��! E �! E1 �! E2 �! : : :lifts through the natural maps from Piene's os
ulating bundlesVX ��! E �! G1(E1) �! G2(E2) �! : : :This property is used to: 
hara
terize derived bundles in Theorem 4.6; give ageometri
 interpretation of the sequen
e of di�erential ranks in x5, (Theorem 5.1);and re
over a result of GriÆths and Harris des
ribing 
urves with di�erential rankone in x6, (Corollary 6.2.2). We also use Theorem 4.2 to see that the sequen
e ofdi�erential ranks de
reases, (Corollary 4.3).Os
ulating Bundles. The following de�nition is due to Piene, [Pi1℄:De�nition 4.1. The image of the Taylor series map, �t�: VX ! Pt(E), is 
alledthe os
ulating bundle of order t for �. We denote it by Gt(�) or just Gt(E) when� is 
lear from 
ontext. (It is a bundle sin
e it is a torsion free sheaf on a smooth
urve.) It 
omes with a natural surje
tion�t: VX �! Gt(E)The natural surje
tions, Pt(E) ! Pt�1(E), indu
e surje
tions Gt(E) ! Gt�1(E).(For the de�nition of the Taylor series map, 
f. (A.6); for generalities about os
u-lating bundles, 
f. (A.8).)Lo
ally, we think of �:VX ! E as being the one-parameter family of subspa
esof V � spanned by the rows of �, and we think of �t:VX ! Gt(E) as being the1-parameter family of subspa
es of V � spanned (at a generi
 point of X) by therows of � and their derivatives up to order t, (A.6.4).The immediate 
onne
tion between os
ulating bundles and derived bundles is
lear from (2.3) whi
h states that
ok � = 
ok(�1) = 
ok(G1(E) ,! P1(E))and hen
e E1 = �
ok(G1(E) ,! P1(E))
 
�1X=k� =torsionChara
terization of Derived Bundles. The next theorem will show that themap E ! Ei fa
tors through the natural surje
tion Gi(Ei) ! Ei. Roughly, if wethink of �i:VX ! Ei and �:VX ! E as parametrized families of subspa
es of V �spanned by the rows of �i and �, respe
tively, the next theorem says that ea
hsubspa
e in the family VX ! E 
ontains a subspa
e spanned by the rows of �i andtheir derivatives up to order i. Theorem 4.6 shows that this property 
hara
terizesderived bundles.



12 DAVID PERKINSONTheorem 4.2. Assume the 
hara
teristi
 of k is 0 or greater than i + 1. Thenthere are surje
tions Gi(Ej) �! Gi+1(Ej+1) 
ompatible with the natural maps fromVX and 
ompatible with the natural surje
tions to lower order os
ulating bundles,i.e., so that the following diagram 
ommutesGi(Ej) ����! Gi+1(Ej+1)??y ??yGi�1(Ej) ����! Gi(Ej+1)In parti
ular, there are mapsVX �! E �! G1(E1) �! G2(E2) �! � � �
ompatible with the natural surje
tions from VX and to the Ei's. These maps arefun
torial in E, (3.1).Proof. For ease of notation, we will 
onstru
t the maps for E and E1, but the sameargument works for Ej and Ej+1. Let �:E ! E1 be the natural surje
tion.Consider the 
ommutative diagrams, (2.2),(�) 0 ����! SE ����! VX �����! E ����! 0??y� ??y�1� 


0 ����! 
X=k 
 E ����! P1(E) ����! E ����! 0and(��) 0 ����! SE1 ����! VX �1����! E1 ����! 0??y��1 ??y�1�1 


0 ����! 
X=k 
E1 ����! P1(E1) ����! E1 ����! 0By (A.6.3.4.2), the natural map �:E ! E1 indu
es a map of 
ommutative diagrams(�)! (��) whi
h we think of as a 3-dimensional 
ommutative diagram. As part ofthis diagram, we have the maps(� � �) SE ��! 
X=k 
 E 1
���! 
X=k 
E1The 
omposite is zero sin
e, by de�nition of �, the natural surje
tion
X=k 
E �! 
ok(�)=torsion = 
X=k 
 E1is 1
 �.Now 
onsider the maps(y) 0 ����! SE ����! VX �����! E ����! 0


VX �1�1����! P1(E1)



CURVES IN GRASSMANNIANS 13Chasing the diagram (�) ! (��) and using the fa
t that the 
omposite (� � �) iszero gives that the indu
ed map SE ! P1(E1) is zero. Thus there is an indu
edverti
al map in (y), E ! P1(E1). This map fa
tors through the image of �1�1 togive the surje
tion E �! G1(E1)Applying the fun
tor G1( � ) and using the isomorphism of (A.8.3) yields the sur-je
tions G1(E) �! G1(G1(E1)) �= G2(E1)Applying G1( � ) and (A.8.3) repeatedly gives the desired mapsGi(E) �! Gi+1(E1)The 
ompatibility requirements follow from those in (A.8.2) and (A.8.3). Fun
to-riality in E 
omes from the fun
toriality of the maps in (�) and (��)|whi
h wasalready used to 
onstru
t the map (�) ! (��)|and of the maps in (A.8.3). Therestri
tion on the 
hara
teristi
 
omes from (A.8.3). �Of 
ourse, rk(Ei) � rk(Ei+1) sin
e Ei � Ei+1, but the di�eren
es in these ranksalso de
rease:Corollary 4.3. The di�erential ranks de
rease, i.e., drki � � drki+1 �. (Note thatthere is no 
ondition on the 
hara
teristi
 of k.)Proof. Proposition 4.2 shows that Ei�1 � G1(Ei). Thus,rkEi�1 � rkG1(Ei)= rkP1(Ei)� rkEi+1 (2:3)= 2 rkEi � rkEi+1 =)drki � = rkEi�1 � rkEi � rkEi � rkEi+1 = drki+1 � �The following proposition is a useful te
hni
al tool:Proposition 4.4. Consider Gi(E)1, the �rst derived bundle of �i:VX ! G1(E).(1) The surje
tion Gi(E)! Gi�1(E) fa
tors through the natural map Gi(E)!Gi(E)1 to give surje
tionsGi(E) �! Gi(E)1 �! Gi�1(E)These maps are 
ompatible with the natural surje
tions to lower order os-
ulating bundles; i.e., the following diagram 
ommutesGi(E) ����! Gi(E)1 ����! Gi�1(E)??y ??y ??yGi�1(E) ����! Gi�1(E)1 ����! Gi�2(E)(2) G1(E) �=! G1(G1(E)1);(3) G1(E1)1 �=! E1.



14 DAVID PERKINSONAll these maps are 
ompatible with the surje
tions from VX . (1) and (2) are fun
-torial in E and hold with Ej, j � 0, in pla
e of E. (3) is fun
torial in E1 and holdswith Ej, j � 1, in pla
e of E1.Proof. Consider the 
ommutative diagrams, (2.2),(�) 0 ����! ker�i ����! VX �i����! Gi(E) ����! 0??y��i ??y 


0 ����! 
X=k 
Gi(E) ����! P1(Gi(E)) ����! Gi(E) ����! 0and(��) 0 ��! ker�i�1 ��! VX �i�1���! Gi�1(E) ��! 0??y��i�1 ??y 


0 ��! 
X=k 
Gi�1(E) ��! P1(Gi�1(E)) ��! Gi�1(E) ��! 0The natural surje
tion �: Gi(E) ! Gi�1(E) indu
es a map of 
ommutative dia-grams (�)! (��), (A.6.3.4.2). In parti
ular, there are 
ommutative diagrams(y) ker�i ����! ker�i�1��i??y ??y��i�1
X=k 
Gi(E) 1
�����! 
X=k 
Gi�1(E)and(z) P1(Gi(E)) ����! Gi(E)??y ??y�P1(Gi�1(E)) ����! Gi�1(E)However, 
onsidering the natural maps from VX shows that � fa
tors throughP1(Gi�1(E)) in (z). Chasing the diagram (�)! (��) then shows that (1
�)Æ��i =0 in (y). Therefore, there is an indu
ed map 
ok(��i)� 
X=k
Gi�1(E). Moddingout by torsion and tensoring by 
�1X=k givesGi(E) �! Gi(E)1 �! Gi�1(E)
ompatible with the natural maps from VX . In the diagramGi(E) ����! Gi(E)1 ����! Gi�1(E)??y ??y ??yGi�1(E) ����! Gi�1(E)1 ����! Gi�2(E)



CURVES IN GRASSMANNIANS 15the outer square 
learly 
ommutes. The middle verti
al map 
omes from (3.1); thus,the left square 
ommutes. Sin
e the horizontal arrows are surje
tions, this meansthe whole diagram 
ommutes. This proves (1). Sin
e (�) and (��) are fun
torial inE, (A.6.3.4.2), so are the maps we have 
onstru
ted.To prove (2), apply G1( � ) to (1) with i = 1 to get G1(G1(E)1) � G1(E).However, by Proposition 4.2 we get a map in the opposite dire
tion: G1(E) �G1(G1(E)1). Comparing ranks shows that the two maps must be isomorphisms. (Asurje
tive map of bundles of the same rank must be an isomorphism.) Fun
torialityin E follows from the 
orresponding property in (1) or in (4.2).Proposition 4.2 says that E � G1(E1). Applying Proposition 3.1 gives E1 �G1(E1)1. To prove (3), use (1) with i = 1 and with E1 in pla
e of E to getG1(E1)1 � E1. The result follows by 
omparing ranks as in the previous paragraph.Fun
toriality also follows as above.Finally, repla
ing E or E1 by Ej as in the statement of the proposition does not
hange the argument we have just given. �Corollary 4.5. Assume the 
hara
teristi
 of k is zero or greater than i. Thendrk1 �i�1 � drk1 �i.Proof. First note that by Proposition A.8.3, Gi(E) �= G1(Gi�1(E)) as quotients ofVX . Therefore, by (3.1),(�) drk1 �i = drk1G1(Gi�1(E))Now, repla
e E by Gi�1(E) in (1) of Proposition 4.4 to get G1(Gi�1(E))1 �Gi�1(E). It follows that,rkGi�1(E) � rkG1(Gi�1(E))1= rkG1(Gi�1(E))� drk1G1(Gi�1(E))= rkP1(Gi�1(E))� rkGi�1(E)1 � drk1G1(Gi�1(E)) (2:3)= rkP1(Gi�1(E))� rkGi�1(E)1 � drk1 �i (�)= 2 rkGi�1(E)� rkGi�1(E)1 � drk1 �i =)drk1 �i�1 = rkGi�1(E)� rkGi�1(E)1 � drk1 �i �Theorem 4.6. (Uniqueness of Derived Bundles) Assume the 
hara
teristi
 of k is0 or greater than i. Let F be a bundle on X with rkF = rkEi, and let VX ! F beany surje
tion. Suppose there is a 
ommutative diagramVX VX??y ??y�iE ����! Gi(F )Then F �= Ei as quotients of E.Moreover, suppose there is a string of surje
tionsVX �! F 1 �! � � � �! F i



16 DAVID PERKINSONwith ea
h F j a bundle on X with rkF j = rkEj, and suppose there are 
ommutativediagrams VX VX??y ??y�jE ����! Gj(F j)for j = 1; : : : i; then the indu
ed isomorphisms fj :F j �= Ej are 
ompatible with thenatural surje
tions F j�1 fj�1����! Ej�1??y ??yF j fj����! EjProof. Proposition A.8.3 gives isomorphisms Gj(F ) �= G1(Gj�1(F )) for j = 1; : : : i,(using the assumption on the 
hara
teristi
 of k). Combining this with Proposition4.4, (1), yields(�) Gj(F )1 = G1(Gj�1(F ))1 � Gj�1(F )Apply this result along with Proposition 3.1, (2), repeatedly:E � Gi(F ) =)Ei � Gi(F )i = (Gi(F )1)i�1 (def. of derived bundles)� Gi�1(F )i�1 = (Gi�1(F )1)i�2 (�)...� FThis 
onstru
ts a map Ei � F whi
h must be an isomorphism sin
e it is a surje
tionof bundles of the same rank.The 
ompatibility statement follows sin
e the maps of (3.1), (4.4, (1)), and(A.8.3) respe
t the surje
tions Gj(F )! Gj�1(F ). �5. Geometri
 Interpretation of the Sequen
e of Di�erential RanksThe surje
tions VX ��! E ! G1(E1) �! G2(E2) �! � � �of Theorem 4.2 suggest a way of taking lo
al 
oordinates for �. Over the 
omplexnumbers, using di�erent methods, GriÆths and Harris, [GH2℄, also present theselo
al 
oordinates, whi
h they 
all the \normal form" for a 
urve in a Grassmannian.We will see how this normal form is determined by the sequen
e of di�erential ranksof � and show what is \normal" about it.Diagram (2.2) was used to give an alternate 
onstru
tion of �. Re
all diagram(2.5), expressing (2.2) in lo
al 
oordinates on an open aÆne U = Spe
A of X. Themap �:VX ! E be
omes a matrix with rows vi for i = 1; : : : ; r.



CURVES IN GRASSMANNIANS 17Theorem 5.1. (Normal Form for a Curve in a Grassmannian) Suppose there are` elements u1; : : : ; u` of A�n su
h that(v1; : : : ; vr) = (u1; u01; : : : ; u(i1)1 ; : : : ; u`; u0̀ ; : : : ; u(i`)` )In other words, the rows of � 
onsist of the derivatives of the ui's. Then(1) drk1 � � `;(2) If drk1 � = `, then all the higher di�erential ranks are determined byi1; : : : ; i`: drkm � = ℄fj �� ij � m� 1gand shrinking U so that it does not 
ontain points in the support of the tor-sion sheaves|i.e., ex
luding a �nite number of points|the map �j :VX !Ej restri
ted to U 
an be expressed in lo
al 
oordinates as a matrix withrows (u1; u01; : : : ; u(i1�j)1 ; : : : ; u`; u0̀ ; : : : ; u(i`�j)` )where u(ip�j)p is omitted if ip < j. (These lo
al forms for the �i's are
ompatible with the surje
tions Ei ! Ei+1 in the natural way.)(3) Suppose that Et = 0 for some t, (
f. Remark 6.1.2). Near any point not inthe support of a torsion sheaf, it is possible to take 
oordinates as above sothat drk1 � = `, i.e., so that the 
on
lusion of (2) holds.Proof. With the ui's as above, u(t)j � wi = 0 for t = 0; : : : ; ij. So the only rows of �that are possibly nonzero are(�) (u(ij+1)j � w1; : : : ; u(ij+1)j � wn�r); j = 1; : : : ; `Hen
e, rk(v0i � wj) � `. This shows (1).If drk1 � = `, then the rows displayed in (�) must be A-linearly independent.The map E ! E1 is de�ned by tensoring the 
omposite
X=k 
 E �! 
ok � �! (
ok �) =torsion = 
X=k 
 E1by 
�1X=k. Thus, by shrinking U if ne
essary to ex
lude the torsion of 
ok �, themap E ! E1 be
omes a proje
tionA�r �! A�r�`onto fa
tors of A�r 
orresponding to the rows of zeros in �. Hen
e, there is a
ommutative diagramVX �=[u1;:::;u(i1)1 ;:::;u`;:::;u(i`)` ℄transpose�����������������������! E


 ??yVX ���������������������������!�1=[u1;:::;u(i1�1)1 ;:::;u`;:::;u(i`�1)` ℄transpose E1



18 DAVID PERKINSONWe use the 
onvention that u(ij�1)j is omitted of ij = 0. Let s be the number ofui's remaining.The pre
eding diagram shows the se
ond part of (2) for j = 1. The �rst part of(2) is true by supposition for m = 1. For it to be true for m = 2, we need to showthat drk2 � = s. We �rst show that the ui's and their derivatives up to 
ertainorders are linearly independent. By (2.3),rkP1(E)� rkE1 = rk(spanfv1; : : : ; vr; v01; : : : ; v0rg)= rk(spanfu1; : : : ; u(i1+1)1 ; : : : ; u`; : : : ; u(i`+1)` g)But rkP1(E)� rkE1 = 2 rkE � (rkE � drk1 �) = r + `By 
ounting, this implies that u1; : : : ; u(i1+1)1 ; : : : ; u`; : : : ; u(i`+1)` are independent.To ease notation, assume i1; : : : ; is � 1. Use (2.3) again to getrkP1(E1)� rkE2 = rk(spanfu1; : : : ; u(i1)1 ; : : : ; us; : : : ; u(is)s g)= r � `+ sBut rkP1(E1) = 2 rkE1. Therefore,drk2 � = rkE1 � rkE2 = r � `+ s� rkE1= r � `+ s� (r � `)= sas required.Repla
ing E = E0 by E1 and E1 by E2 in the argument just given shows the�rst part of (2) for m = 3 and the se
ond part for j = 2, and so on. Thus, (2)follows by indu
tion.We will prove (3) by indu
tion on t where t is the smallest integer su
h thatEt+1 = 0. The 
ase t = 0 is true trivially. Assume the result true for t = k � 1,and suppose Ek+1 is the last nonzero derived bundle. Let s = drk2 � = drk1 �1and r1 = rkE1, and apply the indu
tion hypothesis to �1:VX ! E1. Thus, we 
an
hoose lo
al 
oordinates so that �1 has the form�1 =M1 = [u1; : : : ; u(i1)1 ; : : : ; us; : : : ; u(is)s ℄transposeWe will use the surje
tions VX ! E ! G1(E1) of Theorem 4.2 to 
hoose lo
al
oordinates for �. First, we des
ribe �1:VX ! G1(E1) in lo
al 
oordinates. Byshrinking U , we 
an write �1:VX ! P1(E1) as a blo
k matrix(��) A�n "M1M 01 #����! A�2r1where M 01 is the matrix whose entries are the derivatives of those of M1, (A.6.4.4).The bundle G1(E1) is de�ned to be the image of this map. By shrinking U more



