
CURVES IN GRASSMANNIANSDavid PerkinsonJuly 14, 1994Abstrat. Curves in Grassmannians are analyzed using the speial struture of thetangent bundle of a Grassmannian, resulting in a theory of inetions or Weierstrassbehavior. A duality theorem is established, generalizing the lassial duality theoremfor projetive plane urves. The appendies summarize basi information aboutprinipal parts bundles and their appliation to studying the inetions of urves inprojetive spae. ContentsIntrodution1. Derived Bundles2. Prinipal Parts Bundles and a Desription of � in Loal Coor-dinates3. Funtorial Properties of Derived Bundles4. Charaterization of Derived Bundles via Osulating Bundles5. Geometri Interpretation of the Sequene of Di�erential Ranks6. Curves with Di�erential Rank One7. Duality8. Torsion Sheaves9. ExamplesAppendix AAppendix B IntrodutionThis paper develops Joe Harris's idea for lassifying urves in Grassmanniansbased on the speial struture of the tangent bundle of a Grassmannian. A map ofa urve, X, into a Grassmannian is given by a vetor spae, V , of globally spanningsetions of some vetor bundle, E, on X. To this, we assoiated a sequene ofvetor bundle quotients(�) VX = V 
OX �! E �! E1 �! E2 �! : : :alled derived bundles and de�ne higher di�erential ranks and torsion sheaves. Ourgoal is then to explain the geometry behind these onstrutions. The main tools1991 Mathematis Subjet Classi�ation. 14H60, 14H55, 14M15. Typeset by AMS-TEX1



2 DAVID PERKINSONwe use are prinipal parts bundles and the losely related osulating bundles, in thespirit of Piene's work [Pi1℄. Main fats about these bundles are relegated to theappendies and are assumed throughout the main body of the paper.Derived bundles are de�ned in x1 and their onnetion with prinipal parts bun-dles is presented in x2. Piene's osulating bundles appear in x4. They are usedto formulate a key result, Theorem 4.2, whih states that the surjetions betweenderived bundles, (�), lift to give surjetions between osulating bundles(��) VX �! E �! G1(E1) �! G2(E2) �! : : :This property is used to haraterize derived bundles in Theorem 4.6. It is also thekey idea behind Theorem 5.1, whih is a re�nement of the normal form for a urvein a Grassmannian due to GriÆths and Harris, [GH2℄.The normal form for urves in Grassmannians an be interpreted to explain thegeometri meaning of derived bundles and di�erential ranks. Loally, a urve ina Grassmannian is given by the span of vetors parametrized by the urve. Itmight happen that some of these vetors are derivatives of others. Roughly, thedi�erential rank is the minimum number of vetors needed suh that they, alongwith their derivatives up to various orders, determine the map to the Grassmannian.The higher di�erential ranks express the orders of the derivatives. This is madepreise by Theorem 5.1.In ertain situations, a alulation of ranks will show that the surjetions to theosulating bundles in (��) are isomorphisms. This is the idea behind Theorem 6.2.1,whih is used to reover a result of GriÆths and Harris, [GH2, p. 386℄ haraterizingurves with di�erential rank one: eah omes from a urve in projetive spae bytaking a one over an assoiated map of some order. An assoiated map of order tfor a urve in projetive spae sends a point on the urve to its t-th osulating spae(the spae spanned by the derivatives of order � t of a loal parametrization of theurve).The formalism of our vetor bundle onstrutions suggested one of the mainresults of the paper, a duality theorem for urves in Grassmannians, Theorem 7.1.In the ase where E is an osulating bundle for a urve in projetive spae, this resultspeializes to give Piene's duality theorem, [Pi1℄, whih is the modern expressionof the lassial duality theorem for urves in projetive spae. (The most speialase is the fat that the double dual of a projetive plane urve is the urve, itself.)As an appliation, we disuss the birationality of the assoiated maps, (Proposition3.3.1).The torsion sheaves measure the inetionary behavior of a urve in a Grass-mannian. In the speial ase of a urve in projetive spae, their lengths are knownas stationary indies: these are the numbers appearing in the generalized Pl�ukerformulas desribing the way a urve exes.The paper ends with several examples: urves in Grassmannians oming fromtaking \joins of lines"; urves of degree three; a relation between the degree ofa bundle generated by global setions and its possible di�erential ranks; and thesequene of di�erential ranks and torsion numbers (lengths of torsion sheaves) pos-sible on the projetive line.E. Ballio has ontinued the study initiated in this paper, [Ba1℄, and has gener-alized some of the results to higher dimensional varieties, [Ba2℄.



CURVES IN GRASSMANNIANS 3Aknowledgments. I would like to thank my graduate shool advisor, WilliamFulton; this paper is based on my Ph.D. thesis. Thanks also to the MatematiskInstitutt of the University of Oslo, Norway|espeially Ragni Piene|for providinga plae to work and inspiration. Finally, thanks to Reed College for time andsupport through a Vollum researh grant.1. Derived BundlesWe study a map of a smooth urve over an algebraially losed �eld, k, intothe Grassmannian of r-dimensional quotients of an n-dimensional vetor spae Vover k:(1.1) f :X �! G(V; r) = Gr�1P(V ) = Gor equivalently, a surjetion(1.2) �:VX = V 
k OX �! Ewhere E is a vetor bundle of rank r on X. The universal exat sequene on G(1.3) 0 �! S �! VG �! Q �! 0where Q is the universal r-quotient, pulls bak to(1.4) 0 �! SE �! VX ��! E �! 0where SE is the kernel of �. The tangent mapTX �! f�TG �= f�Hom(S;Q) �= Hom(SE ; E)is the same as a map(1.5) � = ��:SE �! 
X=k 
 Ewhere 
X=k = T�1X=k is the otangent bundle.De�nition 1.6. The di�erential rank of � (or f) is the rank of the image of �.The torsion sheaf for � (or f) is the torsion subsheaf of the okernel of �.The di�erential rank of � is the rank of � restrited to a generi �ber. At speial�bers, the rank of � may drop, this being measured by the torsion sheaf.The map � is now used to onstrut a sequene of related maps to Grassmanni-ans.De�nition 1.7. The �rst derived bundle of � is the vetor bundleE1 = �ok(�)
 
�1X=k� =torsionTensoring the natural map 
X=k 
 E ! ok(�) by 
�1X=k and omposing with �indues a surjetion �1: VX ! E1



4 DAVID PERKINSONwhih fators through �. There is a orresponding map f(1): X ! G(V; rank(E1)).One may now repeat the proess with E1 in plae of E. Indutively, de�ne thei-th derived bundle of �, Ei, to be the �rst derived bundle of �i�1. The bundle Eiomes with a surjetion �i:VX �! Eiand a orresponding map f(i):X �! G(V; rank(Ei))De�ne the i-th di�erential rank of �, drki(�), to be the di�erential rank of �i�1and the i-th torsion sheaf, tori(�), to be the torsion sheaf of �i�1. The i-th torsiondivisor is de�ned to be Px2X length(tori �x) � x and the i-th torsion number is thedegree of this divisor.Thus, letting �0 = �, the previously de�ned di�erential rank and torsion sheafof � may be alled the �rst di�erential rank and �rst torsion sheaf, respetively. Insum, we have assoiated with eah map of X into a Grassmannian, a sequene ofmaps of X into other Grassmannians, a orresponding sequene of surjetions(1.8) VX �! E �! E1 �! E2 �! � � �and a sequene of torsion sheaves on X. The i-th di�erential rank isdrki � = rkEi�1 � rkEiRemark 1.9. Tensoring (1.5) by 
�1X=k de�nes a mapTX=k 
 SE �! Ewhose okernel modulo torsion is E1. We used � to de�ne the derived bundlesinstead of this map beause it arises more naturally when using prinipal partsbundles to study di�erential ranks, (x2).2. Prinipal Parts Bundles and a Desription of � in Loal CoordinatesAlthough �:SE ! 
X=k 
 E, used to de�ne the derived bundles, was de�nedby identifying the tangent bundle of the Grassmannian with a spae of maps, wewill mostly use an alternate desription using P1(E), the �rst order prinipal partsof E. This is given in Proposition 2.1. The proof of Proposition 2.1 shows thatthe map � is losely related to the seond fundamental form homomorphism on theGrassmannian.The setion ends with a desription of � in loal oordinates. It will be usedlater to state Theorem 5.1 giving the normal form for a urve in a Grassmannianand leads to a geometri explanation of the di�erential rank.



CURVES IN GRASSMANNIANS 5Proposition 2.1. There is a ommutative diagram with exat rows(2.2) 0 ����! SE ����! VX �����! E ����! 0??y� ??y�1 0 ����! 
X=k 
 E ����! P1(E) ����! E ����! 0where the bottom row is the fundamental exat sequene and �1 is the Taylor seriesmap (A.6). Thus, � is the Taylor series map �1 restrited to SE.Proof. The Taylor series map lifts �, giving a map of exat sequenes as shownexept we must verify that the indued map SE ! 
X=k 
 E is �. There is adiagram similar to (2.2) on the Grassmannian. The map VG ! Q to the universalr-quotient fators through the �rst order prinipal parts of Q to give(�) 0 ����! S ����! VG ����! Q ����! 0??yÆ ??y�1G 0 ����! 
G=k 
Q ����! P1(Q) ����! Q ����! 0Let df : f�
G=k ! 
X=k be the otangent map. Pull bak (�) to the urve anduse the natural map f� P1(Q)! P1(E), (A.2.4), to get the ommutative diagram0 ����! SE ����! VX �����! E ����! 0??yf�Æ ??yf��1G 0 ����! f�
G=k 
 E ����! f� P1(Q) ����! E ����! 0??ydf
id ??y 0 ����! 
X=k 
 E ����! P1(E) ����! E ����! 0The omposite of the middle vertial maps is the Taylor series map �1; so it suÆesto show that the omposite of the vertial maps on the left is �. We see this bynoting the onnetion between Æ and the standard identi�ation: TG �= Hom(S;Q).Tensoring the map Æ of (�) by Q� indues a map �:S
Q� ! 
G=k whih one mayhek, using loal oordinates, is an isomorphism. The dual of � is the standardidenti�ation. �Applying the snake lemma to (2.2) givesCorollary 2.3. Derived bundles an be alulated from the Taylor series map,�1: VX ! P1(E):(1) ok(�) = ok(�1);(2) E1 = �ok(�1)
 
�1X=k� =torsion;(3) tor1(�) is the torsion subsheaf of ok(�1);(4) drk1(�) = rk(im �1)� rkE.Hene, the �rst torsion sheaf of � measures where �1 drops rank.



6 DAVID PERKINSONRemark 2.4. The map Æ:S ! 
G=k
Q introdued in the proof of Proposition 2.1is alled the seond fundamental form homomorphism. It di�ers by a fator of -1from the seond fundamental form of [AK℄. As part of the proof of Proposition 2.1,we showed that � may desribed as the pullbak via f of the seond fundamentalform on G, omposed with df 
 1 where df : f�
G=k ! 
X=k is the otangent map.Loal Desription of �. We now use Proposition 2.1 to give a desription of �in loal oordinates. Looking loally, we may assume X = SpeA and identify VXwith A�n (hoosing a basis for V ), E with A�r, and SE with A�n�r. The map �beomes the matrixM = (aij) whose rows will be denoted by vi for i = 1; : : : r. LetL = (bij) be the inlusion SE ! VX and denote its olumns by wi for i = 1; : : : ; n�r.Reall the standard derivation, d:A! 
A=k. We may assume that 
A=k is trivialwith generator dz. For a 2 A, de�ne a0 by the equationda = a0dzDe�ne v0i = (a0i1; : : : ; a0in). Finally, identifying P1(E) with (A�r)�2 �= A�2r as in(A.4), diagram (2.2) beomes
(2.5) 0 ��! A�n�r [w1 � � � wn�r ℄�����������! A�n 264v1...vr 375����������! A�r ��! 0??y�=(v0i�wj) ??y26666666664v1...vrv01...v0r

37777777775 0 ��! A�r �������������!" 0: : :Ir # A�2r �������!� Ir ... 0 � A�r ��! 0where Ir is the r � r identity matrix. For details, see (A.4) and (A.6.4.3). Sinevi �wj = 0, the following \dual" desription omes from the produt rule:(2.6) � = (v0i � wj) = (�vi � w0j)where w0j = (b01j; : : : ; b0nj).For a \more loal" desription of �, take A to be the loal ring at some pointx 2 X with loal parameter z. The ompletion of A is then isomorphi to thepower series ring k[[z℄℄, and the inlusion of A into its ompletion allows us to viewthe vi's and wj 's as funtions of z. The derivatives we must take are then justordinary derivatives of power series. Finally, looking in the �ber at x, we get anie interpretation of �. Consider the parametrized family of (n � r)-dimensionalsubspaes of V : �(z) = span fw1(z); : : : ; wn�r(z)gIn the �ber at x, �: �(0) �! V=�(0)(2.7) P�iwi(0) 7!P�iw0i(0)



CURVES IN GRASSMANNIANS 7Dually, using (2.6), take the parametrized family of r-dimensional subspaes of V ��(z) = span fv1(z); : : : ; vr(z)gand in the �ber at x, �: �(0) �! V �=�(0)(2.8) P�ivi(0) 7!P�iv0i(0)This agrees with [GH2, p. 384, 2.1℄. At most points, the rank of this map is thedi�erential rank of �. At speial points, the rank may drop, and this is measuredby the torsion sheaf.3. Funtorial Properties of Derived BundlesWe onsider two types of funtorial properties of derived bundles: one omingfrom maps between bundles, and the other from maps between urves. As anappliation, the latter an be used to show that the assoiated maps, (B.4), arebirational.Proposition 3.1. Let V , W be k-vetor spaes and E, F be vetor bundles on X.Suppose there is a ommutative diagramVX `����! WX�??y ??y E f����! Fwhere the vertial maps are surjetive. Then there are maps between derived bundlesfi : Ei ! Fi suh that VX `����! WX�i�1??y ??y i�1Ei�1 fi�1����! Fi�1??y ??yEi fi����! Fiommutes for i � 1. (The vertial maps are the natural ones. De�ne E0 = E,F0 = F , f0 = f , �0 = � and  0 =  .) There are also maps between torsionsheaves: gi: tori(�) �! tori( )(1) If f is surjetive, so are the fi. In this ase, for all i � 1,rkE � rkF � iXj=1(drkj(�)� drkj( ))(2) If f is an isomorphism and ` is surjetive, then the fi and gi are isomor-phisms;



8 DAVID PERKINSONProof. The proof is a straightforward diagram-hase using (2.2) and the funtori-ality of prinipal parts bundles and Taylor series maps (Appendix A). �Corollary 3.1.1. With the notation of Proposition 3.1, if drk1 � = rkE and f issurjetive, then drk1  = rkF .Proof. This follows immediately from (1). The hypotheses imply that E1 = 0 andf1 is surjetive. Thus, F1 = 0 and the result follows. �Proposition 3.2. Let Y be a nonsingular projetive urve over k, E a bundleon Y , and �Y :VY ! E any surjetion with V a k-vetor spae, as usual. Letf :X ! Y be a �nite, separable morphism with X a nonsingular projetive urveover k. Pulling �Y bak via f gives �X : VX ! f�E, and we may onsider itsderived bundles (f�E)i.(1) f�(Ei) �= (f�E)i (as quotients of VX);(2) length(tori(�X)) = length(f� tori(�Y )) + drki(�Y ) length(
X=Y ).Proof. Sine Ei = (Ei�1)1, it suÆes to show (1) for the ase i = 1. We an show(1) using loal oordinates, but it is easier to use the duality theorem, (7.1). OnY , there is the exat sequene, (1.4),(�) 0 �! SE �! VY �! E �! 0Consider diagram (2.2) for the dual of this sequene:(��) 0 ����! E� ��Y����! V �Y  Y����! S�E ����! 0??y� Y ??y�1 0 ����! 
Y=k 
 S�E ����! P1(S�E) ����! S�E ����! 0Corollary 7.1.3 of the duality theorem says thatker � Y = (E1)�Pulling bak (�) to X gives the exat sequene(y) 0 �! f�SE �! VX �! f�E �! 0Consider (2.2) for the dual of this sequene:(z) 0 ����! f�E� ��X����! V �X  X����! f�S�E ����! 0??y� X ??y�1 0 ����! 
X=k 
 f�S�E ����! P1(f�S�E) ����! f�S�E ����! 0Corollary 7.1.3 says that ker � X = ((f�E)1)�Thus, we need to show that (f� ker � Y )� �= (ker � X )� as quotients of VX .