CURVES IN GRASSMANNIANS 19if ne
essary|to avoid the support of the torsion sheaf|we may assume G1(E1)is a subbundle of P1(E1), i.e., the quotient is a bundle. Therefore, we 
an take
oordinates so that the rows of �1 
onsist of those rows of (��) that are not 
learlylinearly dependent, namely,[u1; : : : ; u(i1+1)1 ; : : : ; us; : : : ; u(is+1)s ℄transposeCounting shows these rows must be linearly independent; the number of rows listedequals the rank of G1(E1):rkP1(E1)� rkG1(E1) = rkE2 = r1 � s =)r1 + s = rkG1(E1)By Theorem 4.2, the surje
tion from E to E1 fa
tors to give �:E ! G1(E1).Shrinking U , trivialize E so that � is just proje
tion onto the �rst fa
tors; then,lo
ally, there is a 
ommutative diagramVX �����! E


 ??y�=� Ir1+s ... 0 �VX ����!�1 G1(E1)Therefore, � has the form[u1; : : : ; u(i1+1)1 ; : : : ; us; : : : ; u(is+1)s ; us+1; : : : ; ur�r1 ℄transposefor some uj , j = s+1; : : : ; r�r1. Sin
e r�r1 = drk1 �, � has the desired form. �Remark 5.2. The key step of the indu
tion argument establishing (3) of the the-orem was to use the map E ! G1(E1) of Theorem 4.2 to 
hoose lo
al 
oordinatesfor E, having already 
hosen them for E1. Therefore, we regard the maps of The-orem 4.2 VX ��! E �! G1(E1) �! G2(E2) �! : : :as the global expression of the normal form for a 
urve in a Grassmannian.Example 5.3. In light of (2) of the theorem, we might say that taking derivedbundles, \
hops o�" highest order derivatives. Suppose that the map � has di�er-ential rank four, given in lo
al 
oordinates (away from the torsion sheaf) by� = [u1; u01; u001 ; u0001 ; u2; u02; u002 ; u3; u03; u4; u04℄transposeThen �1 
omes from de
reasing the orders of the derivatives ea
h by one.:�1 = [u1; u01; u001 ; u2; u02; u3; u4℄transposeand the se
ond di�erential rank is also four. Repeat to get�2 = [u1; u01; u2℄transposeThe third di�erential rank is two. Finally,�3 = [u1℄The fourth di�erential rank is one, and all higher di�erential ranks are zero. If thelo
al des
ription of the original � also in
luded a 
onstant ve
tor, u5, then u5 wouldappear in ea
h of the lo
al des
riptions of the �i's; the di�erential ranks would not
hange, (6.1.2).



20 DAVID PERKINSONExample 5.4. Let f : C ! G(C 4 ; 3) be determined by the map
�z: C 4 26641 z z2 z30 1 z2 z0 0 1 z 3775�������������! C 3In other words, our map �:VC ! E is a map of trivial bundles and has the aboveform in the �ber at z 2 C . Sin
e the kernel of � has rank one, the di�erentialrank of f must be one. In fa
t, for z away from the torsion (the third torsion sheafis supported at two points), the rows of �z span the same spa
e as the followingve
tor and its �rst two derivatives(3z;�1 + 6z2; 1� 3z2 + 6z4; z3 + 3z5)6. Curves with Di�erential Rank OneOne of the original motivations for this paper was to use Piene's os
ulatingbundles to show that 
urves of di�erential rank one are 
ones over asso
iated maps.This fa
t was originally observed by GriÆths and Harris, [GH2℄, using analyti
methods. The result appears as a 
orollary to Theorem 6.2.1.We then 
al
ulate the derived bundles of the os
ulating bundles for a 
urve inproje
tive spa
e. This 
al
ulation allows us to show that the asso
iated maps arebirational, (3.3), and to re
over Piene's duality theorem for 
urves in proje
tivespa
e from our duality theorem for 
urves in Grassmannians, (x7).The se
tion begins by showing how to form 
ones over 
urves in Grassmannians.Forming a 
one does not a�e
t the di�erential ranks or torsion sheaves of the original
urve. The map, f , is 
one over a 
urve in a smaller Grassmannian if its derivedbundles are not eventually zero.6.1. Cones. Let f :X ! G(V; r) and �:VX ! E be as usual, and let W be ave
tor spa
e over k of dimension m. The 
one over f with vertex W is the mapCW (f):X �! G(V �W; r +m)x 7! f(x)�WIt 
orresponds to the surje
tionC(W;�):VX �WX ��id���! E �WXForming a 
one does not 
hange di�erential ranks or torsion sheaves.Proposition 6.1.1. The i-th derived bundle of the 
one, C(W;�), is the dire
tsum of WX and the i-th derived bundle of the original map, �,(E �WX)i �= Ei �WX



CURVES IN GRASSMANNIANS 21These isomorphisms are 
ompatible with the natural surje
tions between derivedbundles. In parti
ular, drki C(W;�) = drki � and tori C(W;�) = tori � for all i.Proof. Sin
e the Taylor series map and the natural surje
tions between prin
ipalparts bundles respe
t dire
t sums (A.1.3, A.6.3.1), diagram (2.2) be
omes0 �! SE � 0 �! VX �WX ��id���! E �WX �! 0??y�=����id ??y�1���1id 


0 �! (
X=k 
 E)� (
X=k 
WX) �! P1(E)� P1(WX) �! E �WX �! 0Hen
e, 
ok � = 
ok �� � 
ok �id = 
ok ��� (
X=k 
WX). Therefore, the torsion of
ok � is the same as the torsion of 
ok ��, and the �rst derived bundle of C(W;�)is (
ok �=torsion)
 
�1X=k �= E1 �WXas 
laimed. Repla
ing E by E1, E1 by E2, et
., shows that the i-th derived bundle ofC(W;�) is as 
laimed. The statement about di�erential ranks then follows dire
tlyfrom the de�nitionsdrki C(W;�) = rk(E �WX)i�1 � rk(E �WX)i = rkEi�1 � rkEi = drki �The 
ompatibility statement follows from the 
orresponding one for diagram (2.2)by (A.6.3.4.2). �Remark 6.1.2. (Removing Trivial Fa
tors) Consider the sequen
e of derived bun-dles VX ��! E �! E1 �! E2 �! : : :Sin
e these maps are surje
tions and E has �nite rank, eventually Et = Et+j forj � 0. In this 
ase, drkt+1 � = rkEt � rkEt+1 = 0. In other words, drk1 �t = 0.The next proposition will show that, with an assumption on the 
hara
teristi
 of k,Et must be trivial, and is, in fa
t, the largest trivial fa
tor of E. The pre
edingproposition shows that � is a 
one over a 
urve in a smaller Grassmannian.Proposition 6.1.3. If drk1 � = 0 and the 
hara
teristi
 of k is zero or greaterthan degE, then f :X ! G is a 
onstant map and E is trivial. Conversely, butwith no restri
tion on the 
hara
teristi
, if E is trivial, then drk1 � = 0.Proof. If drk1 � = 0, the tangent map TX ! f�TG is zero. Composing f with thePl�u
ker embedding, G! PN , gives a map X ! PN determined by�r�: �rVX ! detE = Lwhere r = rkE. The tangent map of this 
omposite is still zero, so drk1 �r� = 0.By Corollary 2.3, (4), the Taylor series map, �rVX ! P1(L), is not generi
allysurje
tive. Let im�rV denote the image of the natural map �rV ! �(X;L).Assuming the 
hara
teristi
 of k is zero or greater than degE, Theorem B.2.3 saysthat dim(im�rV ) < 2, i.e., dim(im�rV ) = 1. Thus, L is trivial, and f mustbe 
onstant. Sin
e E is generated by global se
tions and its �rst Chern 
lass,
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1(E) = 
1(L), is zero, it follows that E must be trivial ([F, 12.1.8℄). (To see thatthe restri
tion on the 
hara
teristi
 is needed, 
onsider the Frobenius map.)On the other hand, if E is trivial, then f is 
learly 
onstant and drk1 � = 0. Thelatter assertion 
an be seen using lo
al 
oordinates or by noting that, by (3.1), wemay assume VX = E. Thus, SE = 0 and drk1 � = 0. �6.2. Curves with Di�erential Rank One. In Theorem 4.2 we showed that thesequen
e of derived bundles lifts through natural maps from the os
ulating bundles:VX ��! E � G1(E1)� G2(E2)� : : :In some situations we 
an 
al
ulate the ranks of the os
ulating bundles to showthat these maps are isomorphisms.Theorem 6.2.1. Let VX ��! E �! E1 �! � � �be the sequen
e of derived bundles of �. Assumedrki � = � d; for i = 1; : : : ;m+ 10 for i > m+ 1and assume the 
hara
teristi
 of k is zero or greater than degEm+1 and m. Thenthere are isomorphisms Ei �= Gm�i(Em) for all i, 
ompatible with the natural mapsfrom VX and with the natural surje
tionsEi �����! Gm�i(Em)??y ??yEi�1 �����! Gm�i�1(Em)Proof. By (6.1.2), Em+1 is trivial. By (6.1.1), we may assume Em+1 = 0. (Here,for the 
ompatibility statement, we use that the Taylor series map and the naturalsurje
tions of prin
ipal parts bundles respe
t dire
t sums, (A.6.3.1, A.2.6).Let i � m, and 
onsider the exa
t sequen
eVX �1�i��! P1(Ei) �! 
ok �1�i �! 0By Corollary 2.3, (1),rkEi+1 = rk 
ok �1�i = rkP1(Ei)� rkG1(Ei)= 2 rkEi � rkG1(Ei)But, by hypothesis, rkEi+1 = rkEi � d. Therefore,rkG1(Ei) = rkEi + d = rkEi�1



CURVES IN GRASSMANNIANS 23By Theorem 4.2,(�) Ei�1 � G1(Ei)This map must be an isomorphism sin
e it is a surje
tion between bundles of thesame rank.The theorem follows by des
ending indu
tion. For i = m, (�) says Em�1 �=G1(Em) as required. Assume that Ei �= Gm�i(Em) with the desired 
ompatiblilties.By the isomorphisms of (�) and (A.8.3) we getEi�1 �= G1(Ei) �= G1(Gm�i(Em)) �= Gm�i+1(Em)The 
ompatiblity requirements follow from those of (4.2) and (A.8.3). The re-stri
tion on the 
hara
teristi
 is used to show that Em+1 is trivial and to invoke(A.8.3). �The following 
orollary re
overs a result of GriÆths and Harris, [GH2, p. 386℄.If g:X ! P(V ) is a map of a 
urve into proje
tive spa
e, re
all that the t-theasso
iated map gt:X �! GtP(V )x 7! Os
tx(g)sends a point to its os
ulating spa
e of order t, (B.4). If g 
orresponds to a surje
tionVX �! L for some line bundle on X, Piene has shown that the t-th asso
iated map
orresponds to a surje
tion VX �! Gt(L)(
f. B.4.2.4).Corollary 6.2.2. Assume that the 
hara
teristi
 of k is zero or suÆ
iently large(as spe
i�ed in the proof, below). If drk1E = 1, then E �= Gm(L) �WX where Lis a line bundle quotient of E and W a quotient of V . In other words, f :X ! Gis a 
one over an asso
iated map.Proof. By Corollary 4.3, drki�1 � � drki �. Therefore,drki � = � 1 for i = 1; � � � ;m+ 10 for i > m+ 1for somem. Assume the 
hara
teristi
 of k is zero or greater than degEm+1 and m.As at the beginning of the proof of the Theorem 6.2.1, we use (6.1.2) to 
on
ludeEm+1 is trivial and use (6.1.1) to redu
e to the 
ase where Em+1 = 0. The resultfollows from Theorem 6.2.1 with d = 1 and L = Em. �Remark 6.2.3. The get a geometri
 interpretation of Theorem 6.2.1, think of�m:VX ! Em as being the 1-parameter family of subspa
es of the dual spa
e V �lo
ally spanned by the rows of �m; then for i < m, Theorem 6.2.1 says that �i
orresponds (generi
ally) to the 1-parameter family of subspa
es of V � spanned bythe rows of �m and their derivatives up to order m � i. If Em is a line bundle,we are taking the derivatives of just one ve
tor, whi
h we think of as tra
ing outa 
urve in proje
tive spa
e. The spa
e spanned by the ve
tor and its derivatives isan os
ulating spa
e for the 
urve.



24 DAVID PERKINSON6.3. Derived bundles of Asso
iated Maps. The next proposition is, roughly,the 
onverse to Corollary 6.2.2. It 
al
ulates the derived bundles of the os
ulatingbundles of a 
urve in proje
tive spa
e.Proposition 6.3.1. Let L be a line bundle, and let V ! �(X;L) be a map of ve
torspa
es with image an (m+1)-dimensional subspa
e of generating se
tions. Assumethat the 
hara
teristi
 of k is zero or that X is proje
tive and the 
hara
teristi
 ofk is greater than degL and m. Then the i-th derived bundle of �m:VX ! Gm(L)is Gm�i(L) Gm(L)i = Gm�i(L)and drki �m = 1 for i = 1; : : : ;m+ 1. (De�ne G�1(L) = 0.)Proof. By the uniqueness theorem, (4.6), it suÆ
es to show that for ea
h i,(�) Gm(L)� Gi(Gm�i(L))and that(��) rkGm�i(L) = rkGm(L)iProposition A.8.3 says that G1(Gj�1(L)) �= Gj(L) if the 
hara
teristi
 of k is zeroor greater than j. It follows immediately by indu
tion that in our 
ase,Gi(Gm�i(L)) �= Gm(L)This shows (�).The proposition now follows by indu
tion. By Theorem B.2.3, rkGi(L) = i+ 1for i = 0; : : : ;m+ 1, (
f. B.2.3.3). Assume that we have shown (��) for i � k � 1so that Gm(L)i = Gm�i(L) for i � k � 1; this is at least true for k=1. By (2.3),rkGm(L)k = rkP1(Gm(L)k�1)� rk im �1(�mk�1)= rkP1(Gm(L)k�1)� rkG1(Gm(L)k�1)= rkP1(Gm�k+1(L))� rkG1(Gm�k+1(L))= rkP1(Gm�k+1(L))� rkGm�k+2(L) (A.8.3)= 2(m� k + 2)� (m� k + 3)= m� k + 1 = rkGm�k(L)Hen
e (��) holds for i = k as well, and Gm(L)k = Gm�k(L). �7. DualityThis se
tion presents a main result of the paper: the duality theorem for 
urvesin Grassmannians. It answers two natural questions. First, from the exa
t sequen
eof (1.4) 0 �! SE �! VX ��! E �! 0
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tion �?:V �X �! S�EWhat are its derived bundles and os
ulating bundles? Se
ond, what are the kernelsof the natural maps to the derived bundles and os
ulating bundles of ��i:VX �! Ei; �i:VX �! Gi(E)If E is the os
ulating bundle for a 
urve in proje
tive spa
e, the answer to these
ond question is exa
tly Piene's duality theorem for 
urves in proje
tive spa
e,[Pi1℄. To prove our duality theorem, we adapt Piene's proof, whi
h simpli�es in themore general 
ontext.After proving the duality theorem, we re
over Piene's theorem, explaining its
onne
tion to the 
lassi
al duality theorems of the nineteenth 
entury. We then
onsider the spe
ial 
ase of a plane proje
tive 
urve in order to highlight the fa
tthat these duality theorems are fundamentally an expression of the produ
t rule ofordinary 
al
ulus, (
f. [K2℄).Theorem 7.1. Take the dual of the exa
t sequen
e 0 �! SE �! VX ��! E �! 0 toget �?:V �X �! S�Ewith its �rst derived bundle, (S�E)1, and �rst os
ulating bundle, G1(S�E). Thenker(�1�:VX �! G1(E)) = ((S�E)1)�and ker(�1:VX �! E1) = G1(S�E)�Hen
e, there is a 
ommutative diagram with exa
t rows:0 ����! ((S�E)1)� ����! VX �1����! G1(E) ����! 0??y 


 ??y0 ����! SE ����! VX �����! E ����! 0??y 


 ??y0 ����! G1(S�E)� ����! VX �1����! E1 ����! 0Proof. It suÆ
es to establish the bottom re
tangle of the diagram: the top thenfollows by repla
ing E by S�E and taking duals. Let K denote the dual of the kernelof V �X ! G1(S�E). The natural surje
tion G1(S�E) ! S�E indu
es a 
ommutativediagram(y) 0 ����! SE ����! VX �����! E ����! 0??y 


 �??y0 ����! G1(S�E)� ����! VX  ����! K ����! 0



26 DAVID PERKINSONwhere  and � are the natural maps. We will �rst show that � fa
tors throughthe surje
tion E ! E1 (as quotients of VX). The key step|on
e we set up theappropriate diagrams and take lo
al 
oordinates|is just the the produ
t rule ofordinary 
al
ulus. The result then follows by showing that E1 and K have the samerank and, hen
e, are isomorphi
.Consider the 
ommutative diagram, (2.2),(�) 0 ����! SE ����! VX �����! E ����! 0??y�� ??y�1� 