CURVES IN GRASSMANNIANS 9There is a natural map, f� P1(S�E)! P1(f�S�E), (A.2.4). By Proposition A.3.4and (A.6.3.5), it indues a map from the pullbak of (��) via f to (z). In partiular,there is a ommutative diagramf� ker � Y ����! f�E� f�� Y����! f�
Y=k 
 f�S�E??y  ??ydf
1ker � X ����! f�E� ����!� X 
X=k 
 f�S�ESine f is separable, the otangent map df : f�
Y=k ! 
X=k is injetive, ([H, p.300℄). Further, f is at, ([H, p. 299℄), hene f� ker � Y = ker f�� Y . Therefore,it follows from the snake lemma that the left-most vertial map is an isomorphismompatible with the natural maps to V �X . Taking duals gives (1).To prove (2), we proeed as in the proof of (1) but without taking duals. Again,it suÆes to prove the result for i = 1. We have diagram (2.2) and its ounterparton X:(~) 0 ����! f�SE ����! VX �X����! f�E ����! 0??y�X ??y�1 0 ����! 
X=k 
 f�E ����! P1(f�E) ����! f�E ����! 0As before, (A.3.4) and (A.6.3.5) give a map of ommutative diagrams (2:2)! (~).In partiular, there is a ommutative diagramf�SE f���Y����! f�
Y=k 
 f�E ??ydf
1f�SE ����!��X 
X=k 
 f�EFrom this, we get the ommutative diagram with exat rows0 ����! f� im ��Y ����! f�
Y=k 
 f�E ����! f� ok ��Y ����! 0??y ??ydf
1 ??y0 ����! im ��X ����! 
X=k 
 f�E ����! ok ��X ����! 0where the left vertial map is surjetive. Sine df is injetive with okernel 
X=Y ,the snake lemma shows there is an exat sequene0 �! f� ok ��X �! ok ��Y �! 
X=Y 
 f�E �! 0Finally, we onsider the torsion sheaves in the ommutative diagram with exatrows0 ����! f� tor1 �Y ����! f� ok ��Y ����! f�
Y=k 
 f�(E1) ����! 0??y ??y ??y0 ����! tor1 �X ����! ok ��X ����! 
X=k 
 (f�E)1 ����! 0(2) follows by applying the snake lemma to this diagram and taking degrees. �



10 DAVID PERKINSONExample 3.2.1. If E = Gt(L) for a line bundle L as in (B.2), then Proposition3.2 and Theorem 8.1.1 reover Proposition B.3.6 whih shows how the inetionalbehavior for urves in projetive spae hanges under overing maps.3.3. Birationality of Assoiated Maps. Let f :X ! P(V ) be a map of asmooth projetive urve, birational to its image. Reall the t-th assoiated map,ft:X �! GtP(V )x 7! Ostx(f)sending a point to its osulating spae of order t, (for de�nitions, f. B.4).Proposition 3.3.1. Suppose that the image of f is not ontained in a hyperplane.Let t < m, and assume that the harateristi of k is zero or greater than t and thedegree of the t-th osulating bundle for f , (B.2). Then the t-th assoiated map, ft,is birational to its image.Proof. Let f be determined by the surjetion�:VX �! LThe t-th assoiated map orresponds to the surjetion(�) �t:VX �! Gt(L)(f. B.4.2.4). The idea of the proof is that the t-th derived bundle of �t turns outto be L. Thus, we an reover f from ft.At least ft is not onstant, for otherwise f(X) would lie in a linear spae ofdimension t < m, whih ontradits the de�nition of m. Fator ft asX g�! Y h�! Gtwhere Y is the normalization of ft(X). Sine ft is not onstant, g is �nite, anddeg g � degGt(L). Hene, with our assumption on the harateristi, g is alsoseparable; we want to show that it is an isomorphism. The map h orresponds toa surjetion VY �! Ewhih pulls bak to (�) on X. In Proposition 6.3.1, we will show that the t-thderived bundle of Gt(L) is L. Hene, by Proposition 3.2L = (Gt(L))t �= g�(Et)as quotients of VX . Therefore, the natural map VY ! Et determines a map ~h of Yinto projetive spae fatoring f :X g�! Y ~h�! P(V )Sine f is birational to its image, deg g = 1. In other words, X = Y , as desired. �



CURVES IN GRASSMANNIANS 114. Charaterization of Derived Bundles via Osulating BundlesThis setion presents a main result of the paper, Theorem 4.2. It states that thesequene of derived bundlesVX ��! E �! E1 �! E2 �! : : :lifts through the natural maps from Piene's osulating bundlesVX ��! E �! G1(E1) �! G2(E2) �! : : :This property is used to: haraterize derived bundles in Theorem 4.6; give ageometri interpretation of the sequene of di�erential ranks in x5, (Theorem 5.1);and reover a result of GriÆths and Harris desribing urves with di�erential rankone in x6, (Corollary 6.2.2). We also use Theorem 4.2 to see that the sequene ofdi�erential ranks dereases, (Corollary 4.3).Osulating Bundles. The following de�nition is due to Piene, [Pi1℄:De�nition 4.1. The image of the Taylor series map, �t�: VX ! Pt(E), is alledthe osulating bundle of order t for �. We denote it by Gt(�) or just Gt(E) when� is lear from ontext. (It is a bundle sine it is a torsion free sheaf on a smoothurve.) It omes with a natural surjetion�t: VX �! Gt(E)The natural surjetions, Pt(E) ! Pt�1(E), indue surjetions Gt(E) ! Gt�1(E).(For the de�nition of the Taylor series map, f. (A.6); for generalities about osu-lating bundles, f. (A.8).)Loally, we think of �:VX ! E as being the one-parameter family of subspaesof V � spanned by the rows of �, and we think of �t:VX ! Gt(E) as being the1-parameter family of subspaes of V � spanned (at a generi point of X) by therows of � and their derivatives up to order t, (A.6.4).The immediate onnetion between osulating bundles and derived bundles islear from (2.3) whih states thatok � = ok(�1) = ok(G1(E) ,! P1(E))and hene E1 = �ok(G1(E) ,! P1(E))
 
�1X=k� =torsionCharaterization of Derived Bundles. The next theorem will show that themap E ! Ei fators through the natural surjetion Gi(Ei) ! Ei. Roughly, if wethink of �i:VX ! Ei and �:VX ! E as parametrized families of subspaes of V �spanned by the rows of �i and �, respetively, the next theorem says that eahsubspae in the family VX ! E ontains a subspae spanned by the rows of �i andtheir derivatives up to order i. Theorem 4.6 shows that this property haraterizesderived bundles.