0 ����! 
X=k 
 E ����! P1(E) ����! E ����! 0and the analagous one for  (��) 0 ����! G1(S�E)� ����! VX  ����! K ����! 0??y� ??y�1 


0 ����! 
X=k 
K ����! P1(K) ����! K ����! 0The map � indu
es a map of 
ommutative diagrams (�)! (��) by (A.6.3.4.2). Inparti
ular, we have SE ����! G1(S�E)���??y ??y� 
X=k 
 E 1
�����! 
X=k 
KBy de�nition, E1 = �
ok �� 
 
�1X=k� =torsion. Thus, to show that � fa
torsthrough E1, it suÆ
es to show that (1
 �) Æ �� = 0. Chasing around (�) ! (��),it suÆ
es to show that the following 
omposite is zero:SE �! VX �1 �! P1(K)We will 
he
k this using lo
al 
oordinates. Consider the following 
ommutativediagram (notation to be explained):
(� � �) SE [w1;:::;wn�r℄����������������! VX 26664v1...vr 37775����!� E??y 


 ??yP1(S�E)� (�1�? )�����������������![w1;:::;wn�r;w01;:::;w0n�r℄ VX  ����!26664u1...u` 37775 K
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omposite SE �! P1(S�E)� (�1�? )�����! VXis the same as the 
omposite SE �! G1(S�E)� �! VXof (y) sin
e G1(S�E)! S�E fa
tors through P1(S�E)! S�E .Here is the meaning of the ui's, vi's, and wi's. Given a point x 2 X, take anopen aÆne set U = Spe
A about x, small enough so that E, SE , K, and 
X=k aretrivial when restri
ted to U . Identifying VX with A�n and E with A�r on U , themap � be
omes
A�n 26664v1...vr 37775����! A�rEa
h vi is a row ve
tor: vi = (ai1; : : : ; ain) where aij 2 A. The ui's and wi'sare de�ned similarly (let ` = rkK), but ea
h wi is a 
olumn ve
tor. A lo
altrivialization of SE determines one for S�E . This, along with a lo
al trivializationof 
X=k determines one of P1(S�E), (A.4.8), so that lo
ally the Taylor series mapis given by the transpose of [w1; : : : ; wn�r; w01; : : : ; w0n�r℄ as indi
ated in (� � �),(A.6.4.4). (For the de�nition of the derivative w0i, 
f. (A.4.1) and (A.6.4.2).)With similar notation, our problem is to show that the following 
omposite iszero: SE [w1;:::;wn�r ℄��������! VX [u1;:::;u`;u01;:::;u0̀ ℄transpose�����������������! P1(K)From (� � �), we know that ea
h dot produ
t wi � uj = w0i � uj = 0. By the produ
trule, it follows that wi � u0j = 0 as required.We have shown that � fa
tors through E ! E1. Hen
e, there is a 
ommutativediagram 0 ����! ker�1 ����! VX �1����! E1 ����! 0??y 


 ??y0 ����! G1(S�E)� ����! VX ����! K ����! 0It remains to be shown that rkK = rkE1. (Then E1 ! K is an isomorphism sin
eit's a surje
tive map of bundles of the same rank.) Cal
ulate:rkK = n� rkG1(S�E)= n� rkP1(S�E) + rk(S�E)1 (2.3)= n� 2 rkS�E + rk(SE)�1= n� rkS�E � drk1 S�E= rkE � drk1 S�E



28 DAVID PERKINSONThus, E1 � K )rkE1 = rkE � drk1E � rkK = rkE � drk1 S�E )drk1 S�E � drk1Ewith equality if and only if rkE1 = rkK. To see that we get an equality here,dualize everything; 
onsider the exa
t sequen
e0 �! E� ���! V �X �?��! S�E �! 0Repeating the whole argument with �? in pla
e of � gives thatdrk1E � drk1 S�Eand we are done. �The theorem 
an be used to 
al
ulate the kernels of the maps to the derivedbundles and os
ulating bundles. This 
orollary and the one following it suggestalternative de�nitions of derived bundles.Corollary 7.1.2. Let the 
hara
teristi
 of k be zero or greater than i. There areexa
t sequen
es 0 �! Gi(S�E)� (�i�? )�����! VX �i�! Ei �! 0and dually, 0 �! ((S�E)i)� �! VX �i�! Gi(E) �! 0Proof. Apply the duality theorem to ea
h Ei su

essively, and use Proposition A.8.3to say that G1(Gi�1(S�E)) �= Gi(S�E).To de�ne the derived bundles of �, we looked at the 
okernel of �:SE ! E

X=k.The next 
orollary shows what happens if we 
onsider the kernel instead.Corollary 7.1.3. ker(�:SE ! E 
 
X=k) = ((S�E)1)� = ker(�1:VX �! G1(E)).Proof. Corollary 2.3 gives ker � �= ker �1 = ker�1, and then apply the theorem.� Combining Corollary 7.2.1 with Theorem 6.2.1 givesCorollary 7.1.4. Assume thatdrki � = � d; for i = 1; : : : ;m+ 10; for i > m+ 1and assume the 
hara
teristi
 of k is zero or greater than degEm+1 and m. Then,for i = 1; : : : ;m, there is an isomorphism of exa
t sequen
es0 ����! SEi ����! VX �i����! Ei ����! 0o??y 


 o??y0 ����! Gi(S�E)� (�i�? )�����! VX �m�i�m����! Gm�i(Em) ����! 0



CURVES IN GRASSMANNIANS 297.2. Piene Duality Theorem. (
f. B.5) Let V � �(X;L) be an (n + 1)-dimensional ve
tor spa
e of generating se
tions of a line bundle on X and f :X !P(V ) the 
orresponding map to proje
tive spa
e. The map of ve
tor bundles 
or-responding to the t-th asso
iated map of f is�t:VX �! Gt(L)Corollary 7.2.1. (Piene Duality Theorem, [Pi1℄) Let X be a smooth proje
tive
urve, and assume that the 
hara
teristi
 of k is zero or greater than n and thedegree of L. Let K = ker�n�1 with its natural map V �X �! K�. Thenker�i = Gn�1�i(K�)Proof. By Proposition 6.3.1, Gi(L) is the (n� i�1)-th derived bundle of Gn�1(L).Therefore, the result follows from Corollary 7.1.2. �In sum, Piene's theorem is that there is a 
ommutative diagram with exa
t rows:
(�)

VX �����! Gn(L) ����! 0


 ??y0 ����! K ����! VX �n�1����! Gn�1(L) ����! 0??y 


 ??y0 ����! G1(K�)� ����! VX �n�2����! Gn�2(L) ����! 0??y 


 ??y... ... ...??y 


 ??y0 ����! Gn�1(K�)� ����! VX �=�0����! L ����! 0The maps on the right-hand side of this diagram 
orrespond to the asso
iated mapsft:X �! GtP(V )x 7! Os
txsending a point to its os
ulating spa
e of order t. The duals of the maps on theright, 
oming from the kernels of the �i's, 
orrespond to the t-th dual mapsf t:X �! Gn�t�1P(V �)x 7! Htxsending a point to the set of hyperplanes 
ontaining an os
ulating spa
e of order t.The map determined by the natural surje
tion V �X ! K�,f� = fn�1:X �! P(V �)



30 DAVID PERKINSONsending a point to its os
ulating hyperplane, is 
alled the dual of f . Diagram (�)shows that (f�)t = fn�t�1and in parti
ular, the double dual of f is f , itself(f�)� = f7.3. Duality Theorems and the Produ
t Rule. The key step in the proof ofthe duality theorem is just the produ
t rule of ordinary 
al
ulus. Its role is mosteasily seen in the spe
ial 
ase of a 
urve in the 
omplex proje
tive plane.Think of the 
urve as being swept out by a ve
tor, v(z), in aÆne three-spa
ewhere z is a lo
al parameter for the 
urve. Let w(z) be a ve
tor normal to thesubspa
e spanned by v(z) and v0(z). Then w(z) sweeps out the dual 
urve. To �ndthe dual of the dual 
urve, repeat this 
onstru
tion with w in pla
e of v. To seethat we get ba
k the original 
urve, it suÆ
es to 
he
k that v(z) is normal to thesubspa
e spanned by w(z) and w0(z). In other words, we must show thatv(z) � w(z) = 0 and v(z) � w0(z) = 0By de�nition of w(z), we know thatv(z) � w(z) = 0 and v0(z) � w(z) = 0Therefore, the result follows from the produ
t rule:0 = (v(z) � w(z))0 = v0(z) � w(z) + v(z) � w0(z) = v(z) � w0(z)Let us now 
ompare this rough sket
h of a proof of the duality theorem for plane
urves with the duality theorem presented in this se
tion. If the 
urve is given bya surje
tion VX ! L where L is a line bundle on the 
urve, let K be the kernelof the 
orresponding map to the os
ulating bundle, �1:VX ! G1(L). The dualitytheorem says that there is a 
ommutative diagram with exa
t rows0 ����! K ����! VX �1����! G1(L) ����! 0??y 


 ??y0 ����! G1(K�)� ����! VX �����! L ����! 0Lo
ally, we think of � as the ve
tor v(z). The map �1 be
omes a matrix withrows v(z) and v0(z), (at least at a generi
 point). The ve
tor w(z) gives the mapV �X ! K�, de�ning the dual 
urve. The exa
tness of the bottom row of the diagramis the statement that v is normal to the subspa
e spanned by w and w0.



CURVES IN GRASSMANNIANS 318. Torsion SheavesBy Corollary 2.3, the torsion sheaves 
an be 
al
ulated using the Taylor seriesmap �1:VX ! P1(E) sin
e 
ok � = 
ok �1. The torsion sheaf measures where theTaylor series map drops rank. This paper fo
uses mainly on di�erential ranks; theanalysis of torsion sheaves is far from 
omplete. What is la
king is a 
onvenientlo
al parametrization for a 
urve in a Grassmannian su
h as that whi
h existsin the spe
ial 
ase of a 
urve in proje
tive spa
e (B.1). However, it is 
lear thattorsion sheaves generalize the 
lassi
al notion of stationary indi
es, (Theorem 8.1.1),and thus des
ribe what might be 
alled the in
e
tionary behavior of a 
urve in aGrassmannian. There are other ways of measuring this behavior, and we will brie
ymention these. We end the se
tion by seeing what the duality theorem says abouttorsion sheaves.8.1. Stationary Indi
es. In the spe
ial 
ase of a 
urve in proje
tive spa
e, thelengths of the torsion sheaves are the 
lassi
al stationary indi
es measuring how a
urve 
exes in spa
e.Let V � �(X;L) where dimV = n + 1 and L is a line bundle on the smoothproje
tive 
urve X. Assume the 
hara
teristi
 of k is zero or greater than degL andn. By Theorem B.2.3, rkGi(L) = i+ 1 for i = 0; : : : n. In parti
ular, Gn(L) = VX .We have de�ned the map �n�1:VX �! Gn�1(L)and seen in Proposition 6.3.1 that the string of derived bundles of �n�1 isVX �! Gn�1(L) �! Gn�2(L) �! : : : �! LThe in
e
tion numbers, �i, de�ned and dis
ussed in Appendix B.1, satisfy theequation length(
ok(Gi(L) ,! Pi(L))) = deg Pi(L)� iXj=1�jfor i = 1; : : : ; t.Theorem 8.1.1. The i-th torsion number for �n�1 islength(tori �n�1) = �n�i+1 � �n�ithe so-
alled (n� i)-th stationary index.Proof. Let VX ��! E �! E1 �! : : :be the sequen
e of derived bundles for any map �. Letting SEi denote the kernelof the 
omposite, �i:VX ! Ei, there is a 
ommutative diagramSEi�1 ,!����! SEi��i�1??y ??y��i
X=k 
Ei�1 ����!� 
X=k 
Ei



32 DAVID PERKINSONwith � Æ ��i�1 = 0. This follows from the de�nition of derived bundles:
X=k 
Ei def= 
ok ��i�1=torsionThus, there is an indu
ed map(�) SEi=SEi�1 j�! 
X=k 
 Eiwith 
ok j=torsion = 
X=k 
 Ei+1. In our 
ase, Ei = Gn�i�1(L), and the Pieneduality theorem (7.2.1) says that SEi = Gi(K�)� where K = ker�n�1, a linebundle. Therefore, (�) be
omesGi(K�)�=Gi�1(K�)� j�! 
X=k 
Gn�i�1(L)with 
ok j=torsion = Gn�i�2(L). Counting ranks implies that j is inje
tive.Consider the exa
t sequen
es0 �! Gi(K�)�=Gi�1(K�)� j�! 
X=k 
Gn�i�1(L) �! 
ok �! 0and 0 �! tori+1 �n�1 �! 
ok �! 
X=k 
Gn�i�2(L) �! 0Taking degrees yieldslength(tori+1 �n�1) = deg(
ok)� deg(
X=k 
Gn�i�2(L))= deg(
X=k 
Gn�i�1(L))� deg(Gi(K�)�)+ deg(Gi�1(K�)�)� deg(
X=k 
Gn�i�2(L))Now use the exa
t sequen
e0 �! Gi(K�)� �! VX �! Gn�i�1(L) �! 0and let di = deg(Gi(L)) to getlength(tori+1 �n�1) = dn�i�1 + (n� i)(2g � 2) + dn�i�1� dn�i � dn�i�2 � (n� i� 1)(2g � 2)= 2dn�i�1 � dn�i � dn�i�2 + 2g � 2= �n�i � �n�i�1 (Pl�u
ker formula, B.3.3) �Remark 8.1.2. Let Di be the divisor 
orresponding to the i-th torsion sheaf. Theproof of Theorem 8.1.1 
an be modi�ed to show thatDi = Xx2X(�n�i+1(x)� �n�i(x)) � xas divisor 
lasses. (The Pl�u
ker formulas 
an also be interpreted as a statementabout divisor 
lasses.)



CURVES IN GRASSMANNIANS 33Example 8.2. Another spe
ial 
ase where we 
an 
al
ulate the torsion numbersis when X is a proje
tive 
urve, rkVX = 2 rkE, and the di�erential rank of E is aslarge as possible, namely, r = rkE. In that 
ase, the Taylor series map is inje
tiveand generi
ally surje
tive. Therefore, the torsion number isdeg P1(E)� deg VX = degP1(E)= deg
X=k 
 E + degE (A:3:2)= 2 degE + r(2g � 2)This 
al
ulation appears in [Cn℄, (also 
f. [Pi2℄). If this torsion number is zero,then g = 0 and degE = r. So X = P1 and E = �ri=1O(ni) with Pni = r.Moreover, sin
e VX ! E is surje
tive, ea
h ni is nonnegative and, in fa
t, positivesin
e otherwise the �rst derived bundle would have a trivial fa
tor instead of beingzero, (6.1.1). Thus, E = O(1)�rand V = �(P1;O(1)�r).8.3. Other Measures of In
e
tion. Canuto [Cn℄ has suggested three measuresof the in
e
tionary behavior of a 
urve in a Grassmannian. The �rst 
omes fromembedding the Grassmannian in proje
tive spa
e by the Pl�u
ker embedding and
onsidering the in
e
tionary numbers for the 
urve in that proje
tive spa
e, (B.1).A se
ond set of invariants of the embedding of the 
urve are the orders of vanishingof the se
tions of E in im(�:V ! �(X;E)). The third measure 
omes from lookingat the order of 
onta
t of the S
hubert 
y
les with the 
urve at a given point. Canutoshows that these notions are not equivalent for a 
urve in a general Grassmannian(as they are for a 
urve in proje
tive spa
e). We have not analyzed the relation ofthose measures of in
e
tion with our torsion sheaves.8.4. Torsion Sheaves and the Duality Theorem. Take the dual of the exa
tsequen
e 0 �! SE �! VX ��! E to de�ne a map�?:V �X �! S�EThere are 
orresponding maps to the os
ulating bundles, (x4),�i�? :VX ! Gi(S�E)We use the duality theorem, (7.1), to showProposition 8.4.1. Assume the 
hara
teristi
 of k is zero or greater than i. Thentori � �= tor1 �i�?Proof. By (7.1.2), it suÆ
es to show the result for the 
ase i = 1. Sin
e the torsionsheaves are supported on a �nite set of points, the question is lo
al. Near any pointx 2 X, take lo
al 
oodinates as in x2. so that �� be
omes a matrixA�n�r (v0i�wj)����! A�r



34 DAVID PERKINSONUsing dual 
ordinates, the map ��? may be writtenA�r (w0i�vj)����! A�n�rHowever, as in (2.6), sin
e vi � wj = 0, the produ
t rule says that(�) �� = (v0i �wj) = �(vi � w0j) = ��transpose�?The lo
al ring at x is a p.i.d., and any linear map between free modules over a p.i.d.
an be diagonalized by 
hanging the basis of the domain and 
odomain (
f. [J, p.176℄). Therefore, near x, we may assume �� is a diagonal matrix. In that 
ase, inlight of (�), we see that the 
okernels of �� and ��? are isomorphi
. �9. ExamplesThis se
tion 
onsists of several examples involving di�erential ranks and derivedbundles. In (9.2), we des
ribe all surje
tions of the formVP1 �! O(1)�rwhere O(1) is the tautologi
al bundle on proje
tive spa
e. We think of su
h asurje
tion as a join of lines in proje
tive spa
e and show how to de
ompose it intoa join of os
ulating spa
es to rational normal 
urves. In (9.3) and (9.4), we try to�nd relations among the di�erential ranks of a surje
tion VX �! E, the dimensionof V , and the rank of E. In (9.5), we 
lassify the surje
tions with degE = 3 usingdi�erential ranks and torsion sheaves. Finally, in (9.6), we show that every sequen
eof di�erential ranks and torsion numbers (subje
t to obvious restri
tions) 
an o

uron the proje
tive line.Example 9.1. From the de�nition of di�erential ranks, it is immediate thatdrk1 � � minfrkSE ; rkEgSuppose that rkE = n � 1, and E is generated by n linearly independent globalse
tions. Let V � �(X;E) be the ve
tor spa
e spanned by these se
tions, and
onsider the natural map �:VX ! E. It follows that the di�erential rank of � iseither one or zero. Therefore, either E is trivial (at least in the 
ase where the
hara
teristi
 of k is zero, (6.1.3), or E �= Gm(L) �WX where L is a line bundlequotient E and W is a quotient of V , (6.2.2). In other words, f :X ! G is the 
oneover an asso
iated 
urve.Example 9.2. Let O(1) be the tautologi
al bundle on P1k . We will determine thedi�erential ranks of any surje
tion of the form�:VP1 �! O(1)�rwhere V is some k-ve
tor spa
e of dimension n. (To avoid trivialities, we will alwaysassume that � is inje
tive on global se
tions.) Geometri
ally, we are taking r lines



CURVES IN GRASSMANNIANS 35in Pn�1 all isomorphi
 to some �xed P1, say  i:P1 ��! Li � Pn�1 for i = 1; : : : ; r,and 
onsidering the map to the Grassmannian of (r � 1)-planes in Pn�1f :P1 �! Gr�1Pn�1 = G(V; r)(9.2.1) p 7! spanf 1(p); : : : ;  r(p)gIt is assumed that the Li and  i are 
hosen so that this map is de�ned everywhere.We will see that up to a 
hange of 
oordinates on the Grassmannian, every su
hmap is formed as follows: Take n� r disjoint linear subspa
es of Pn�1Pa1 ; Pa2 ; : : : ; Pan�rwhere P ai = r. (The ai will be determined by the higher di�erential ranks.) Atea
h point p 2 P1, we 
an 
hose an os
ulating hyperplane to the rational normal
urve of degree ai in Pai so that the span of these hyperplanes will be f(p). Thus,we may say that f 
omes from the join of the os
ulating developables of rationalnormal 
urves in disjoint linear subspa
es of Pn�1.To des
ribe this, let W = �(P1;O(1)). For ea
h m � 0 
onsider the naturalevaluation map SmW �= �(P1;O(m)) �0�! O(m)
orresponding to the rational normal 
urve of degree m in Pm, and 
onsider theasso
iated Taylor series map (A.6)SmW �m�1���! Pm�1(O(m))
orresponding to the (m � 1)-th asso
iated map sending a point on the rationalnormal 
urve to its os
ulating hyperplane, (B.4, B.3.1).On P1, every bundle is a dire
t sum of line bundles; soker� = �n�ri=1 O(�ai)where P ai = degO(1)�r = r.Theorem 9.2.2. Assume the 
hara
teristi
 of k is zero or greater than r. Thereare isomorphisms giving a 
ommutative diagram(�) VP1 �����! O(1)�ro??y ??yo�n�ri=1 SaiWP1 ��ai�1�����! �n�ri=1 Pai�1(O(ai))The torsion sheaves, tori �, of � are all zero, and the di�erential ranks aredrki � = ℄ fj �� aj � ig



36 DAVID PERKINSONIn parti
ular, drk1 � = n� r.Proof. From (A.3.2), it follows that the degree and rank of Pm�1(O(m)) are bothm.Hen
e, there is an exa
t sequen
e0 �! O(�m) j�! �(P1;O(m)) �m�1���! Pm�1(O(m)) �! 0For m > 0, it is known, ([PS℄, [Pe2℄), thatPm�1(O(m)) �= O(1)�mTherefore the dual map, j�, is inje
tive on global se
tions. Counting dimensionsimplies that it is, in fa
t, an isomorphism on global se
tions. Therefore, we 
an
hoose an isomorphism between �(P1;O(m)) and its dual so that the followingdiagram 
ommutes(��) �(P1;O(m))�P1 j�����! O(m)??yo 


�(P1;O(m))P1 ev����! O(m)where ev is the natural evaluation map.Now 
onsider the kernel, K = �iO(�ai), of � and the 
orresponding exa
tsequen
e(y) 0 �! K �! VP1 ��! O(1)�r �! 0Taking global se
tions shows that �(P1; K) = 0 sin
e we have assumed that � isinje
tive on global se
tions. Hen
e, ai > 0 for i = 1; : : : ; n � r. Taking globalse
tions of the dual of (y) shows that the natural map V � ! �(P1; K�) is inje
tive.Counting dimensions as before, shows that it is an isomorphism. Therefore, up toan automorphism of V , the map V �P1 ! K� is�n�ri=1 �(P1;O(ai)) �ev��! �n�ri=1 O(ai) = K�Therefore, the required isomorphism, (�), follows from (��).To see the 
laim about the torsion divisors and di�erential ranks, �rst note thattaking derived bundles and di�erential ranks 
ommutes with dire
t sums. Thisfollows, for example from (2.3) and the fa
t that the Taylor series maps respe
tdire
t sums, (A.6.3.1). The evaluation map�(P1;O(m))P1 �! O(m)
orresponds to a rational normal 
urve. It is well-known that su
h 
urves arenonin
e
tionary, (B.3.1). This means that ea
h asso
iated Taylor series map�i: �(P1;O(m))P1 �! Pi(O(m))is surje
tive (for i � m), i.e., Gi(O(m)) = Pi(O(m)). Thus, it follows from Propo-sition 6.3.1, that the j-th derived bundle of Pi(O(m)) is Pi�j(O(m)). The 
laimabout the higher di�erential ranks follows. The fa
t that the torsion sheaves of �are zero follows by dire
t 
al
ulation (or by Theorem 8.1.1). �



CURVES IN GRASSMANNIANS 37Remark 9.2.3. Further 
al
ulations in [Pe1℄ indi
ate that the di�erential ranksin the 
ase just 
onsidered determine the generality of the positions of the lines, Li.Example 9.3. For �:VP1 ! E, if the dimension of V is large enough relative tothe degree of E, then the di�erential rank must be greater than one. Consider theline bundle O(d) on P1 with d > 0. Let V � �(P1;O(d)) be a sub-ve
tor spa
e ofdimension n+1 of globally generating se
tions, i.e., so that the 
orresponding map�:VP1 �! O(d)is surje
tive. We have the os
ulating bundle of order r, (x4 and A.8):�r:VP1 �! Gr(O(d))Proposition 9.3.1. Assume that the 
hara
teristi
 of k is zero or greater than d;then degGr(O(d)) � (r + 1)(n� r)Proof. By Theorem B.2.3, rkGi(O(d)) = i+ 1 anddegGi(O(d)) = (i+ 1)(d� i)� iXj=1�jfor i = 1; : : : ; n where the �j are the in
e
tionary numbers for �. In parti
ular,(�) deg Gr(O(d)) = (r + 1)(d� r)� rXi=1 �iand VP1 = Gn(O(d)) so that(��) nXi=1 �i = (n+ 1)(d� n)Combining (�) and (��) and using the fa
t that �i � �i+1 givesdegGr(O(d)) = (r + 1)(d� r)� (n+ 1)(d� n) + �r+1 + � � �+ �n(� � �) � (r + 1)(d� r)� (n+ 1)(d� n) + (n� r)�rAgain using that �i � �i+1, (�) yieldsr�r � (r + 1)(d� r)� degGr(O(d))Along with (� � �), this saysdegGr(O(d)) � (r + 1)(d� r)� (n+ 1)(d� n)+ �n� rr � ((r + 1)(d� r)� degGr(O(d)))=)degGr(O(d)) � (r + 1)(d� r)� � rn� (n+ 1)(d� n)� (r + 1)(d� r)� (r + 1)(n� r) �



38 DAVID PERKINSONNote. To see that equality is possible in Proposition 9.3.1, let d = n and V =�(P1;O(n)). Then Gr(O(n)) = Pr(O(n)), (
f. B.3.1), and deg Pr(O(n)) =(r + 1)(n� r), (
f. A.3.2).Corollary 9.3.2. Assume the 
hara
teristi
 of k is zero. Let E be a ve
tor bundleof rank r on P1, and let V � �(P1; E) be a subspa
e of dimension n of generatingse
tions. If the 
orresponding surje
tionVP1 �! Ehas di�erential rank one, then degE � r(n� r)Proof. This follows dire
tly from Corollary 6.2.2 and Proposition 9.3.1. �Example 9.4. Corollary 9.3.2 shows that if n is large enough 
ompared to thedegree of E, then drk1 � > 1. It would be ni
e to �nd similar bounds for n deter-mining when drk1 is larger than any given value. At one extreme, if V = �(P1; E)with E any bundle (with no trivial fa
tors) generated by global se
tions, then � hasfull di�erential rank, i.e., drk1 � is as large as possible, namely rkE, and E1 = 0.The reason for this is that if E = �ri=1O(ni), then by (A.6.3.1), the Taylor seriesmap �1� breaks up into a dire
t sum of the Taylor series maps�1: �(P1;O(ni))P1 �! P1(O(ni))for i = 1; : : : ; r. Ea
h of these Taylor series maps is surje
tive (by dire
t 
al
ulationor (B.3.1)). Thus, by (2.3), E1 = 0.We might expe
t that if E is a bundle with no trivial fa
tors on an arbitrary
urve, X, and generated by global se
tions, then the natural map �(X;E)X ! Ewould have full di�erential rank. But this is not the 
ase:Proposition 9.4.1. Let E be an inde
omposable bundle of rank r on an ellipti

urve X with 2r > degE > r. Then E is generated by global se
tions, but thenatural evaluation map �: �(X;E)X �! Edoes not have full di�erential rank, i.e., E1 6= 0.Proof. First note that su
h bundles, E, exist, ([Br℄). If � had full di�erential rank,then, by de�nition, the map �:SE �! 
X=k 
Eis generi
ally surje
tive. This says thatdim�(X;E) � 2r(
f. 9.1). In our 
ase, degE > r implies that E is generated by global se
tionsand dim�(X;E) = degE < 2r, ([Br, Lemma A1℄). Hen
e, � 
annot have fulldi�erential rank. �



CURVES IN GRASSMANNIANS 39Example 9.5. We 
lassify all surje
tions VX �! E where X is an arbitrary smoothproje
tive 
urve and degE = 3. First, 
onsider the bundle E = O(1) � O(2) onP1. We want to see whi
h di�erential ranks and torsion numbers are possible for asurje
tion �:VP1 �! EWe may assume by (3.1) that V � �(P1; E). To simplify matters, also assume thatthe 
hara
teristi
 of k is zero.dimV = 5: If dimV = 5, then V = �(P1; E), and � is the ordinary evaluation map.It 
an be represented by the matrix�x y 0 0 00 0 x2 xy y2 �Hen
e, the 
orresponding map f :P1 ! G1P4 
omes from joining points on a linein P4 with mat
hing points on a 
oni
 in a disjoint plane. The union of the linesf(p) is a rational normal s
roll. It is straightforward to 
he
k that drk1 � = 2, andthat there is no torsion.dimV = 4: In this 
ase, drk1 = 2 and tor1 � has length two. If the di�erential rankwere one, then E1 would be a line bundle, and 
omparing ranks, the natural mapE ! G1(E1) of (4.2) would be an isomorphism. Proposition 9.3.1 shows this is notpossible. Thus, drk1 = 2 and �:SE �! 
X=k 
Eis inje
tive and generi
ally surje
tive. The �rst torsion number islength(
ok �) = deg(
X=k 
E)� deg SE = 2The torsion sheaf 
an be supported at one point, e.g.,(�) � = �x y 0 00 x2 xy y2 �or it 
an be supported at two points, e.g.,(��) � = �x 0 y 00 x2 xy y2 �Dire
t 
al
ulation shows that in (�), tor1 � is supported at the point y = 0 and in(��) it is supported at the points x = 0 and y = 0.Consider the maps f; g:P1 ! G1P3 
orresponding to (�), (��), respe
tively. Theasso
iated lo
ii ff(p)gp2P1; fg(p)gp2P1are the two types of 
ubi
 ruled surfa
es in P3, (
f. [E, x37℄). The former 
omes fromproje
ting the rational normal s
roll of degree three in P4 that we just 
onsideredfrom a point lying on a tangent to the s
roll. The latter 
omes from proje
tingfrom a general point.



40 DAVID PERKINSONdimV = 3: If dimV = 3, then SE = O(�3) is a line bundle; so drk1 � = 1. By thePiene duality theorem, (7.2.1), there is a 
ommutative diagram0 ����! O(�3) j����! VP1 �����! E ����! 0??y 


 ??y0 ����! G1(O(3))� ����! VP1 �1����! E1 ����! 0The map P1 ! P2 
orresponding to �1 is the dual of that 
orresponding to j�:V � !O(3) = S�E . So there are two possibilities, depending on whether j� represents anodal 
ubi
 or a 
uspidal 
ubi
. If the former, then E1 �= O(4) sin
e the dual ofthe nodal 
ubi
 is a quarti
. From the exa
t sequen
es(y) 0 �! SE ��! 
X=k 
 E �! 
ok � �! 0and(z) 0 �! tor1 � �! 
ok � �! 
X=k 
E1 �! 0it follows that tor1 � = 0.If j� 
orresponds to a 
uspidal 
ubi
, then E1 �= O(3) sin
e the dual of a 
uspidal
ubi
 is a 
uspidal 
ubi
. The exa
t sequen
es (y), (z) show that length(tor1 �) = 1.9.5.1. Arbitrary Curves of Degree Three. Let E be a ve
tor bundle of rank rand degree three on an arbitrary 
urve, X, and let V � �(X;E) be a subspa
e ofgenerating se
tions with evaluation map�:VX �! ETo avoid trivial 
ases, assume that the 
orresponding mapf :X �! G(V; r) Pl�u
ker����! PNexpresses X as a 
ubi
 
urve in PN , i.e., f is birational to its image. Therefore,X is either a twisted 
ubi
 or a plane 
ubi
. So either X is rational, and we areredu
ed to the 
ase just 
onsidered in example (9.5), or X is ellipti
. If X is ellipti
,write E = �mi=1Ei where ea
h Ei is inde
omposable. Sin
e ea
h Ei is generated byglobal se
tions, either Ei �= OX or degEi > rkEi, ([Br, Lemma A1℄). Therefore,forgetting about trivial fa
tors, (6.1), there are two possibilities:a) E is a line bundle and � 
orresponds to a smooth plane 
ubi
.b) E is an inde
omposable bundle of rank two. Then dim�(X;E) = 3, ([Br, A.4℄);so V = �(X;E). By the duality theorem, (7.2.1), there is a 
ommutative diagram0 ����! O(�3P ) ����! VX �����! E ����! 0??y 


 ??y0 ����! G1(O(3P ))� ����! VX ����! E1 ����! 0for some point P 2 X. By (B.3.4) and Theorem B.2.3, G1(O(3P )) = P1(O(3P )).Therefore, degE1 = degG1(O(3P )) = 6. The map f :X ! G1P3 from � gives theenvelope of tangent lines to a plane ellipti
 sexti
. From the sequen
es (y) and (z),it follows tor1 � = 0.