12 DAVID PERKINSONTheorem 4.2. Assume the harateristi of k is 0 or greater than i + 1. Thenthere are surjetions Gi(Ej) �! Gi+1(Ej+1) ompatible with the natural maps fromVX and ompatible with the natural surjetions to lower order osulating bundles,i.e., so that the following diagram ommutesGi(Ej) ����! Gi+1(Ej+1)??y ??yGi�1(Ej) ����! Gi(Ej+1)In partiular, there are mapsVX �! E �! G1(E1) �! G2(E2) �! � � �ompatible with the natural surjetions from VX and to the Ei's. These maps arefuntorial in E, (3.1).Proof. For ease of notation, we will onstrut the maps for E and E1, but the sameargument works for Ej and Ej+1. Let �:E ! E1 be the natural surjetion.Consider the ommutative diagrams, (2.2),(�) 0 ����! SE ����! VX �����! E ����! 0??y� ??y�1� 0 ����! 
X=k 
 E ����! P1(E) ����! E ����! 0and(��) 0 ����! SE1 ����! VX �1����! E1 ����! 0??y��1 ??y�1�1 0 ����! 
X=k 
E1 ����! P1(E1) ����! E1 ����! 0By (A.6.3.4.2), the natural map �:E ! E1 indues a map of ommutative diagrams(�)! (��) whih we think of as a 3-dimensional ommutative diagram. As part ofthis diagram, we have the maps(� � �) SE ��! 
X=k 
 E 1
���! 
X=k 
E1The omposite is zero sine, by de�nition of �, the natural surjetion
X=k 
E �! ok(�)=torsion = 
X=k 
 E1is 1
 �.Now onsider the maps(y) 0 ����! SE ����! VX �����! E ����! 0VX �1�1����! P1(E1)



CURVES IN GRASSMANNIANS 13Chasing the diagram (�) ! (��) and using the fat that the omposite (� � �) iszero gives that the indued map SE ! P1(E1) is zero. Thus there is an induedvertial map in (y), E ! P1(E1). This map fators through the image of �1�1 togive the surjetion E �! G1(E1)Applying the funtor G1( � ) and using the isomorphism of (A.8.3) yields the sur-jetions G1(E) �! G1(G1(E1)) �= G2(E1)Applying G1( � ) and (A.8.3) repeatedly gives the desired mapsGi(E) �! Gi+1(E1)The ompatibility requirements follow from those in (A.8.2) and (A.8.3). Funto-riality in E omes from the funtoriality of the maps in (�) and (��)|whih wasalready used to onstrut the map (�) ! (��)|and of the maps in (A.8.3). Therestrition on the harateristi omes from (A.8.3). �Of ourse, rk(Ei) � rk(Ei+1) sine Ei � Ei+1, but the di�erenes in these ranksalso derease:Corollary 4.3. The di�erential ranks derease, i.e., drki � � drki+1 �. (Note thatthere is no ondition on the harateristi of k.)Proof. Proposition 4.2 shows that Ei�1 � G1(Ei). Thus,rkEi�1 � rkG1(Ei)= rkP1(Ei)� rkEi+1 (2:3)= 2 rkEi � rkEi+1 =)drki � = rkEi�1 � rkEi � rkEi � rkEi+1 = drki+1 � �The following proposition is a useful tehnial tool:Proposition 4.4. Consider Gi(E)1, the �rst derived bundle of �i:VX ! G1(E).(1) The surjetion Gi(E)! Gi�1(E) fators through the natural map Gi(E)!Gi(E)1 to give surjetionsGi(E) �! Gi(E)1 �! Gi�1(E)These maps are ompatible with the natural surjetions to lower order os-ulating bundles; i.e., the following diagram ommutesGi(E) ����! Gi(E)1 ����! Gi�1(E)??y ??y ??yGi�1(E) ����! Gi�1(E)1 ����! Gi�2(E)(2) G1(E) �=! G1(G1(E)1);(3) G1(E1)1 �=! E1.



14 DAVID PERKINSONAll these maps are ompatible with the surjetions from VX . (1) and (2) are fun-torial in E and hold with Ej, j � 0, in plae of E. (3) is funtorial in E1 and holdswith Ej, j � 1, in plae of E1.Proof. Consider the ommutative diagrams, (2.2),(�) 0 ����! ker�i ����! VX �i����! Gi(E) ����! 0??y��i ??y 0 ����! 
X=k 
Gi(E) ����! P1(Gi(E)) ����! Gi(E) ����! 0and(��) 0 ��! ker�i�1 ��! VX �i�1���! Gi�1(E) ��! 0??y��i�1 ??y 0 ��! 
X=k 
Gi�1(E) ��! P1(Gi�1(E)) ��! Gi�1(E) ��! 0The natural surjetion �: Gi(E) ! Gi�1(E) indues a map of ommutative dia-grams (�)! (��), (A.6.3.4.2). In partiular, there are ommutative diagrams(y) ker�i ����! ker�i�1��i??y ??y��i�1
X=k 
Gi(E) 1
�����! 
X=k 
Gi�1(E)and(z) P1(Gi(E)) ����! Gi(E)??y ??y�P1(Gi�1(E)) ����! Gi�1(E)However, onsidering the natural maps from VX shows that � fators throughP1(Gi�1(E)) in (z). Chasing the diagram (�)! (��) then shows that (1
�)Æ��i =0 in (y). Therefore, there is an indued map ok(��i)� 
X=k
Gi�1(E). Moddingout by torsion and tensoring by 
�1X=k givesGi(E) �! Gi(E)1 �! Gi�1(E)ompatible with the natural maps from VX . In the diagramGi(E) ����! Gi(E)1 ����! Gi�1(E)??y ??y ??yGi�1(E) ����! Gi�1(E)1 ����! Gi�2(E)



CURVES IN GRASSMANNIANS 15the outer square learly ommutes. The middle vertial map omes from (3.1); thus,the left square ommutes. Sine the horizontal arrows are surjetions, this meansthe whole diagram ommutes. This proves (1). Sine (�) and (��) are funtorial inE, (A.6.3.4.2), so are the maps we have onstruted.To prove (2), apply G1( � ) to (1) with i = 1 to get G1(G1(E)1) � G1(E).However, by Proposition 4.2 we get a map in the opposite diretion: G1(E) �G1(G1(E)1). Comparing ranks shows that the two maps must be isomorphisms. (Asurjetive map of bundles of the same rank must be an isomorphism.) Funtorialityin E follows from the orresponding property in (1) or in (4.2).Proposition 4.2 says that E � G1(E1). Applying Proposition 3.1 gives E1 �G1(E1)1. To prove (3), use (1) with i = 1 and with E1 in plae of E to getG1(E1)1 � E1. The result follows by omparing ranks as in the previous paragraph.Funtoriality also follows as above.Finally, replaing E or E1 by Ej as in the statement of the proposition does nothange the argument we have just given. �Corollary 4.5. Assume the harateristi of k is zero or greater than i. Thendrk1 �i�1 � drk1 �i.Proof. First note that by Proposition A.8.3, Gi(E) �= G1(Gi�1(E)) as quotients ofVX . Therefore, by (3.1),(�) drk1 �i = drk1G1(Gi�1(E))Now, replae E by Gi�1(E) in (1) of Proposition 4.4 to get G1(Gi�1(E))1 �Gi�1(E). It follows that,rkGi�1(E) � rkG1(Gi�1(E))1= rkG1(Gi�1(E))� drk1G1(Gi�1(E))= rkP1(Gi�1(E))� rkGi�1(E)1 � drk1G1(Gi�1(E)) (2:3)= rkP1(Gi�1(E))� rkGi�1(E)1 � drk1 �i (�)= 2 rkGi�1(E)� rkGi�1(E)1 � drk1 �i =)drk1 �i�1 = rkGi�1(E)� rkGi�1(E)1 � drk1 �i �Theorem 4.6. (Uniqueness of Derived Bundles) Assume the harateristi of k is0 or greater than i. Let F be a bundle on X with rkF = rkEi, and let VX ! F beany surjetion. Suppose there is a ommutative diagramVX VX??y ??y�iE ����! Gi(F )Then F �= Ei as quotients of E.Moreover, suppose there is a string of surjetionsVX �! F 1 �! � � � �! F i