CURVES IN GRASSMANNIANS 41Example 9.6. If the 
hara
teristi
 of k is zero or greater than t, then any sequen
eof di�erential ranks d1 � � � � � dt � dt+1 = 0
an o

ur. For example, on P1, 
onsider the bundleE = �t�1i=0 Pi(O(i+ 1))�(di+1�di+2)For ea
h i, there is the natural Taylor series map�i: �(P1;O(i+ 1))P1 �! Pi(O(i+ 1))Take a dire
t sum of di+1 � di+2 
opies of this map and then sum over i to get�:VP1 = h�t�1i=0�(P1;O(i+ 1))�(di+1�di+2)iP1 �! EBy (A.6.3.1) and Proposition 6.3.1Ej = �t�1i=j Pi�j(O(i+ 1))�(di+1�di+2)Therefore,drkj � = rkEj�1 � rkEj= t�1Xi=j�1(i� j + 2)(di+1 � di+2)� t�1Xi=j (i� j + 1)(di+1 � di+2)= t�1Xi=j�1(di+1 � di+2)= djExample 9.7. Any sequen
e of nonnegative integersk1; : : : ; kn
an o

ur as the sequen
e of torsion numbers at a point. To see this, let�i = iXj=1 kn�j+1for i = 1; : : : ; n, and de�ne the mapf : C �! G(C �n+1) �= Pnz 7! (1; z1+�1 ; z2+�2 ; : : : ; zt+�n)Let L be the line bundle, C � C , on C , and 
onsider the map of x4,�n�1: C n+1 �! Gn�1(L)It suÆ
es to 
he
k the following



42 DAVID PERKINSONClaim. The i-th torsion number of �n�1 is �n�i+1 � �n�i = ki.Sket
h of Proof. We need a lo
al version of Theorem 8.1.1. The map Æ of (A.7)indu
es a 
ommutative diagram with exa
t rows0 ����! G1(Gk�1(L)) ����! Pk(L) ����! 
okk ����! 0??y� ??yÆ ??y�0 ����! P1(Gk�1(L)) ����! P1(Pk�1(L)) ����! P1(
okk�1) ����! 0The map � 
omes from the Taylor series map C n+1 ! P1(Gk�1(L)). By Propo-sition 6.3.1, the i-th derived bundle of �n�1 is Gn�i�1(L). Hen
e, 
ok� modulotorsion is 
X=k 
Gk�2(L), (
f. 2.3).By (A.8.3), G1(Gk�1(L)) �= Gk(L). Therefore, in the diagram, 
oki is the 
ok-ernel of the i-th Taylor series map, i = k � 1; k. Theorem B.2.3, (
f. B.2.3.3)yields(�) lengthz(
okk) = �1 + � � �+ �kSimilarly, lengthz(
okk�1) = �1 + � � � + �k�1; hen
e, the fundamental exa
t se-quen
e, (A.3.2), shows that(��) lengthz(P1(
okk�1)) = 2(�1 ++ : : : �k�1)By Proposition A.7.8, Æ is an in
lusion. Thus, the snake lemma gives an exa
tsequen
e 0 �! 
ok�= ker� �! 
ok Æ �! 
ok � �! 0The proof of Proposition A.7.8 shows that 
ok Æ = 
X=k 
 Pk�2(L). Hen
e,
ok�= ker � is torsion free; it is the (n� k + 1)-th derived bundle of �n�1, 
X=k 
Gk�2(L), and ker � is the 
orresponding torsion divisor. The map, 
ok�= ker� ,!
ok Æ is just the natural in
lusion, Gk�2(L)! Pk�2(L) tensored by 
X=k. Hen
e,lengthz(
ok�) = �1 + � � �+ �k�2It follows from (�) and (��) that the (n� k + 1)-th torsion number islengthz(ker �) = �k � �k�1as required. � Appendix AContentsIntrodu
tion.A.1. De�nition of the Prin
ipal Parts Sheaf
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torial PropertiesA.3. Fundamental Exa
t Sequen
eA.4. Lo
al Trivialization of Pt(E)A.5. The Bimodule Stru
ture on Pt(F) and the Map dt.A.6. The Taylor Series Map, �tA.7. Pn+n0(F)! Pn(Pn0(F))A.8. Os
ulating BundlesIntrodu
tion. This appendix gathers together the main fa
ts about prin
ipalparts sheafs and is intended as a te
hni
al referen
e for the paper. For the mostpart, it is a 
ompilation of results found in [G℄, [K1℄, and [Pi1℄, worked out in thedetail ne
essary for our appli
ations. Propositions 7.8 and 8.3, used throughout thepaper, are new results.A.1. De�nition of the Prin
ipal Parts Sheaf. Let u:X ! S be a morphismof s
hemes and F an OX -module. Let �(t) be the t-th in�nitesimal neighborhoodof the diagonal. It is de�ned as a subs
heme of X �S X by the ideal It+1 whereI is the ideal of the ordinary diagonal � = �(0). In the following diagram, let idenote the in
lusion map and �1, �2 the natural proje
tions:
(1.1) �(t) i����! X �S X �2����! X�1??y ??yuX ����!u SLet p = �1 Æ i and q = �2 Æ i.De�nition 1.2. Pt(F) = p�q�F = �1� �OX�X=It+1 
 ��2F� is 
alled the sheaf oft-th order prin
ipal parts of F over S or the t-jets of se
tions of F over S.Applying �1� the the natural surje
tion(�) OX�X=It+1 
 ��2F �! OX�X=It 
 ��2Fgives a map(1.3) Pt(F) �! Pt�1(F)whi
h is a surje
tion sin
e the sheaves on (�) are supported on � and �1j� is ahomeomorphism. Sin
e tensor produ
ts respe
t dire
t sums, so does this surje
tion.A.2. Fun
torial Properties. F ! Pt(F) is a 
ovariant fun
tor from the 
ate-gory of OX -modules to itself. In this se
tion we summarize its most basi
 properties.2.1. If X is noetherian, u of �nite type, and F quasi-
oherent, then Pt(F) isquasi-
oherent. If X is noetherian, X ! S proper, and F 
oherent, then Pt(F)is 
oherent, ([H, II.5.8℄). For X ! S smooth, if F is lo
ally free, so is Pt(F),(Proposition 3.3).
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e q� and p� preserve dire
t sums, so does Pt(� ).2.3. If we restri
t Pt( � ) to a
t on lo
ally free sheaves, then it is exa
t. This isbe
ause pulling ba
k lo
ally free sheaves is always exa
t and p� is exa
t sin
e it isa homeomorphism.2.4. Let f : X ! Y be a morphism of s
hemes over S. There is a mapf� Pt(F) �! Pt(f�F)This map is mentioned in [K1℄ and in [Pi1℄; we 
onstru
t it in the proof of Propo-sition 3.4, below. In parti
ular, if X ! S is a �nite type, separated morphism ofnoetherian s
hemes, e.g., a variety over a �eld, and U � X is an open subs
heme,then Pt(F)jU �= Pt(FjU ): this follows from a 
ommutativity property of pullba
ksand pushforwards, ([H, II.9.3℄). We will only need this result in the spe
ial 
asewhere X ! S is smooth and F is lo
ally free, (Corollary 3.5).2.5. It is 
lear from the de�nition of the natural surje
tion Pt(F) ! Pt�1(F) of(1.3), that it is fun
torial, i.e., given a map of sheaves F ! G, there is a natural
ommutative diagram Pt(F) ����! Pt(G)??y ??yPt�1(F) ����! Pt�1(G)2.6. It is also 
lear that the natural surje
tions of (1.3) preserve dire
t sums.A.3. Fundamental Exa
t Sequen
e. Assume now that I is lo
ally generatedby a regular sequen
e, e.g., X ! S smooth, and assume F is lo
ally free of rank r.Apply �1� ( � 
 ��2F) to the exa
t sequen
e(3.1) 0 �! It=It+1 �! OX�X=It+1 �! OX�X=It �! 0to get the fundamental exa
t sequen
e(3.2) 0 �! St(
X=S)
 F �! Pt(F) �! Pt�1(F) �! 0:where St(
X=S) denotes the t-th symmetri
 power of the relative 
otangent bundle.One assumes that I is lo
ally generated by a regular sequen
e so that It=It+1 �=St(
), ([F, A.6.1℄). Note that �1� preserves the exa
tness of (3.1) sin
e the sheavesinvolved are supported on � whi
h is homeomorphi
 to X. By indu
tion and thefa
t that P0(F) = F we getProposition 3.3. Suppose X has dimension n. Let X ! S be smooth and F alo
ally free sheaf of rank r on X. Then Pt(F) is lo
ally free of rank r � �n+tt �.Given a map as in (2.4), there is a 
orresponding map between fundamentalexa
t sequen
es:



CURVES IN GRASSMANNIANS 45Proposition 3.4. Let X and Y be smooth S-s
hemes and F a lo
ally free sheafon Y . If f : X ! Y is a morphism of S-s
hemes, the map of (2.4) indu
es a mapof exa
t sequen
es(�) 0 ��! St(f�
Y=S)
 f�F ��! f� Pt(F) ��! f� Pt�1(F) ��! 0??ySt(df)
id ??y ??y0 ��! St(
X=S)
 f�F ��! Pt(f�F) ��! Pt�1(f�F) ��! 0where df : f�
Y=S ! 
X=S is the 
otangent map.Proof. Using the notation in (A.1), let �X;i = �i for i = 1; 2. There is 
orrespondingdiagram for de�ning prin
ipal parts bundles on Y with proje
tions �Y;i, i = 1; 2.Let I (respe
tively, J ) be the ideal of the diagonal inX�SX (respe
tively, Y �SY ).The map f indu
es a 
ommutative diagram0 �! J t=J t+1 �! OY�Y =J t+1 �! OY�Y =J t �! 0??y ??y ??y0 �! (f � f)�It=It+1 �! (f � f)�OX�X=It+1 �! (f � f)�OX�X=It �! 0Apply f��Y;1�( � 
 ��Y;2F) to this diagram to get0 �! St(f�
Y=S)
 f�F �! f� Pt(F)??y ??y0 �! f��Y;1�((f � f)�It=It+1 
 ��Y;2F) �! f��Y;1�((f � f)�OX�X=It+1 
 ��Y;2F)(
ontinuing from above)� � � ����! f� Pt�1(F) ����! 0??y� � � ����! f��Y;1�((f � f)�OX�X=It 
 ��Y;2F) ����! 0Again, we are using the smoothness of Y ! S to identify J t=J t+1 with St(
Y=S).We also use the standard fa
t that taking symmetri
 powers 
ommutes with pull-ba
ks.Now use the maps f��Y;1� ! �X;1�(f � f)�(f � f)���Y;2 = ��X;2f��Y;1�(f � f)� = f��X;1�f�f� ! 1



46 DAVID PERKINSON(For the �rst map, 
f. [H, II.9.3℄.) Applying these to the �rst sheaf on the bottomof the previous diagram yieldsf��Y;1�((f � f)�It=It+1 
 ��Y;2F) = f��Y;1�(f � f)�It=It+1 
 f��Y;1���Y;2F= f�f��X;1�It=It+1 
 �X;1�(f � f)���Y;2F! �X;1�It=It+1 
 �X;1���X;2f�F= St
X=S 
 f�FSimilarly, f��Y;1�((f � f)�OX�X=It+1 
 ��Y;2F) = Pt(F). Finally, a similar argu-ment applies to the sheaf on the bottom right of the diagram. We thus get (�). Theleft-most verti
al map of (�) has the right form sin
e df 
omes from the naturalmap J =J 2 �! (f � f)�I=I2while the left-most verti
al map of the �rst diagram of this proof is obtained bytaking symmetri
 powers of this mapJ t=J t+1 = St(J =J 2) �! (f � f)�St(I=I2) = (f � f)�It=It+1(
f. [F, B.7.1℄). �Corollary 3.5. Let U be an open subset of a smooth S-s
heme X, and let F be alo
ally free sheaf on X. Then Pt(F)jU = Pt(FjU)Proof. Apply Proposition 3.4 to the in
lusion f :U ,! X. The 
ase t = 1 followsfrom the 5-lemma and the fa
t that 
U=S = 
X=S jU . The general 
ase followsfrom Proposition 3.4 by indu
tion using the 5-lemma and the fa
t that pullba
ks
ommute with taking symmetri
 powers:St(
U=S) = St(f�
X=S) = f�St(
X=S) �Note. As mentioned earlier, Corollary 3.5 is true more generally for X ! S a�nite type, separated morphism of Noetherian s
hemes and F any sheaf. However,we will not need this in the paper.A.4. Lo
al Trivialization of Pt(E). Let X ! S be smooth and E be a bundle(lo
ally free sheaf) on X. This se
tion gives lo
al 
oordinates for the jets of se
tionsof E. To make notation simpler, we will mainly 
onsider the 
ase where X ! Shas relative dimension 1, e.g., a nonsingular 
urve over an algebrai
ally 
losed �eld.Remark 4.9, at the end of this se
tion, dis
usses the modi�
ations ne
essary forhigher relative dimensions.Let U = Spe
A be an open aÆne subset of X and V = Spe
B be an open aÆnesubset of S with U � u�1(V ). Let I denote the kernel of the mapA
B A! Aa
 b 7! ab



CURVES IN GRASSMANNIANS 47So ~I �= IjU , and gI=I2 �= 
jU , the relative 
otangent bundle of X ! S restri
ted toU . The ideal I is generated by fdaga2A where da = 1 
 a � a 
 1, ([M, Chapter9℄). With this notation, the exa
t sequen
e (3.2) restri
ted to U and with F = OXbe
omes 0 �! ItÆ It+1 �! (A
B A)=It+1 �! (A
B A)=It ! 0We are free to identify 

tjU with ^It/ It+1 sin
e X ! S is smooth. (We have alsoused that Pt(E)jU �= Pt(EjU ), (2.4).)Now take U small enough so that 
jU is trivial with generator dz = 1
z�z
1.By indu
tion on t, it follows that (A
B A)=It+1 is a free A-module with basis theimage of f(dz)igti=0. De�ne a map �z: A! A by the formula db = 1
 b� b
 1 =�zb dz. Indu
tively, de�ne(4.1) �iz:A �! Aby �izb = �z(�i�1z b). Finally, de�ne the map�t: (A
 A)=It+1 ! A�t+1(4.2) a
 b 7! a(b; �zb; 12!�2zb; : : : ; 1t!�tzb)Note 4.3. In order for this map to make sense, we make the assumption that the
hara
teristi
 of ea
h residue �eld of S is zero or greater than t.Note 4.4. If X is a nonsingular 
urve over an algebrai
ally 
losed �eld k = S,the 
ompletion of the lo
al ring OX;x at a point x 2 X is the ring of formal powerseries k[[z℄℄ in a lo
al parameter z. By in
luding OX;x in its 
ompletion, we mayinterpret �izb as formal di�erentiation with respe
t to z.We will see that �t is well-de�ned as part ofProposition 4.5. �t is an isomorphism.Proof. It suÆ
es to show that �t(dzj) = (0; : : : ; 0; 1; 0; : : : ; 0) with the 1 in the(j+1)-th 
omponent. Sin
e dzt+1 7! 0, �t is well-de�ned. The (`+1)-th 
omponentof �t(dzj) is �t(dzj)`+1 = �t((1
 z � z 
 1)j)`+1= jXi=0(�1)i�ji� 1̀!zi�z̀zj�i= zj�` jXi=1(�1)i�ji��j � i` �where �ab� = 0 for b > a. However,jXi=1(�1)i�ji��j � i` � = 1̀!�z̀(z � 1)j����z=1 = � 1 j = `0 j 6= `



48 DAVID PERKINSONas required. �Let E be an arbitrary ve
tor bundle of rank r. Using (2.2) and the fa
t thatPt(E)jU �= Pt(EjU), Proposition 4.5 allows us to 
onstru
t a lo
al trivialization ofPt(E). Use the notation from above and assume, in addition, that a trivializationEjU �= O�rU is 
hosen. Then�(U;Pt(E)) �= A
AIt+1 
A A�r �= �A
AIt+1 ��r ��rt��! (A�t+1)�rwhere we 
onsider (A
 A)=It+1 as a right A-module for the purpose of tensoringover A. By abuse of notation, we will 
all the 
omposite of the above maps(4.6) �t: �(U;Pt(E)) �! (A�t+1)�rRestri
ting (3.2) to U gives an isomorphism of exa
t sequen
es(4.7) 0 ��! �(U;

t 
 E) ��! �(U;Pt(E)) ��! �(U;Pt�1(E)) ��! 0??y�tj ??y�t ??y�t�10 ��! A�r ��! (A�t+1)�r ��r��! (A�t)�r ��! 0The in
lusion of A�t in A�t+1 as the �rst t fa
tors indu
es a map (A�t)�r !(A�t+1)�r giving a splitting of the rows of (4.7). In sum, we haveCorollary 4.8. A 
hoi
e of a lo
al trivialization of 
X=S and E determines alo
al trivialization of Pt(E) for ea
h t and lo
al splittings of the fundamental exa
tsequen
e (3.2).Remark 4.9. The analysis given in this se
tion requires little 
hange if the dimen-sion of X is n > 1, the main di�eren
e being that in de�ning the map �t of (4.2),one must 
onsider all mixed partials with respe
t to the lo
al 
oordinates on X. Tobe spe
i�
, 
onsider the 
ase of Pt(L) where L is a line bundle. Take an open aÆneU = Spe
A so that LjU �= OU and 
jU �= gI=I2 as before. Take U small enough sothat 
jU is trivial, say O�rU �= 
jU . Take the images of the standard basis elementsof O�nU to get generators dzi = 1
 zi � dzi 
 1, i = 1; : : : n for 
jU . De�ne a map�t: (A
 A)=It+1 �! A�(n+tt )(4.10) a
 b 7! a� 1i1! � � � ij !�i1 � � ��ij b�0�j�t; fi1;:::;ijg�f1;:::;ngwhere �ib is de�ned by the formula db = 1 
 b � b 
 1 = Pni=1 �ib dzi. As before,one may verify that �t is an isomorphism. If E is any bundle on X, it is lo
ally thedire
t sum of line bundles, and one takes a dire
t sum of �t's to get a trivializationof Pt(E)jU . The analogue of (4.6) is(4.11) �t: �(U;Pt(E)) �! (A�(n+tt ))�r



CURVES IN GRASSMANNIANS 49Diagram (4.7) be
omes(4.12) 0 ��! �(U; St(
)
 E) ��! �(U;Pt(E)) ��! �(U;Pt�1(E)) ��! 0??y�tj ??y�t ??y�t�10 ��! (A�(n+t�1t ))�r ��! (A�(n+tt ))�r ��r��! (A�(n+t�1t�1 ))�r ��! 0where � is the proje
tion onto the �rst �n+t�1t�1 � fa
tors.A.5. The Bimodule Stru
ture on Pt(F) and the Map dt. Re
alling thenotation of De�nition 1.2, Pt(OX) = p�(O�(t)) = p�(OX
OX=It+1). By de�nitionof p, there is a map OX �! p�(O�(t)) = Pt(OX)de�ning the (usual) left module stru
ture on Pt(OX). By slight abuse of notation,we write OX �! (OX 
OX)=It+1 = Pt(OX)(5.1) a 7! a
 1On the other hand, we 
an derive the following map from q, ([G, 16.7.5.1℄):dt: OX �! (OX 
OX)=It+1(5.2) a 7! 1
 aThis de�nes the right module stru
ture on Pt(OX).As pointed out in [G, 16.7.2.1℄, basi
 properties of pullba
ks and pushforwardsyield an isomorphism(5.3) Pt(F) �= Pt(OX)
OX Fwhere in order to tensor over OX , Pt(OX) is 
onsidered as a right OX -module.Thus, Pt(F) inherits a bimodule stru
ture from Pt(OX). One way to see (5.3) isto 
he
k|using the notation of (A.1)|that the natural mapPt(OX)
F = �1�((OX
OX )=It+1)
F �! �1�((OX
OX )=It+1
��2F) = Pt(F)is an isomorphism. By abuse of notation, we will sometimes writePt(F) = OX 
OXIt+1 
 FDe�ne a map ([G, 16.7.5.1℄):dtF = dt: F ! Pt(F) �= Pt(OX)
OX F(5.4) s 7! (1
 1)
 s