16 DAVID PERKINSONwith eah F j a bundle on X with rkF j = rkEj, and suppose there are ommutativediagrams VX VX??y ??y�jE ����! Gj(F j)for j = 1; : : : i; then the indued isomorphisms fj :F j �= Ej are ompatible with thenatural surjetions F j�1 fj�1����! Ej�1??y ??yF j fj����! EjProof. Proposition A.8.3 gives isomorphisms Gj(F ) �= G1(Gj�1(F )) for j = 1; : : : i,(using the assumption on the harateristi of k). Combining this with Proposition4.4, (1), yields(�) Gj(F )1 = G1(Gj�1(F ))1 � Gj�1(F )Apply this result along with Proposition 3.1, (2), repeatedly:E � Gi(F ) =)Ei � Gi(F )i = (Gi(F )1)i�1 (def. of derived bundles)� Gi�1(F )i�1 = (Gi�1(F )1)i�2 (�)...� FThis onstruts a map Ei � F whih must be an isomorphism sine it is a surjetionof bundles of the same rank.The ompatibility statement follows sine the maps of (3.1), (4.4, (1)), and(A.8.3) respet the surjetions Gj(F )! Gj�1(F ). �5. Geometri Interpretation of the Sequene of Di�erential RanksThe surjetions VX ��! E ! G1(E1) �! G2(E2) �! � � �of Theorem 4.2 suggest a way of taking loal oordinates for �. Over the omplexnumbers, using di�erent methods, GriÆths and Harris, [GH2℄, also present theseloal oordinates, whih they all the \normal form" for a urve in a Grassmannian.We will see how this normal form is determined by the sequene of di�erential ranksof � and show what is \normal" about it.Diagram (2.2) was used to give an alternate onstrution of �. Reall diagram(2.5), expressing (2.2) in loal oordinates on an open aÆne U = SpeA of X. Themap �:VX ! E beomes a matrix with rows vi for i = 1; : : : ; r.



CURVES IN GRASSMANNIANS 17Theorem 5.1. (Normal Form for a Curve in a Grassmannian) Suppose there are` elements u1; : : : ; u` of A�n suh that(v1; : : : ; vr) = (u1; u01; : : : ; u(i1)1 ; : : : ; u`; u0̀ ; : : : ; u(i`)` )In other words, the rows of � onsist of the derivatives of the ui's. Then(1) drk1 � � `;(2) If drk1 � = `, then all the higher di�erential ranks are determined byi1; : : : ; i`: drkm � = ℄fj �� ij � m� 1gand shrinking U so that it does not ontain points in the support of the tor-sion sheaves|i.e., exluding a �nite number of points|the map �j :VX !Ej restrited to U an be expressed in loal oordinates as a matrix withrows (u1; u01; : : : ; u(i1�j)1 ; : : : ; u`; u0̀ ; : : : ; u(i`�j)` )where u(ip�j)p is omitted if ip < j. (These loal forms for the �i's areompatible with the surjetions Ei ! Ei+1 in the natural way.)(3) Suppose that Et = 0 for some t, (f. Remark 6.1.2). Near any point not inthe support of a torsion sheaf, it is possible to take oordinates as above sothat drk1 � = `, i.e., so that the onlusion of (2) holds.Proof. With the ui's as above, u(t)j � wi = 0 for t = 0; : : : ; ij. So the only rows of �that are possibly nonzero are(�) (u(ij+1)j � w1; : : : ; u(ij+1)j � wn�r); j = 1; : : : ; `Hene, rk(v0i � wj) � `. This shows (1).If drk1 � = `, then the rows displayed in (�) must be A-linearly independent.The map E ! E1 is de�ned by tensoring the omposite
X=k 
 E �! ok � �! (ok �) =torsion = 
X=k 
 E1by 
�1X=k. Thus, by shrinking U if neessary to exlude the torsion of ok �, themap E ! E1 beomes a projetionA�r �! A�r�`onto fators of A�r orresponding to the rows of zeros in �. Hene, there is aommutative diagramVX �=[u1;:::;u(i1)1 ;:::;u`;:::;u(i`)` ℄transpose�����������������������! E ??yVX ���������������������������!�1=[u1;:::;u(i1�1)1 ;:::;u`;:::;u(i`�1)` ℄transpose E1



18 DAVID PERKINSONWe use the onvention that u(ij�1)j is omitted of ij = 0. Let s be the number ofui's remaining.The preeding diagram shows the seond part of (2) for j = 1. The �rst part of(2) is true by supposition for m = 1. For it to be true for m = 2, we need to showthat drk2 � = s. We �rst show that the ui's and their derivatives up to ertainorders are linearly independent. By (2.3),rkP1(E)� rkE1 = rk(spanfv1; : : : ; vr; v01; : : : ; v0rg)= rk(spanfu1; : : : ; u(i1+1)1 ; : : : ; u`; : : : ; u(i`+1)` g)But rkP1(E)� rkE1 = 2 rkE � (rkE � drk1 �) = r + `By ounting, this implies that u1; : : : ; u(i1+1)1 ; : : : ; u`; : : : ; u(i`+1)` are independent.To ease notation, assume i1; : : : ; is � 1. Use (2.3) again to getrkP1(E1)� rkE2 = rk(spanfu1; : : : ; u(i1)1 ; : : : ; us; : : : ; u(is)s g)= r � `+ sBut rkP1(E1) = 2 rkE1. Therefore,drk2 � = rkE1 � rkE2 = r � `+ s� rkE1= r � `+ s� (r � `)= sas required.Replaing E = E0 by E1 and E1 by E2 in the argument just given shows the�rst part of (2) for m = 3 and the seond part for j = 2, and so on. Thus, (2)follows by indution.We will prove (3) by indution on t where t is the smallest integer suh thatEt+1 = 0. The ase t = 0 is true trivially. Assume the result true for t = k � 1,and suppose Ek+1 is the last nonzero derived bundle. Let s = drk2 � = drk1 �1and r1 = rkE1, and apply the indution hypothesis to �1:VX ! E1. Thus, we anhoose loal oordinates so that �1 has the form�1 =M1 = [u1; : : : ; u(i1)1 ; : : : ; us; : : : ; u(is)s ℄transposeWe will use the surjetions VX ! E ! G1(E1) of Theorem 4.2 to hoose loaloordinates for �. First, we desribe �1:VX ! G1(E1) in loal oordinates. Byshrinking U , we an write �1:VX ! P1(E1) as a blok matrix(��) A�n "M1M 01 #����! A�2r1where M 01 is the matrix whose entries are the derivatives of those of M1, (A.6.4.4).The bundle G1(E1) is de�ned to be the image of this map. By shrinking U more



CURVES IN GRASSMANNIANS 19if neessary|to avoid the support of the torsion sheaf|we may assume G1(E1)is a subbundle of P1(E1), i.e., the quotient is a bundle. Therefore, we an takeoordinates so that the rows of �1 onsist of those rows of (��) that are not learlylinearly dependent, namely,[u1; : : : ; u(i1+1)1 ; : : : ; us; : : : ; u(is+1)s ℄transposeCounting shows these rows must be linearly independent; the number of rows listedequals the rank of G1(E1):rkP1(E1)� rkG1(E1) = rkE2 = r1 � s =)r1 + s = rkG1(E1)By Theorem 4.2, the surjetion from E to E1 fators to give �:E ! G1(E1).Shrinking U , trivialize E so that � is just projetion onto the �rst fators; then,loally, there is a ommutative diagramVX �����! E ??y�=� Ir1+s ... 0 �VX ����!�1 G1(E1)Therefore, � has the form[u1; : : : ; u(i1+1)1 ; : : : ; us; : : : ; u(is+1)s ; us+1; : : : ; ur�r1 ℄transposefor some uj , j = s+1; : : : ; r�r1. Sine r�r1 = drk1 �, � has the desired form. �Remark 5.2. The key step of the indution argument establishing (3) of the the-orem was to use the map E ! G1(E1) of Theorem 4.2 to hoose loal oordinatesfor E, having already hosen them for E1. Therefore, we regard the maps of The-orem 4.2 VX ��! E �! G1(E1) �! G2(E2) �! : : :as the global expression of the normal form for a urve in a Grassmannian.Example 5.3. In light of (2) of the theorem, we might say that taking derivedbundles, \hops o�" highest order derivatives. Suppose that the map � has di�er-ential rank four, given in loal oordinates (away from the torsion sheaf) by� = [u1; u01; u001 ; u0001 ; u2; u02; u002 ; u3; u03; u4; u04℄transposeThen �1 omes from dereasing the orders of the derivatives eah by one.:�1 = [u1; u01; u001 ; u2; u02; u3; u4℄transposeand the seond di�erential rank is also four. Repeat to get�2 = [u1; u01; u2℄transposeThe third di�erential rank is two. Finally,�3 = [u1℄The fourth di�erential rank is one, and all higher di�erential ranks are zero. If theloal desription of the original � also inluded a onstant vetor, u5, then u5 wouldappear in eah of the loal desriptions of the �i's; the di�erential ranks would nothange, (6.1.2).



20 DAVID PERKINSONExample 5.4. Let f : C ! G(C 4 ; 3) be determined by the map
�z: C 4 26641 z z2 z30 1 z2 z0 0 1 z 3775�������������! C 3In other words, our map �:VC ! E is a map of trivial bundles and has the aboveform in the �ber at z 2 C . Sine the kernel of � has rank one, the di�erentialrank of f must be one. In fat, for z away from the torsion (the third torsion sheafis supported at two points), the rows of �z span the same spae as the followingvetor and its �rst two derivatives(3z;�1 + 6z2; 1� 3z2 + 6z4; z3 + 3z5)6. Curves with Di�erential Rank OneOne of the original motivations for this paper was to use Piene's osulatingbundles to show that urves of di�erential rank one are ones over assoiated maps.This fat was originally observed by GriÆths and Harris, [GH2℄, using analytimethods. The result appears as a orollary to Theorem 6.2.1.We then alulate the derived bundles of the osulating bundles for a urve inprojetive spae. This alulation allows us to show that the assoiated maps arebirational, (3.3), and to reover Piene's duality theorem for urves in projetivespae from our duality theorem for urves in Grassmannians, (x7).The setion begins by showing how to form ones over urves in Grassmannians.Forming a one does not a�et the di�erential ranks or torsion sheaves of the originalurve. The map, f , is one over a urve in a smaller Grassmannian if its derivedbundles are not eventually zero.6.1. Cones. Let f :X ! G(V; r) and �:VX ! E be as usual, and let W be avetor spae over k of dimension m. The one over f with vertex W is the mapCW (f):X �! G(V �W; r +m)x 7! f(x)�WIt orresponds to the surjetionC(W;�):VX �WX ��id���! E �WXForming a one does not hange di�erential ranks or torsion sheaves.Proposition 6.1.1. The i-th derived bundle of the one, C(W;�), is the diretsum of WX and the i-th derived bundle of the original map, �,(E �WX)i �= Ei �WX



CURVES IN GRASSMANNIANS 21These isomorphisms are ompatible with the natural surjetions between derivedbundles. In partiular, drki C(W;�) = drki � and tori C(W;�) = tori � for all i.Proof. Sine the Taylor series map and the natural surjetions between prinipalparts bundles respet diret sums (A.1.3, A.6.3.1), diagram (2.2) beomes0 �! SE � 0 �! VX �WX ��id���! E �WX �! 0??y�=����id ??y�1���1id 0 �! (
X=k 
 E)� (
X=k 
WX) �! P1(E)� P1(WX) �! E �WX �! 0Hene, ok � = ok �� � ok �id = ok ��� (
X=k 
WX). Therefore, the torsion ofok � is the same as the torsion of ok ��, and the �rst derived bundle of C(W;�)is (ok �=torsion)
 
�1X=k �= E1 �WXas laimed. Replaing E by E1, E1 by E2, et., shows that the i-th derived bundle ofC(W;�) is as laimed. The statement about di�erential ranks then follows diretlyfrom the de�nitionsdrki C(W;�) = rk(E �WX)i�1 � rk(E �WX)i = rkEi�1 � rkEi = drki �The ompatibility statement follows from the orresponding one for diagram (2.2)by (A.6.3.4.2). �Remark 6.1.2. (Removing Trivial Fators) Consider the sequene of derived bun-dles VX ��! E �! E1 �! E2 �! : : :Sine these maps are surjetions and E has �nite rank, eventually Et = Et+j forj � 0. In this ase, drkt+1 � = rkEt � rkEt+1 = 0. In other words, drk1 �t = 0.The next proposition will show that, with an assumption on the harateristi of k,Et must be trivial, and is, in fat, the largest trivial fator of E. The preedingproposition shows that � is a one over a urve in a smaller Grassmannian.Proposition 6.1.3. If drk1 � = 0 and the harateristi of k is zero or greaterthan degE, then f :X ! G is a onstant map and E is trivial. Conversely, butwith no restrition on the harateristi, if E is trivial, then drk1 � = 0.Proof. If drk1 � = 0, the tangent map TX ! f�TG is zero. Composing f with thePl�uker embedding, G! PN , gives a map X ! PN determined by�r�: �rVX ! detE = Lwhere r = rkE. The tangent map of this omposite is still zero, so drk1 �r� = 0.By Corollary 2.3, (4), the Taylor series map, �rVX ! P1(L), is not generiallysurjetive. Let im�rV denote the image of the natural map �rV ! �(X;L).Assuming the harateristi of k is zero or greater than degE, Theorem B.2.3 saysthat dim(im�rV ) < 2, i.e., dim(im�rV ) = 1. Thus, L is trivial, and f mustbe onstant. Sine E is generated by global setions and its �rst Chern lass,



22 DAVID PERKINSON1(E) = 1(L), is zero, it follows that E must be trivial ([F, 12.1.8℄). (To see thatthe restrition on the harateristi is needed, onsider the Frobenius map.)On the other hand, if E is trivial, then f is learly onstant and drk1 � = 0. Thelatter assertion an be seen using loal oordinates or by noting that, by (3.1), wemay assume VX = E. Thus, SE = 0 and drk1 � = 0. �6.2. Curves with Di�erential Rank One. In Theorem 4.2 we showed that thesequene of derived bundles lifts through natural maps from the osulating bundles:VX ��! E � G1(E1)� G2(E2)� : : :In some situations we an alulate the ranks of the osulating bundles to showthat these maps are isomorphisms.Theorem 6.2.1. Let VX ��! E �! E1 �! � � �be the sequene of derived bundles of �. Assumedrki � = � d; for i = 1; : : : ;m+ 10 for i > m+ 1and assume the harateristi of k is zero or greater than degEm+1 and m. Thenthere are isomorphisms Ei �= Gm�i(Em) for all i, ompatible with the natural mapsfrom VX and with the natural surjetionsEi �����! Gm�i(Em)??y ??yEi�1 �����! Gm�i�1(Em)Proof. By (6.1.2), Em+1 is trivial. By (6.1.1), we may assume Em+1 = 0. (Here,for the ompatibility statement, we use that the Taylor series map and the naturalsurjetions of prinipal parts bundles respet diret sums, (A.6.3.1, A.2.6).Let i � m, and onsider the exat sequeneVX �1�i��! P1(Ei) �! ok �1�i �! 0By Corollary 2.3, (1),rkEi+1 = rk ok �1�i = rkP1(Ei)� rkG1(Ei)= 2 rkEi � rkG1(Ei)But, by hypothesis, rkEi+1 = rkEi � d. Therefore,rkG1(Ei) = rkEi + d = rkEi�1