50 DAVID PERKINSONThis is a map of OX -modules if Pt(F) is 
onsidered as a right module. The mapsdt are 
ompatible with the natural proje
tions prt: Pt(F)! Pt�1(F), (1.3). Thatis to say, prt Æ dt = dt�1.Consider the 
ase of a line bundle L on a nonsingular 
urve X over an alge-brai
ally 
losed �eld. Using the trivialization des
ribed in (A.4) with E = L,identify L with A = OU (U) and Pt(L) with A�t+1 via �t, (4.6). Then the map dtmay be thought of as taking trun
ated Taylor expansions of se
tions of Ldt: A! A�t+1(5.5) a 7! (a; �za; 12!�2za; : : : ; 1t!�tza)A.6. The Taylor Series Map, �t. With the notation of A.1, the natural mapsu�u� ! �2���1 and 1! i�i� may be used to de�ne what we will 
all the t-th Taylorseries map, (
f. [K1℄, [Pi1℄): �t: u�u�F �! �1���2F(6.1) �! �1�i�i���2F�= Pt(F)If V is a sheaf on S and �:u�V ! F any map, then there is a natural mapVX = u�V �! u�u�u�V �! u�u�FComposing this with the Taylor series map yields a map VX = u�V ! Pt(F) whi
hwill also be 
alled a Taylor series map and be denoted by �t� or just �t if � is 
learfrom 
ontext. If we 
onsider Pt(F) as a left OX -module (as usual), then �t is anOX -module map.If X is a noetherian s
heme and S = Spe
B, then the Taylor series map is�t: H0(X;F)
B OX �! Pt(F)(
f. [H, 8.5℄). With the notation of (A.5), we may write this asH0(X;F)
B OX �! Pt(F) �= Pt(OX)
OX F(6.2) s
 1 7! 1
 1
 sTherefore, we 
an also 
onstru
t �t by taking global se
tions of dt: F ! Pt(F) andthen evaluatingH0(X;F)
B OX dt�! H0(X;Pt(F))
B OX �! Pt(F)6.3. Fun
torial Properties of the Taylor Series Map.6.3.1. The Taylor series map preserves dire
t sums sin
e pullba
ks, pushforwards,and the map 1! i�i� preserve dire
t sums.



CURVES IN GRASSMANNIANS 516.3.2. The Taylor series map is 
ompatible with the natural surje
tions Pt(F) !Pt�1(F). To see this, let ik:�(k) ! X �S X denote the in
lusion of the thi
keneddiagonal (
f. A.1). The 
ompatibility of the Taylor series map 
omes from applying�1�( � )��2 to the natural 
ommutative diagram of fun
tors1 ����! it�i�t


 ??y1 ����! it�1�i�t�1and 
omposing with the map u�u� of (6.1).6.3.3. If F ! G is a map of sheaves on X, the naturality of the map u�u� ! �1���1gives a 
ommutative diagram(6:3:3:1) u�u�F ����! Pt(F)??y ??yu�u�G ����! Pt(G)where the horizontal maps are the Taylor series maps and the verti
al maps are thenatural ones.In the paper, (6.3.3.1) is most often used in the following form:Proposition 6.3.3.2. Let V and W be sheaves on S, and let F and G be sheaveson X. Suppose we are given a 
ommutative diagram of sheaves on X:VX ����! WX??y ??yF ����! GThen the following diagram 
ommutesVX ����! WX??y ??yPt(F) ����! Pt(G)where the verti
al maps are the Taylor series maps and the horizontal maps are thenatural ones.Proof. This follows immediately from the expression for �t given in (6.2). �6.3.4. Let SE be the kernel of the map VX ! F from Proposition 6.3.3.2. Assumein addition that X ! S is smooth and F is lo
ally free. The 
ompatibility ofthe Taylor series map with the standard proje
tions, (6.3.2), gives a 
ommutativediagram that is used repeatedly in the paper:(6.3.4.1) 0 ����! SE ����! VX ����! F ����! 0??y ??y�1 


0 ����! 
X=S 
 F ����! P1(F) ����! F ����! 0The bottom row of this diagram is the fundamental exa
t sequen
e (3.2). Thisdiagram is fun
torial in F :



52 DAVID PERKINSONProposition 6.3.4.2. With the notation as in (6.3.3.2), assume in addition thatX ! S is smooth and that F and G are lo
ally free. Let SF (respe
tively, SG)denote the kernel of the given map VX ! F (respe
tively, WX ! G). Consider thenatural 
ommutative diagrams with exa
t rows(�) 0 ����! SF ����! VX ����! F ����! 0??y �1??y 


0 ����! 
X=S 
 F ����! P1(F) ����! F ����! 0and(��) 0 ����! SG ����! VX ����! G ����! 0??y �1??y 


0 ����! 
X=S 
 G ����! P1(G) ����! G ����! 0where the bottom rows of these diagrams are the fundamental exa
t sequen
es of(A.3). Proposition 3.4 indu
es a natural map of 
ommutative diagrams (�)! (��).6.3.5. Taylor series maps are 
ompatible with the maps of (2.4), f� Pt(F) !Pt�1(F). This is immediate from the 
onstru
tion of the maps of (2.4), given inthe proof of Proposition 3.4.6.4. Des
ription of the Taylor Series Map in Lo
al Coordinates. Letu:X ! S be smooth of some relative dimension, F be lo
ally free of rank r, andV be a lo
ally free OS-module of rank n. Assume we are given a map�:VX = u�V �! FWe now want to give a 
areful lo
al des
ription of �t(�) = �t. So we may assumeX and S are rings, A and B, respe
tively, and that F = A�r, VX = A�n, and� is given by a matrix M = (aij):A�n ! A�r. De�ne Pt(A�r) = �(X;Pt(F)),and de�ne �t a

ordingly. Let d:A ! 
A=B be the standard derivation. Oursmoothness assumption means that 
A=B is a free A-module with generators, say,dzi. De�ne the map �jzi :A �! Aindu
tively as follows da =X �zia dzi(6.4.1) �jzia = �zi(�j�1zi a)Note 6.4.2. If A is a dis
rete valuation ring and B = k is a �eld isomorphi
 to theresidue �eld of A, then the 
ompletion of A is isomorphi
 to the power series ringk[[z℄℄. Emdedding A into its 
ompletion, �jzai 
an be thought of as the ordinaryj-th derivative of a power series. This interpretation will be relevant when X is asmooth 
urve over an algebrai
ally 
losed �eld and we 
onsider a Taylor series mapat a �ber over a point in X.To make the lo
al des
ription more intelligible, we will start out with the easy
ase of relative dimension and r both equal to one, then work our way up to thegeneral 
ase.



CURVES IN GRASSMANNIANS 53Proposition 6.4.3. Let B ! A be a map of rings with the 
hara
teristi
 of ea
hresidue �eld of A and B either zero or greater than t. Assume 
A=B has rank one,generated by the single element dz, and suppose given a mapM :A�n �! Awhere M = [a1; : : : ; an℄, ai 2 A. Then the 
orresponding t-th Taylor series maphas the form
�t(M):A�n

26666666664 a1 : : : an�za1 � � � �zan12!�2za1 � � � 12!�2zan... � � � ...1t!�tza1 � � � 1t!�tzan
37777777775�������������������! Pt(A) �= A�t+1Proof. Let ei be the i-th standard basis ve
tor for A�n. De�ne I as in (A.4) sothat 
A=B = I=I2. By the des
ription in (6.2),�t(ei) = (1
 1)
 ai 2 (A
 A)=It+1 
A= 1
 ai 2 (A
 A)=It+1 = Pt(A)Using �t of (4.2) to trivialize Pt(A) yields�t(ei) = (ai; �zai; 12!�2zai; : : : ; 1t!�tzai)as required. �We will now 
onsider the 
ase where X ! S has relative dimension one but r,the rank of F , is arbitrary. Lo
ally, F �= A�r, and the lo
al des
ription of theTaylor series map follows dire
tly from Proposition 6.4.3.Proposition 6.4.4. Let B ! A be a map of rings with the 
hara
teristi
 of ea
hresidue �eld of A and B either zero or greater than t. Assume 
A=B has rank one,generated by the single element dz, and suppose given a mapM :A�n �! A�rwhere M = (aij), aij 2 A. Then the 
orresponding t-th Taylor series map is a blo
kmatrix

�t(M):A�n
26666666664 M�zM12!�2zM...1t!�tzM

37777777775��������! Pt(A�r) �= (A�r)�t+1where �kzM = (�kz aij)i;j.Proof. This follows dire
tly from Proposition 6.4.1 and the fa
t that �t preservesdire
t sums, (6.3.1). �Finally, we 
onsider the 
ase of arbitrary relative dimension. It is the same as(6.4.4) ex
ept we must take all mixed partials of the entries of � with respe
t tolo
al parameters for X.



54 DAVID PERKINSONProposition 6.4.5. Let B ! A be a map of rings with the 
hara
teristi
 of ea
hresidue �eld of A and B either zero or greater than t. Assume 
A=B has rank k,generated by dz1; : : : ; dzk, and suppose given a mapM :A�n �! A�rwhere M = (aij), aij 2 A. Then the 
orresponding t-th Taylor series map is a blo
kmatrix�t(M):A�n � 1i1!���ij !�zi1 ����zijM�0�j�t; fi1;:::;ijg�f1;:::;ng������������������������������! Pt(A�r) �= (A�r)�(k+tt )where �zk1 � � ��zk`M = (�zk1 � � ��zk`aij)i;j. Ea
h � 1i1!���ij !�i1 � � ��ijM� is a row ofthe blo
k matrix �t(M).Proof. For the 
ase r = 1, pro
eed as in the proof to Proposition 6.4.1 using themap �t of (4.10). (The n of (4.10) is our k.) Then, for general r, use the fa
t that�t preserves dire
t sums, (6.3.1). �A.7. Pn+n0(F)! Pn(Pn0(F)). There is a natural map, ([G, 16.8.9.1℄),(7.1) Æ = Æn;n0 : Pn+n0(F)! Pn(Pn0(F))fun
torial in F , making the following diagram 
ommute(7.2) F dn+n0F����! Pn+n0(F)dnF??y ??yÆPn0(F) ����!dn0Pn(F) Pn(Pn0(F))Using (5.3) and the notation of (A.5), the map is given byPn+n0(F) = OX 
OXIn+n0+1 
 F(7.3) �! OX 
OXIn+1 
 OX 
OXIn0+1 
 F = Pn(Pn0(F))(a
 b)
 f 7! (a
 1)
 (1
 b)
 f(As in (A.5), we are abusing notation slightly.) As noted after (5.3), we must be
areful of the module stru
ture when taking these tensors. Thus,(a
 b)
 
f = (a
 
b)
 f 2 (OX 
OX)=In+n0+1 
Fand(a
 b)
 (

 d)
 ef = (a
 b
)
 (1
 de)
 f= (a
 1)
 (b

 de)
 f 2 OX 
OXIn+1 
 OX 
OXIn0+1 
 F



CURVES IN GRASSMANNIANS 55Here a, b, 
, d, e (respe
tively, f) represent se
tions of OX (respe
tively, F) oversome open set of X.We will need to know that Æ is 
ompatible with the Taylor series map. Considerthe Taylor series maps u�u�F �! Pn0(F)and u�u� Pn0(F) �! Pn(Pn0(F))Applying u�u� to the �rst of these maps and using the natural map 1! u�u� givesthe left verti
al map in the following diagram(7.4) u�u�F ����! Pn+n0(F)??y ??yu�u� Pn0(F) ����! Pn(Pn0(F))The horizontal maps are Taylor series maps. Using (7.3) , it is 
lear that thisdiagram 
ommutes, i.e., Æ is 
ompatible with Taylor series maps.It also 
lear from (7.3) that Æ 
ommutes with the natural surje
tions from t-jets to (t � 1)-jets in several senses. For example, there are natural 
ommutativediagrams:(7.5) Pn+n0(F) Æn;n0����! Pn(Pn0(F))??y ??yPn+n0�1(F) Æn;n0�1�����! Pn(Pn0�1(F))and(7.6) Pn(Pn0(F)) ����! Pn�1(Pn0(F))??y x??Æn�1;n0Pn(Pn0�1(F))  �����Æn;n0�1 Pn+n0�1(F)Remark 7.7. Letting n = 1, (7.6) shows that P1(Pn0(F))! P1(Pn0�1(F)) fa
torsthrough the surje
tion P1(Pn0(F))! Pn0(F).We will need the following te
hni
al result:Proposition 7.8. Assume that the 
hara
teristi
 of S is zero or greater than n+1.If X ! S is smooth of relative dimension one, and F is a lo
ally free sheaf on X,then the map Æ: Pn+1(F)! P1(Pn(F)) is an in
lusion with a lo
ally free 
okernel.Proof. The 
ompatibility of Æ with the natural surje
tions of prin
ipal parts bundlesgives a 
ommutative diagram(7.8.1) 0 ����! Sn+1(
X=S)
F ����! Pn+1(F) ����! Pn(F) ����! 0??y ??y 


0 ����! 
X=S 
 Pn(F) ����! P1(Pn(F)) ����! Pn(F) ����! 0



56 DAVID PERKINSONWe will now show that sin
e X ! S has relative dimension one, that the left-most verti
al map in (7.8.1) be
omes 
X=S 


nX=S 
F �
i��! 
X=S 
Pn(F) wherei:F 
 
n ! Pn(F) denotes the natural in
lusion of (3.2), and �: 
X=S ! 
X=S ismultipli
ation by (n + 1). In parti
ular, � 
 i is inje
tive; hen
e the propositionfollows from the snake lemma.By (7.3) we may writeÆ: OX 
OXIn+2 
 F �! OX 
OXI2 
 OX 
OXIn+1 
 F(a
 b)
 f 7! (a
 1)
 (1
 b)
 fWe need to �nd the image ofdzn+1 
 f 2 (In+1=In+2)
F = 

n+1X=S 
 FCal
ulate Æ(dzn+1 
 f) = Æ(1
 z � z 
 1)n+1 
 f= [(1
 1)
 (1
 z)� (z 
 1)
 (1
 1)℄n+1 
 f= [dz 
 (1
 1) + (1
 1)
 dz℄n+1 
 f=  n+1Xk=0�n+ 1k �dzk 
 dzn+1�k!
 f= (n+ 1) dz 
 dzn 
 fThus, the left-most verti
al map of (7.8.1) is as required. �A.8. Os
ulating Bundles.The following de�nition is due to Piene, [Pi1℄.De�nition 8.1. Let V be a sheaf on S, let F be a sheaf on X, and let �:VX ! Fbe a map of sheaves. For t � 0, the image of the Taylor series map �t�:VX ! Pt(F)is 
alled the os
ulating sheaf of order t for � and denoted by Gt(�) or just Gt(F)when � is 
lear from 
ontext. It 
omes with a natural surje
tion�t:VX ! Gt(F)The natural surje
tions, Pt(F)! Pt�1(F), indu
e surje
tions, Gt(F)! Gt�1(F).Proposition 8.2. Let V , W be sheaves on S, and let F , G be sheaves on X.Suppose there is a 
ommutative diagramVX `����! WX�??y ??y F f����! G



CURVES IN GRASSMANNIANS 57Then there are maps between os
ulating sheaves ft : Gt(F)! Gt(G) su
h thatVX `����! WX�t(�)??y ??y�t( )Gt(F) ft����! Gt(G)??y ??yGt�1(F) ft�1����! Gt�1(G)
ommutes for t � 1. The bottom verti
al maps are the natural surje
tions, and the
omposition of the verti
al maps on the left (respe
tively, right) is �t�1(�) (respe
-tively, �t�1( )).For (2) and (3) below, assume that F and G are lo
ally free.(1) If ` is surje
tive, then so are the ft.(2) If f is inje
tive, so are the ft.(3) If f is inje
tive and ` is surje
tive, then the ft are isomorphisms;Proof. The maps ` and f give rise to a 
ommutative diagram, (6.3.3.2)VX `����! WX�t(�)??y ??y�t( )Pt(F) ����! Pt(G)Taking images of the verti
al maps de�nes ft. The required 
ompatibility withthe natural surje
tions follows from the 
orresponding fa
t for prin
ipal parts ofsheaves, (6.3.2).(1) is 
lear from the de�nition of ft.Restri
ted to lo
ally free sheaves, Pt( � ) is an exa
t fun
tor (2.3). This a

ountsfor (2), and as a trivial 
onsequen
e of (1) and (2), we get (3). �Proposition 8.3. Let F be lo
ally free. There is a surje
tion(�) Gt(F) �! G1(Gt�1(F))
ompatible with the natural surje
tions from VX . It is fun
torial in F and is 
ompat-ible with the natural surje
tions of os
ulating bundles, i.e., there is a 
ommutativediagram Gt+1(F) ����! G1(Gt(F))??y ??yGt(F) ����! G1(Gt�1(F))If X ! S is smooth of relative dimension one and the 
hara
teristi
 of ea
h residue�eld of S is zero or greater than t, then (�) is an isomorphism.Proof. By (2.3), applying P1( � ) to the in
lusion Gt�1(F) ,! Pt�1(F) yields(y) G1(Gt�1(F)) ,! P1(Gt�1(F)) ,! P1(Pt�1(F))