CURVES IN GRASSMANNIANS 23By Theorem 4.2,(�) Ei�1 � G1(Ei)This map must be an isomorphism sine it is a surjetion between bundles of thesame rank.The theorem follows by desending indution. For i = m, (�) says Em�1 �=G1(Em) as required. Assume that Ei �= Gm�i(Em) with the desired ompatiblilties.By the isomorphisms of (�) and (A.8.3) we getEi�1 �= G1(Ei) �= G1(Gm�i(Em)) �= Gm�i+1(Em)The ompatiblity requirements follow from those of (4.2) and (A.8.3). The re-strition on the harateristi is used to show that Em+1 is trivial and to invoke(A.8.3). �The following orollary reovers a result of GriÆths and Harris, [GH2, p. 386℄.If g:X ! P(V ) is a map of a urve into projetive spae, reall that the t-theassoiated map gt:X �! GtP(V )x 7! Ostx(g)sends a point to its osulating spae of order t, (B.4). If g orresponds to a surjetionVX �! L for some line bundle on X, Piene has shown that the t-th assoiated maporresponds to a surjetion VX �! Gt(L)(f. B.4.2.4).Corollary 6.2.2. Assume that the harateristi of k is zero or suÆiently large(as spei�ed in the proof, below). If drk1E = 1, then E �= Gm(L) �WX where Lis a line bundle quotient of E and W a quotient of V . In other words, f :X ! Gis a one over an assoiated map.Proof. By Corollary 4.3, drki�1 � � drki �. Therefore,drki � = � 1 for i = 1; � � � ;m+ 10 for i > m+ 1for somem. Assume the harateristi of k is zero or greater than degEm+1 and m.As at the beginning of the proof of the Theorem 6.2.1, we use (6.1.2) to onludeEm+1 is trivial and use (6.1.1) to redue to the ase where Em+1 = 0. The resultfollows from Theorem 6.2.1 with d = 1 and L = Em. �Remark 6.2.3. The get a geometri interpretation of Theorem 6.2.1, think of�m:VX ! Em as being the 1-parameter family of subspaes of the dual spae V �loally spanned by the rows of �m; then for i < m, Theorem 6.2.1 says that �iorresponds (generially) to the 1-parameter family of subspaes of V � spanned bythe rows of �m and their derivatives up to order m � i. If Em is a line bundle,we are taking the derivatives of just one vetor, whih we think of as traing outa urve in projetive spae. The spae spanned by the vetor and its derivatives isan osulating spae for the urve.



24 DAVID PERKINSON6.3. Derived bundles of Assoiated Maps. The next proposition is, roughly,the onverse to Corollary 6.2.2. It alulates the derived bundles of the osulatingbundles of a urve in projetive spae.Proposition 6.3.1. Let L be a line bundle, and let V ! �(X;L) be a map of vetorspaes with image an (m+1)-dimensional subspae of generating setions. Assumethat the harateristi of k is zero or that X is projetive and the harateristi ofk is greater than degL and m. Then the i-th derived bundle of �m:VX ! Gm(L)is Gm�i(L) Gm(L)i = Gm�i(L)and drki �m = 1 for i = 1; : : : ;m+ 1. (De�ne G�1(L) = 0.)Proof. By the uniqueness theorem, (4.6), it suÆes to show that for eah i,(�) Gm(L)� Gi(Gm�i(L))and that(��) rkGm�i(L) = rkGm(L)iProposition A.8.3 says that G1(Gj�1(L)) �= Gj(L) if the harateristi of k is zeroor greater than j. It follows immediately by indution that in our ase,Gi(Gm�i(L)) �= Gm(L)This shows (�).The proposition now follows by indution. By Theorem B.2.3, rkGi(L) = i+ 1for i = 0; : : : ;m+ 1, (f. B.2.3.3). Assume that we have shown (��) for i � k � 1so that Gm(L)i = Gm�i(L) for i � k � 1; this is at least true for k=1. By (2.3),rkGm(L)k = rkP1(Gm(L)k�1)� rk im �1(�mk�1)= rkP1(Gm(L)k�1)� rkG1(Gm(L)k�1)= rkP1(Gm�k+1(L))� rkG1(Gm�k+1(L))= rkP1(Gm�k+1(L))� rkGm�k+2(L) (A.8.3)= 2(m� k + 2)� (m� k + 3)= m� k + 1 = rkGm�k(L)Hene (��) holds for i = k as well, and Gm(L)k = Gm�k(L). �7. DualityThis setion presents a main result of the paper: the duality theorem for urvesin Grassmannians. It answers two natural questions. First, from the exat sequeneof (1.4) 0 �! SE �! VX ��! E �! 0



CURVES IN GRASSMANNIANS 25we get the surjetion �?:V �X �! S�EWhat are its derived bundles and osulating bundles? Seond, what are the kernelsof the natural maps to the derived bundles and osulating bundles of ��i:VX �! Ei; �i:VX �! Gi(E)If E is the osulating bundle for a urve in projetive spae, the answer to theseond question is exatly Piene's duality theorem for urves in projetive spae,[Pi1℄. To prove our duality theorem, we adapt Piene's proof, whih simpli�es in themore general ontext.After proving the duality theorem, we reover Piene's theorem, explaining itsonnetion to the lassial duality theorems of the nineteenth entury. We thenonsider the speial ase of a plane projetive urve in order to highlight the fatthat these duality theorems are fundamentally an expression of the produt rule ofordinary alulus, (f. [K2℄).Theorem 7.1. Take the dual of the exat sequene 0 �! SE �! VX ��! E �! 0 toget �?:V �X �! S�Ewith its �rst derived bundle, (S�E)1, and �rst osulating bundle, G1(S�E). Thenker(�1�:VX �! G1(E)) = ((S�E)1)�and ker(�1:VX �! E1) = G1(S�E)�Hene, there is a ommutative diagram with exat rows:0 ����! ((S�E)1)� ����! VX �1����! G1(E) ����! 0??y  ??y0 ����! SE ����! VX �����! E ����! 0??y  ??y0 ����! G1(S�E)� ����! VX �1����! E1 ����! 0Proof. It suÆes to establish the bottom retangle of the diagram: the top thenfollows by replaing E by S�E and taking duals. Let K denote the dual of the kernelof V �X ! G1(S�E). The natural surjetion G1(S�E) ! S�E indues a ommutativediagram(y) 0 ����! SE ����! VX �����! E ����! 0??y  �??y0 ����! G1(S�E)� ����! VX  ����! K ����! 0



26 DAVID PERKINSONwhere  and � are the natural maps. We will �rst show that � fators throughthe surjetion E ! E1 (as quotients of VX). The key step|one we set up theappropriate diagrams and take loal oordinates|is just the the produt rule ofordinary alulus. The result then follows by showing that E1 and K have the samerank and, hene, are isomorphi.Consider the ommutative diagram, (2.2),(�) 0 ����! SE ����! VX �����! E ����! 0??y�� ??y�1� 0 ����! 
X=k 
 E ����! P1(E) ����! E ����! 0and the analagous one for  (��) 0 ����! G1(S�E)� ����! VX  ����! K ����! 0??y� ??y�1 0 ����! 
X=k 
K ����! P1(K) ����! K ����! 0The map � indues a map of ommutative diagrams (�)! (��) by (A.6.3.4.2). Inpartiular, we have SE ����! G1(S�E)���??y ??y� 
X=k 
 E 1
�����! 
X=k 
KBy de�nition, E1 = �ok �� 
 
�1X=k� =torsion. Thus, to show that � fatorsthrough E1, it suÆes to show that (1
 �) Æ �� = 0. Chasing around (�) ! (��),it suÆes to show that the following omposite is zero:SE �! VX �1 �! P1(K)We will hek this using loal oordinates. Consider the following ommutativediagram (notation to be explained):
(� � �) SE [w1;:::;wn�r℄����������������! VX 26664v1...vr 37775����!� E??y  ??yP1(S�E)� (�1�? )�����������������![w1;:::;wn�r;w01;:::;w0n�r℄ VX  ����!26664u1...u` 37775 K