58 DAVID PERKINSONOn the other hand, we have(z) Gt(F) ,! Pt(F) Æ�! P1(Pt�1(F))where Æ is the map of (7.1). Sin
e these maps are 
ompatible with the naturalsurje
tions from VX , Gt(F) surje
ts onto the image of G1(Gt�1(F)) in P1(Pt�1(F)).This gives (�). With the additional assumption on X ! S and the 
hara
teristi
of S, it follows from Proposition 7.8 that Æ in (z) is inje
tive. Therefore, in that
ase, (�) is an isomorphism.The fun
toriality of (�) 
omes from that of Pt( � ) and of Æ. Compatibility withthe surje
tions of os
ulating bundles follows from (7.5). �Appendix BContentsIntrodu
tion.B.1. In
e
tion NumbersB.2. Prin
ipal PartsB.3. ExamplesB.4. Os
ulating Spa
es, Asso
iated Maps, and Higher Order DualsB.5. Piene Duality TheoremIntrodu
tion. This appendix is an outline of the basi
 theory of in
e
tions of
urves in proje
tive spa
e. It is intended as ba
kground and a 
onvenient referen
e.For the most part, results are presented without proofs. The main theorems are dueto Piene, and details may be found in [Pi1℄ and [Pe1℄. The two most fundamentaltheorems in the theory are Theorem 2.3, stating the degrees and ranks of theos
ulating bundles, and the duality theorem in (B.5).Throughout the appendix, V denotes a ve
tor spa
e of dimension n+ 1 over analgebrai
ally 
losed �eld k, and X is a smooth 
urve over k. Let(0.1) f :X �! P(V ) �= Pnkbe a map to the proje
tive spa
e of quotients of V . There is a 
orrespondingsurje
tion(0.2) �:VX �! Lwhere L is a line bundle on X. The map on global se
tions will be denoted(0.3) ��:V �! �(X;L)De�nition 0.4. If m is the dimension of the smallest linear spa
e 
ontaining theimage of f , then f is said to span a Pm or span a linear spa
e of dimension m. Thenumber m is one less than the dimension of the image of ��.



CURVES IN GRASSMANNIANS 59B.1. In
e
tion Numbers. In this se
tion, we introdu
e the fundamental in-variants des
ribing the in
e
tionary behavior of a 
urve in proje
tive spa
e. Thismaterial 
an also be found in [GH1℄, [Pi1℄, and [L1℄.De�nition 1.1. Let f span a Pm. For ea
h x 2 X, de�ne integers �i = �i(x) with0 = �0 � �1 � � � � � �m byf0; 1 + �1; 2 + �2; : : : ;m+ �mg = fordx(�)g�2��(V )(A Gram-S
hmidt-type argument shows that this de�nition yields m numbers.)The number �i is 
alled the i-th in
e
tion number for � (or f) at x. If some �iis nonzero, x is said to be an in
e
tionary point for � at x. Under appropriate
onditions, (2.3), there will be a �nite number of in
e
tionary points. In this 
ase,it makes sense to sum an �i over all points to get a global i-th in
e
tion number for�, also denoted by �i, and we de�ne the i-th in
e
tion divisor to bePx2X �i(x) �x.Later we will de�ne a related in
e
tion sheaf, (2.4).In
e
tionary points are also 
alled points of hyperos
ulation sin
e, at ea
h of thesepoints, an os
ulating spa
e meets f(X) with higher multipli
ity than expe
ted,(4.1.1).Remark 1.2. Let L = O(D) for a divisor D on X. For x 2 X 
onsider thede
reasing sequen
e of integers`x(n) = dimkf� 2 ��(V ) �� � 2 �(X;O(D � nx))gfor n = 0; 1; 2; : : : . If `x(n � 1) 6= `x(n), then n is 
alled a gap value for � at x.(Note: If `x(n�1) 6= `x(n), then `x(n�1) = `x(n)�1, (
f. [H, proof of PropositionIV.3.1℄).) If the gap values are not 1; 2; : : : ;m, then the point x is 
alled a generalizedWeierstrass point. Denote the i-th gap value by ai. The Weierstrass weight for �at x is the integer Pmi=1(ai � i). In terms of the in
e
tionary indi
es, the i-th gapvalue is �i�1+ i. The 
lassi
al situation is when the genus of X is greater than oneand �:V =�! �(X;
X=k) ! 
X=k, (3.2); the gap values measure the in
e
tionarybehavior of the 
anoni
al embedding.1.3. Normal Form. By a normal form for the map f at x we mean a 
hoi
e of
oordinates for Pn that is ni
e with respe
t to the in
e
tion numbers. Spe
i�
ally,
hoose a basis, �0; : : : ; �m, for the image of � su
h that ordx(�i) = i+ �i. IdentifyLx with the lo
al ring at x, A = OX;x, and let z be a lo
al parameter at x. We
an think of the �i's as elements in the 
ompletion Â �= k[[z℄℄, so that f is givenparametri
ally by(1.3.1) z 7! v(z) = (1 + � � � ; z1+�1 + � � � ; : : : ; zm+�m + � � � ; 0; : : : ; 0)where \+ � � � " denotes the sum of terms of higher order in z. Thus, if �1 > 0, thenf(x) is a 
usp of the image of f , and if �1 = 0 but �2 > 0, then f(x) is an in
e
tionpoint of the image of f .Let x0; : : : ; xn be 
oordinates on Pn. The expression (1.3.1) shows that the t-plane fxt+1 = 0; : : : ; xn = 0g meets f(x) with multipli
ity t + 1 + �t+1 along thebran
h of f(X) 
orresponding to x.



60 DAVID PERKINSON1.4. Base Points. We may also de�ne in
e
tion numbers for arbitrary linearsystems or for any map (i.e., not ne
essarily surje
tive)(�) VX �! LThe only di�eren
e is that the smallest in
e
tion number �0 may no longer be zero.If L = O(D) is the line bundle 
orresponding to a divisor D, and B is the base ofthe linear system 
orresponding to (�), then the map in (�) fa
tors asV  �! �(X;O(D � B)) ,! �(X;O(D))Letting �i(x) denote the in
e
tion numbers (or divisors) for the surje
tion,  , it is
lear from the normal form, (1.3), that�i(x) = � �i; if x is not a base point�i(x)� �0(x); if x is a base pointB.2. Prin
ipal Parts. The main result of this se
tion is Theorem 2.3, stating thedegree and rank of Piene's os
ulating bundles. It leads dire
tly to the generalizedPl�u
ker formulas, (3.3), and the degrees of varieties asso
iated with the 
exing ofa 
urve in spa
e, (B.4).For ea
h integer t � 0, the map � of (0.2) 
an be lifted to the t-th order Taylorseries map, (A.6),(2.1) �t = �t�:VX ! Pt(L)where Pt(L) is the bundle of t-th order jets of se
tions of L. Lo
ally, we 
an thinkof � as given by a n+ 1-tuple of fun
tions in a lo
al parameter for the 
urve. Themap �t 
an then be thought of as a matrix with rows 
onsisting of the derivativesof � up to order t, (A.6.4).Re
all from (A.8) that the image of �t is the t-th os
ulating bundle for �, denotedby Gt(L) (or by Gt(�) or Gt(f), if ne
essary). From �t, there is a natural surje
tion(2.2) �t:VX �! Gt(L)(Gt(L) is a bundle sin
e it is a subsheaf of Pt(L) and, hen
e, is torsion free.)The following theorem, due to Piene [Pi1℄, (with a slight 
orre
tion due toLaksov, [L1℄), shows how the Taylor series maps, �t, are related to the in
e
tionnumbers de�ned in (B.1). It is the main result from Appendix B needed in themain body of the paper.Theorem 2.3. Let X be a smooth proje
tive 
urve, and assume the 
hara
teristi
of k is zero or greater than t and the degree of L. Then(1) If t � m = dimk ��(V )� 1, then �t is generi
ally surje
tive withlength(
ok �tx) = tXi=1 �i(x)In parti
ular, rkGt(L) = t + 1, and �t is surje
tive if and only if � isnonin
e
tionary at x up to order t.(2) There is a �nite number of in
e
tionary points.(3) If t � m, then the image is a trivial bundle of rank m + 1, i.e., im �t =Gt(L) = ��(V )X .



CURVES IN GRASSMANNIANS 61Remark 2.3.1. To see that the assumption on the 
hara
teristi
 is ne
essary inTheorem 2.3 and in Corollary 2.5.3, below, see Remark 3.4.2.Remark 2.3.2. If X is a smooth proje
tive 
urve, then with no assumption onthe 
hara
teristi
 of k, �i(x) � degL � ifor ea
h x 2 X. Sin
e �i(x) � ai+1(x), this means thatai(x) � degL�mfor i = 1; : : : ;m. This inequality is sharp. For instan
e, 
onsider the mapP1 �! Pmz 7! (1; z1+(d�m); z2+(d�m); : : : ; zm+(d�m))given by se
tions of the line bundle O(d). Here, �i = d�m for all i.Remark 2.3.3. The proje
tivity assumption 
an be repla
ed with the 
onditionthat if the 
hara
teristi
 of k is not zero, then it is larger than m and �m +m.De�nition 2.4. From the natural surje
tion of prin
ipal parts bundles, we get the
ommutative diagram with exa
t rows0 ����! Gt(L) ����! Pt(L) ����! 
ok �t ����! 0??y ??y ??y0 ����! Gt�1(L) ����! Pt�1(L) ����! 
ok �t�1 ����! 0The verti
al map on the right, 
ok �t ! 
ok �t�1is a surje
tion whose kernel we 
all the t-th in
e
tion sheaf of � and denote byinft. A

ording to Theorem 2.3, it has length �t. The divisor 
orresponding to thiskernel is the t-th in
e
tion divisor de�ned in (B.1).2.5. Degrees. In (B.4), we will give the standard de�nitions of the os
ulating de-velopables, asso
iated 
urves, and higher order dual varieties of a 
urve in proje
tivespa
e. The following result will give the degrees of these varieties.Denote the kernel of �t by Et(L), and 
onsider the exa
t sequen
es(2.5.1) 0 �! Et(L) �! VX �t�! Gt(L) �! 0and(2.5.2) 0 �! Gt(L) �! Pt(L) �! 
ok �t �! 0The degrees of Gt(L) and Et(L) are an immediate 
onsequen
e of Theorem 2.3.First we need some notation: if F is any ve
tor bundle on X, then de�ne 
1(F ) tobe the divisor 
lass 
orresponding to the line bundle detF ; if F is a torsion sheafon X, de�ne [F ℄ to be the 
lass of the divisor Px2X length(Fx) � x.



62 DAVID PERKINSONCorollary 2.5.3. Let X be a smooth proje
tive 
urve of genus g, and assumethe 
hara
teristi
 of k is zero or greater than t and the degree of L. Then fort � m = dimk ��(V )� 1,
1(Gt(L)) = �
1(Et(L)) = �t+ 12 �
1(
X=k) + (t+ 1)
1(L)� [
ok �t℄as divisor 
lasses. In parti
ular,degGt(L) = � deg(Et(L)) = �t+ 12 �(2g � 2) + (t+ 1) degL � tXi=1 �i= (t+ 1)(tg � t+ degL)� tXi=1 �iLetting t = m, we getmXi=1 Xx2X �i(x) � x = �m+ 12 �
1(
X=k) + (m+ 1)
1(L)as divisor 
lasses, and taking degrees givesmXi=1 �i = �m+ 12 �(2g � 2) + (m+ 1) degL= (m+ 1)(mg �m+ degL)Proof. The 
orollary follows dire
tly from: Theorem 2.3; the Whitney sum formulaapplied to (2.5.1), (2.5.2), and (A.3.2); and the fa
t that if  :E ! F is a generi
allysurje
tive map between bundles of the same rank on a smooth proje
tive 
urve, then
1(E)� 
1(F ) = [
ok ℄(
f. [F, A.2.3℄). �B.3. Examples. Here we present several standard examples. As a re�nement ofthe theory, we 
onsider the e�e
t of 
overing maps and proje
tions.Example 3.1. ([GH1, p. 270℄, [Pi1℄) Suppose that f has no in
e
tionary points.Under the assumptions of Corollary 2.5.3, this means thatmXi=1 �i = 0 = �m+ 12 �(2g � 2) + (m+ 1) degLThis is only possible if g = 0 and degL = m, i.e., L = O(m). Counting dimensions,this means that ��(V ) = �(P1;O(m)), and the map f is just the embedding ofP1 as a rational normal 
urve of degree m in a linear subspa
e of dimension m inP(V ).



CURVES IN GRASSMANNIANS 63Remark 3.1.1. For a natural extension of the above example to a 
hara
terizationof the Veronese embeddings of any Pn, 
f. [FKPT℄.Example 3.2. Weierstrass Points. ([GH1, p. 275℄) Let X have genus g � 1, and
onsider the 
anoni
al morphism f :X �! Pg�1determined by the natural surje
tion�: �(X;
X=k)X �! 
X=kRe
all Remark 1.2. The in
e
tionary points for the 
anoni
al morphism are 
alledWeierstrass points. By de�nition, `x(0) = g, and sin
e deg
X=k = 2g � 2, we alsohave `x(2g� 1) = 0 for any point x 2 X. Therefore, there are g gap values at ea
hpoint of X. From Corollary 2.5.3, the total weight of all the Weierstrass points,i.e., the sum of the weights at ea
h point, isgXi=1(ai � i) = gXi=1 �i�1= �g2�(2g � 2) + g(2g� 2)= (g � 1)g(g+ 1)Example 3.3. Generalized Pl�u
ker Formulas. ([GH1, p. 270℄, [Pi1℄) Assume thatthe 
hara
teristi
 of k is zero or greater than t+1 and the degree of L. Let 
1(Gi(L))denote the divisor 
lass of the determinant of the os
ulating bundle of order i. FromCorollary 2.5.3,(3.3.1) 
1(Gt�1(L))� 2
1(Gt(L)) + 
1(Gt+1(L)) = 
1(
X=k)�Xx2X �k+1(x) � xLetting di = degGi(L) and taking degrees in (3.3.1) yields(3.3.2) dt�1 � 2dt + dt+1 = 2g � 2� �k+1The expressions (3.3.2) for t � 1 are 
alled the generalized Pl�u
ker formulas. Thenumber di is the degree of the os
ulating developable of order i, of the i-th asso
iatedmap, and of the dual variety of order i, (4.2, 4.3).Example 3.4. Ellipti
 Curves. Let L be a line bundle of degree n+ 1 � 3 on anellipti
 
urve E. Consider the in
e
tion numbers �i, i = 1 : : : ; n, for the evaluationmap(�) �(E;L)E �! LBy Riemann-Ro
h, �i = 0 for i < n and �n � 1 at ea
h point, (
f. 1.2). (We 
analso see that �n � 1 by Remark 2.3.2.) Thus, Corollary 2.5.3 says that there areexa
tly n+ 1 in
e
tionary points. At ea
h of the in
e
tionary points, �n = 1.



64 DAVID PERKINSONTheorem 3.4.1. (Kato [Ka℄) Choose any in
e
tionary point for (�) to be theidentity in the group E. Then the in
e
tionary points are exa
tly the points oforder n+ 1.Proof. Let p0; : : : ; pn be the in
e
tionary points, and take p0 = 0 in the group E.By looking at the normal form, we see that the in
e
tionary points are exa
tly thepoints where a hyperplane of P(�(E;L)) meets the image of E under the embeddingdetermined by (�) with multipli
ity n + 1 = degL, (1.3). Therefore, L �= O((n +1)p0), and (n+ 1)pi � (n+ 1)p0 for ea
h i. In other words, (n+ 1)pi = 0 for all i.Remark 3.4.2. Assuming that the 
hara
teristi
 of k is zero or greater than n+1,Corollary 2.5.3 and the 
omments made in the pre
eding example show that thereare (n+1)2 points of E where �n = 1. For an ellipti
 
urve in the plane (i.e., n = 2)in 
hara
teristi
 three, there are three or zero points of order three, depending onwhether the 
urve is ordinary or supersingular, respe
tively, ([S, p. 106℄). By Kato'stheorem, this means that there are three or zero points where �2 = 1. In any 
ase,the sum of the in
e
tion numbers is not nine. This shows that the assumption onthe 
hara
teristi
 in Theorem 2.3 and Corollary 2.5.3 is needed.Example 3.5. Let grd be a generi
 non-spe
ial linear system of dimension r anddegree d without base points on a smooth proje
tive 
urve X over the 
omplexnumbers. Let f :X ! Pr be the 
orresponding map with in
e
tion numbers �i.Canuto, [Cn℄, shows that �i = 0 for i = 1; : : : ; r � 1 for ea
h point of X and thatthere are exa
tly (r + 1)(rg � r + d) points where �r = 1, otherwise �r = 0.Example 3.6. Coverings. Let g:X ! Y be a �nite, separable morphism of smoothproje
tive 
urves over k. We want to relate the in
e
tion numbers for a map of Yinto proje
tive spa
e with those of the indu
ed mapping of X.Suppose we are given a map fY :Y �! P(V )with 
orresponding surje
tion to a line bundle�Y :VY �! LYComposing fY and g gives fX :X �! P(V )and the 
orresponding surje
tion �X :VX �! LXwhere LX = g�LY .Let m+1 = dimk ��Y (V ) = dimk ��X (V ), and for i = 1; : : : ;m, let �X;i, �Y;i bethe in
e
tion numbers for �X , �Y , respe
tively. The following result 
an be foundin [Pe1℄:



CURVES IN GRASSMANNIANS 65Proposition 3.6.1. Let ex be the rami�
ation index at x 2 X. Then(1) For x 2 X, �X;i(x) = ex � �Y;i(g(x)) + ex � 1(2) Summing (1) over all points of X gives the following relation for globalin
e
tion divisors:Xx2X �X;i � x = deg(g)Xx2X �Y;i � x+ i �Xx2X(ex � 1) � xAssume, in addition, that the 
hara
teristi
 of k is either zero or greater than t andthe degree of LX . Then(3) Letting Et( � ) denote the kernel of the map to the os
ulating bundle �t, thenatural map g�Pt(LY ) ! Pt(LX) of (A.2.4) indu
es an isomporphism ofexa
t sequen
es0 ����! g�Et(LY ) ����! g�VY ����! g�Gt(LY ) ����! 0??y 


 ??y0 ����! Et(LX) ����! VX ����! Gt(LX) ����! 0(4) For any bundle F on X or Y , let 
1( � ) denote the divisor 
lass of detF .Then 
1(Gt(LX)) = g�
1(Gt(LY ))In parti
ular, degGt(LX) = deg(g) degGt(LY )(5) For t � m, the natural map g�Pt(LY ) ! Pt(LX) is generi
ally surje
tive.The divisor 
orresponding to its 
okernel is�t+ 12 � �Xx2X(ex � 1) � x(6) For the in
e
tion sheaves, (2.4), there is an exa
t sequen
e0 �! g� inftY �! inftX �! 

tX=Y 
 L �! 0Remark 3.6.2. Proposition 3.6.1 is 
losely related to the Riemann-Hurwitz The-orem. Summing (2) over i yields(�) mXi=1 Xx2X �X;i � x = deg g mXi=1 Xx2X �Y;i � x+ �m+ 12 �Xx2X(ex � 1) � xHowever, if we assume the 
hara
teristi
 of k is either zero or greater than m andthe degree of LX , Corollary 2.5.3 says thatmXi=1 �X;i = �m+ 12 �(2g(X)� 2) + (m+ 1) degLXand similarly for P�Y;i. Substituting this into (�) and simplifying gives theRiemann-Hurwitz Theorem:2g(X)� 2 = deg g (2g(Y )� 2) + Xx2X(ex � 1)



66 DAVID PERKINSONExample 3.7. Proje
tions. Suppose that V � �(X;L), and let W be a subspa
eof V of dimension n = dimV � 1 of globally generating se
tions. Consider theindu
ed map  :W � V ��! LThe 
orresponding map, g:X ! P(W ), is obtained from the original map, f , byproje
tion from a point. We 
an 
ompare the in
e
tionary behavior of f and g.(For the de�nition of an os
ulating spa
e, used in the following proposition, 
f.(B.4).)Proposition 3.7.1. Let f�igi=1;:::;n and f�igi=1;:::;n�1 be the in
e
tion numbersfor f and g, respe
tively. If the point of proje
tion is 
ontained in the os
ulatingspa
e of order t at x but not in an os
ulating spa
e of order t� 1, then�i(x) = � �i(x); for i = 1; : : : ; t� 1�i+1(x) + 1; for i = t; : : : ; n� 1Proof. Choose a basis for V , �0; : : : ; �n, su
h that ordx(�i) = i+ �i and su
h that�0; : : : ; �̂t; : : : ; �n is a basis for W . Taking the 
orresponding normal forms for fand g, (1.3), we are proje
ting from the point (0; : : : ; 1; : : : ; 0)|whose 
oordinatesare all zero ex
ept for the t-th|onto the hyperplane fxt = 0g. Sin
e the os
ulatingspa
e of order i is given by fxi+1 = � � � = xn = 0g, the result is 
lear. �Thus, the in
e
tionary behavior of the proje
ted 
urve is the same as that forthe original 
urve ex
ept at spe
ial points. If a point of the original 
urve hassome os
ulating spa
e that passes through the point of proje
tion, the image willbe \more" in
e
tionary.Example 3.8. Os
ulating 
urves. Let X be an irredu
ible plane 
urve, not ne
-essarily smooth. Let X(t; d) be the subset of the proje
tive spa
e of plane 
urvesof degree d 
onsisting of 
urves meeting X with multipli
ity at least t + 1. These
urves are said to os
ulate X with order t. To study X(t; d), we linearize the prob-lem, using the d-uple Veronese embedding, �d:P2 ! PN , with N = d(d+3)2 . Let ~Xdenote the normalization of X, and de�ne the map�d: ~X ! X � P2 �d�! PNThe 
urves of degree d os
ulating X with order t are in this way identi�ed withhyperplanes of PN that meet �d( ~X) with multipli
ity at least t+ 1.Basi
 results about X(t; d) appear in [Pe1℄, in
luding a re�nement of Cayley'sformula for the number of sexta
ti
 points on a plane 
urve, ([Ca℄): those pointswhere a 
oni
 meets the 
urve with multipli
ity at least six.B.4. Os
ulating Spa
es and Higher Order Duals. We present the standardde�nitions of os
ulating spa
es, developables, and asso
iated maps, and we presenta de�nition, due to Piene, [Pi2℄, of higher order dual varieties. We then givePiene's interpretation of these 
onstru
tions using os
ulating bundles along withher 
al
ulation of the degrees of these 
onstru
tions.



CURVES IN GRASSMANNIANS 67For the main results of the paper, it is only ne
essary to be familiar with thede�nitions, (4.1), and their interpretation via os
ulating bundles, Proposition 4.2.4.As a new example, we 
onsider a 
urve in proje
tive spa
e, and 
onstru
t a mapof the 
urve into a 
ag variety by 
onsidering the 
ag of os
ulating spa
es of the
urve at ea
h point. We 
al
ulate the 
lass of this 
urve in the interse
tion ring ofthe 
ag variety, (4.4).De�nition 4.1. (See Proposition 4.2.4 for the interpretation of the 
onstru
tionspresented here in terms of ve
tor bundles.) With the notation as at the beginningof this appendix, assume that f :X ! P(V ) spans a Pm. For t � m, the os
ulatingspa
e of order t at x 2 X is the unique t-plane having maximal order 
onta
t withf(X) at f(x) along the bran
h 
orresponding to x. Taking a normal form for f atx, (1.3), and letting x0; : : : ; xn be the 
orresponding 
oordinates on Pn, this t-planeis given by fxt+1 = � � � = xn = 0g. For t > m, de�ne the os
ulating spa
e of ordert to be the Pm spanned by f . The os
ulating developable of order t of f (or f(X))is the union of the os
ulating spa
es of order t.Let Os
tx = Os
tx(f) denote the os
ulating spa
e of order t at x. For t � m,asso
iate ea
h point of X with its os
ulating t-plane in the Grassmannian of t-planes in P(V ) to get the t-th asso
iated map of fft:X �! GtP(V )x 7! Os
tx(f)The image of ft will be 
alled the t-th asso
iated 
urve of f .The dual variety of order t for f is the set of hyperplanes|
onsidered as a subsetof the dual proje
tive spa
e P(V �)|
ontaining some os
ulating spa
e of order t.For t > m, the dual variety of order t is just the (n � m � 1)-dimensional linearspa
e of hyperplanes 
ontaining the Pm spanned by f .Let Htx = Htx(f) denote the set of hyperplanes 
ontaining the os
ulating spa
eof order t at x. Taking a normal form for f at x and 
oordinates on Pn as above,a hyperplane de�ned by Pni=0 aixi is in Htx if and only if a0 = � � � = at = 0. Fort � m, de�ne the t-th dual map of f byf t:X �! Gn�t�1P(V �)x 7! HtxThe image of f t is 
alled the t-th dual 
urve of f .Remark 4.1.1. Let t � m. If f is birational to its image, then the os
ulatingspa
e of order t meets f(X) at f(x) along the bran
h 
orresponding to x withmultipli
ity t+ 1 + �t+1. For a general map, this number must be repla
ed byt+ 1+ �t+1deg fRemark 4.1.2. If X is not smooth, let �: ~X ! X be the map from the normal-ization of X, and de�ne all the 
onstru
tions of De�nition 4.1 for f to be those off Æ �. In terms of line bundles, we are repla
ing � by���:V ~X �! ��LHen
e, if X is embedded in Pn as a 
urve with singularities, this de�nition allowsus to 
onsider the os
ulating spa
es of X along its bran
hes.



68 DAVID PERKINSON4.2. Modern Viewpoint. In [Pi1℄, [Pi2℄, Piene has given the modern interpre-tation of the 
onstru
tions of De�nition 4.1 using her os
ulating bundles. Thisappears as Proposition 4.2.4, below.Let Et(L) denote the kernel of the natural map to the t-th order os
ulatingbundle, �t, and 
onsider the exa
t sequen
e(4.2.1) 0 �! Et(L) �! VX �t�! Gt(L) �! 0This indu
es maps of proje
tive bundles(4.2.2) !t:P(Gt(L)) �! P(VX ) = X � P(V ) �2�! P(V )and(4.2.3) Æt:P(Et(L)�) �! P(V �X ) = X � P(V �) �2�! P(V �)where �2 denotes the se
ond proje
tion in both 
ases.Proposition 4.2.4. Assume that X is a smooth proje
tive 
urve and the 
hara
-teristi
 of k is zero or greater than t and the degree of L. Then the image of the�ber at x, !t(P(Gt(L))x), is the os
ulating spa
e of order t at x, and similarly,Æt(P(Et(L)�)x) = Htx. Therefore, the image of !t is the os
ulating developable oforder t, and the image of Æt is the dual variety of order t.For t � m, the map X ! GtP(V ) indu
ed by �t:X ! Gt(L) through theuniversal property of a Grassmannian is the t-th asso
iated map. Similarly, themap X ! Gn�t�1P(V �) indu
ed by the natural surje
tion V �X ! Et(L)� is the t-thdual map of f .Corollary 4.2.5. With the assumptions of Proposition 4.2.4, the os
ulating devel-opable and dual variety of order t are irredu
ible.Proof. The os
ulating developable of order t is the image of P(Gt(L)), and the dualvariety of order t is the image of P(Et(L)�). �Remark 4.2.6. Let X � Pn be a smooth embedding of a 
urve in proje
tive spa
edetermined by se
tions of a line bundle L. (Note: The dis
ussion given here is easilygeneralized to the 
ase dimX > 1.) De�neY = f(x;H) 2 X � (Pn)� �� TxX � Hgwhere TxX is the embedded tangent spa
e to X at x. Letting NXPn be the normalbundle to X in Pn, we have that Y is isomorphi
 to P(NXPn) over X, ([F, 3.2.21℄).The dual variety to X is usually de�ned to be the image of the proje
tion Y !(Pn)�. However, sin
e TxX is just the �rst os
ulating spa
e at x, the dual variety
oin
ides with our dual variety of order one. In fa
t, Kleiman, [K1℄, shows that inour situation, E1(L) �= (NXPn)� 
 L. Sin
e L is a line bundle,P(E1(L)�) = P(NXPn 
 L�) �= P(NXPn)



CURVES IN GRASSMANNIANS 694.3. Degree of the Os
ulating Developable and the Higher Order Dual.The next proposition is Piene's 
omputation of the degrees of the os
ulating devel-opables and higher order dual varieties as 
y
les in the interse
tion ring of proje
tivespa
e.Proposition 4.3.1. Let t < m. Let X be a smooth proje
tive 
urve of genus g,and assume that the 
hara
teristi
 of k is zero or greater than t and the degree ofL. Then the dimension of the os
ulating developable of order t is t + 1 , and thedimension of the higher order dual variety of order t is n� t. In other words,dim(im!t) = t+ 1; dim(im Æt) = n� tFurther, deg(!t) deg(im!t) = deg(Æt) deg(im Æt)= deg(ft) deg(im ft)= deg(f t) deg(im f t)= dt = degGt(L)= �t+ 12 �(2g � 2) + (t+ 1) degL� tXi=0 �iwhere deg !t is the degree of the map from the domain to the image of !t andsimilarly for Æt, ft, and f t.Remark 4.3.2. Proposition 3.3.1 of the main body of the paper shows that ifthe 
hara
teristi
 of k is equal to zero or is larger than t and dt = degGt(L), andif f is birational to its image, then ft is birational to its image, i.e., the generi
os
ulating spa
e of order t is the os
ulating spa
e of order t at only one point off(X). Similarly, f t is birational to its image.The birationality of !t and Æt seems to be a more diÆ
ult question. One wouldnot expe
t !m�1 to be birational. For example, the tangent developable to a plane
urve �lls the whole plane; the generi
 point on a tangent line will lie on othertangent lines as well. (On the other hand, sin
e fm�1 is birational to its image,so is Æm�1.) What if t < m � 1? This would imply the trise
ant lemma: that thegeneri
 se
ant of a nonplanar 
urve does not meet the 
urve again. For a proof ofthe trise
ant lemma, 
f. [L2, Lemma 15℄.Example 4.4. Flags. At ea
h point x 2 X, the os
ulating spa
es form a 
ag oflinear subspa
es of proje
tive spa
e,fxg � Os
1x � Os
2x � � � �Asso
iating a point with its 
orresponding 
ag, in this way, determines a map ofthe 
urve into the variety of 
ags in proje
tive spa
e. We will 
ompute the 
lassof this 
urve in the interse
tion ring of the variety of 
ags. For simpli
ity, assumethat f :X ! Pn is birational to its image and spans Pn.



70 DAVID PERKINSONLet F be the variety of 
omplete 
ags in Pn, ([F, 14.7.16℄). The points of F arethe 
ags of linear subspa
es of PnL0 � L1 � � � � � Ln�1where dimLi = i. Fix su
h a 
ag �0 � �1 � � � � � �n�1. A basis for the interse
tionring of F in dimension one is`j = f(L0; : : : ; Ln�1) �� Li = �i for i 6= j; Lj � �j+1gfor j = 0; : : : ; n� 1. The dual basis in 
odimension one is`�j = f(L0; : : : ; Ln�1) �� Li \ �n�i�1 6= ;gDe�ne ~f :X ! Fx 7! (x;Os
1x; : : : ;Os
n�1x )The 
lass of ~f�(X) in the interse
tion ring for F is[ ~f�(X)℄ = n�1Xi=0( ~f�(X) � `�i ) `iAssume that the asso
iated maps, ft, are birational to their images; for example,we 
ould assume that the 
hara
teristi
 of k is zero or large enough (Proposition3.3.1 of main body of the paper). Then, ~f�(X) � `�i is the number of os
ulatingspa
es of order i meeting a generi
 (n� i�1)-plane; in other words, it is the degreeof the os
ulating developable and the asso
iated map, dt, (4.3.1). Thus, we �nd,[ ~f�(X)℄ = n�1Xi=0 dt`iB.5. Piene Duality Theorem. The purpose of this se
tion is to state Piene'sduality theorem for 
urves in proje
tive spa
e. This result, found in [Pi1℄, is themodern expression of the duality theorems of the nineteenth 
entury for 
urves inproje
tive spa
e. A main result of our paper is an extension of her duality theoremto one for 
urves in Grassmannians.Let V � �(X;L) be a ve
tor spa
e of dimension n+1 of generating se
tions of aline bundle L on X. The 
orresponding map, f :X ! P(V ), spans P(V ). In (B.4),we de�ned the t-th asso
iated mapft:X ! GtP(V )sending a point to its os
ulating spa
e of order t, and we de�ned the t-th dual mapf t:X ! Gn�t�1P(V �)sending a point x 2 X to the linear spa
e of hyperplanes 
ontaining the os
ulatingspa
e of order t at x.



CURVES IN GRASSMANNIANS 71De�nition 5.1. The dual of f is the mapf�:X �! P(V �)x 7! Os
n�1xsending a point x 2 X to the os
ulating hyperplane at x. This dual is the (n�1)-thdual map of (B.4), i.e., f� = fn�1We saw in Proposition 4.2.4, with an assumption on the 
hara
teristi
 of k, thatthe asso
iated map 
orresponds to the map of ve
tor bundles�t:VX ! Gt(L)There is an exa
t sequen
e0 �! Et(L) �! VX �t�! Gt(L) �! 0and the t-th dual map, f t, 
orresponds to the natural surje
tion(�) V �X ! Et(L)�By Theorem 2.3, Gt(L) has rank t + 1 for t � n. Therefore, En�1(L) is a linebundle.Theorem 5.2. (Piene Duality Theorem, [Pi1℄) Let X be a smooth proje
tive 
urve,and assume that the 
hara
teristi
 of k is zero or greater than n and the degree ofL. Then the t-dual map of the dual map, f�, is the (n� t� 1)-th asso
iated mapof f . In symbols, (f�)t = fn�t�1In parti
ular, the double dual of f is f , itself:(f�)� = fFor more dis
ussion, see x7 of the main body of the paper.Referen
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