CURVES IN GRASSMANNIANS 27The omposite SE �! P1(S�E)� (�1�? )�����! VXis the same as the omposite SE �! G1(S�E)� �! VXof (y) sine G1(S�E)! S�E fators through P1(S�E)! S�E .Here is the meaning of the ui's, vi's, and wi's. Given a point x 2 X, take anopen aÆne set U = SpeA about x, small enough so that E, SE , K, and 
X=k aretrivial when restrited to U . Identifying VX with A�n and E with A�r on U , themap � beomes
A�n 26664v1...vr 37775����! A�rEah vi is a row vetor: vi = (ai1; : : : ; ain) where aij 2 A. The ui's and wi'sare de�ned similarly (let ` = rkK), but eah wi is a olumn vetor. A loaltrivialization of SE determines one for S�E . This, along with a loal trivializationof 
X=k determines one of P1(S�E), (A.4.8), so that loally the Taylor series mapis given by the transpose of [w1; : : : ; wn�r; w01; : : : ; w0n�r℄ as indiated in (� � �),(A.6.4.4). (For the de�nition of the derivative w0i, f. (A.4.1) and (A.6.4.2).)With similar notation, our problem is to show that the following omposite iszero: SE [w1;:::;wn�r ℄��������! VX [u1;:::;u`;u01;:::;u0̀ ℄transpose�����������������! P1(K)From (� � �), we know that eah dot produt wi � uj = w0i � uj = 0. By the produtrule, it follows that wi � u0j = 0 as required.We have shown that � fators through E ! E1. Hene, there is a ommutativediagram 0 ����! ker�1 ����! VX �1����! E1 ����! 0??y  ??y0 ����! G1(S�E)� ����! VX ����! K ����! 0It remains to be shown that rkK = rkE1. (Then E1 ! K is an isomorphism sineit's a surjetive map of bundles of the same rank.) Calulate:rkK = n� rkG1(S�E)= n� rkP1(S�E) + rk(S�E)1 (2.3)= n� 2 rkS�E + rk(SE)�1= n� rkS�E � drk1 S�E= rkE � drk1 S�E



28 DAVID PERKINSONThus, E1 � K )rkE1 = rkE � drk1E � rkK = rkE � drk1 S�E )drk1 S�E � drk1Ewith equality if and only if rkE1 = rkK. To see that we get an equality here,dualize everything; onsider the exat sequene0 �! E� ���! V �X �?��! S�E �! 0Repeating the whole argument with �? in plae of � gives thatdrk1E � drk1 S�Eand we are done. �The theorem an be used to alulate the kernels of the maps to the derivedbundles and osulating bundles. This orollary and the one following it suggestalternative de�nitions of derived bundles.Corollary 7.1.2. Let the harateristi of k be zero or greater than i. There areexat sequenes 0 �! Gi(S�E)� (�i�? )�����! VX �i�! Ei �! 0and dually, 0 �! ((S�E)i)� �! VX �i�! Gi(E) �! 0Proof. Apply the duality theorem to eah Ei suessively, and use Proposition A.8.3to say that G1(Gi�1(S�E)) �= Gi(S�E).To de�ne the derived bundles of �, we looked at the okernel of �:SE ! E

X=k.The next orollary shows what happens if we onsider the kernel instead.Corollary 7.1.3. ker(�:SE ! E 
 
X=k) = ((S�E)1)� = ker(�1:VX �! G1(E)).Proof. Corollary 2.3 gives ker � �= ker �1 = ker�1, and then apply the theorem.� Combining Corollary 7.2.1 with Theorem 6.2.1 givesCorollary 7.1.4. Assume thatdrki � = � d; for i = 1; : : : ;m+ 10; for i > m+ 1and assume the harateristi of k is zero or greater than degEm+1 and m. Then,for i = 1; : : : ;m, there is an isomorphism of exat sequenes0 ����! SEi ����! VX �i����! Ei ����! 0o??y  o??y0 ����! Gi(S�E)� (�i�? )�����! VX �m�i�m����! Gm�i(Em) ����! 0



CURVES IN GRASSMANNIANS 297.2. Piene Duality Theorem. (f. B.5) Let V � �(X;L) be an (n + 1)-dimensional vetor spae of generating setions of a line bundle on X and f :X !P(V ) the orresponding map to projetive spae. The map of vetor bundles or-responding to the t-th assoiated map of f is�t:VX �! Gt(L)Corollary 7.2.1. (Piene Duality Theorem, [Pi1℄) Let X be a smooth projetiveurve, and assume that the harateristi of k is zero or greater than n and thedegree of L. Let K = ker�n�1 with its natural map V �X �! K�. Thenker�i = Gn�1�i(K�)Proof. By Proposition 6.3.1, Gi(L) is the (n� i�1)-th derived bundle of Gn�1(L).Therefore, the result follows from Corollary 7.1.2. �In sum, Piene's theorem is that there is a ommutative diagram with exat rows:
(�)

VX �����! Gn(L) ����! 0 ??y0 ����! K ����! VX �n�1����! Gn�1(L) ����! 0??y  ??y0 ����! G1(K�)� ����! VX �n�2����! Gn�2(L) ����! 0??y  ??y... ... ...??y  ??y0 ����! Gn�1(K�)� ����! VX �=�0����! L ����! 0The maps on the right-hand side of this diagram orrespond to the assoiated mapsft:X �! GtP(V )x 7! Ostxsending a point to its osulating spae of order t. The duals of the maps on theright, oming from the kernels of the �i's, orrespond to the t-th dual mapsf t:X �! Gn�t�1P(V �)x 7! Htxsending a point to the set of hyperplanes ontaining an osulating spae of order t.The map determined by the natural surjetion V �X ! K�,f� = fn�1:X �! P(V �)



30 DAVID PERKINSONsending a point to its osulating hyperplane, is alled the dual of f . Diagram (�)shows that (f�)t = fn�t�1and in partiular, the double dual of f is f , itself(f�)� = f7.3. Duality Theorems and the Produt Rule. The key step in the proof ofthe duality theorem is just the produt rule of ordinary alulus. Its role is mosteasily seen in the speial ase of a urve in the omplex projetive plane.Think of the urve as being swept out by a vetor, v(z), in aÆne three-spaewhere z is a loal parameter for the urve. Let w(z) be a vetor normal to thesubspae spanned by v(z) and v0(z). Then w(z) sweeps out the dual urve. To �ndthe dual of the dual urve, repeat this onstrution with w in plae of v. To seethat we get bak the original urve, it suÆes to hek that v(z) is normal to thesubspae spanned by w(z) and w0(z). In other words, we must show thatv(z) � w(z) = 0 and v(z) � w0(z) = 0By de�nition of w(z), we know thatv(z) � w(z) = 0 and v0(z) � w(z) = 0Therefore, the result follows from the produt rule:0 = (v(z) � w(z))0 = v0(z) � w(z) + v(z) � w0(z) = v(z) � w0(z)Let us now ompare this rough sketh of a proof of the duality theorem for planeurves with the duality theorem presented in this setion. If the urve is given bya surjetion VX ! L where L is a line bundle on the urve, let K be the kernelof the orresponding map to the osulating bundle, �1:VX ! G1(L). The dualitytheorem says that there is a ommutative diagram with exat rows0 ����! K ����! VX �1����! G1(L) ����! 0??y  ??y0 ����! G1(K�)� ����! VX �����! L ����! 0Loally, we think of � as the vetor v(z). The map �1 beomes a matrix withrows v(z) and v0(z), (at least at a generi point). The vetor w(z) gives the mapV �X ! K�, de�ning the dual urve. The exatness of the bottom row of the diagramis the statement that v is normal to the subspae spanned by w and w0.



CURVES IN GRASSMANNIANS 318. Torsion SheavesBy Corollary 2.3, the torsion sheaves an be alulated using the Taylor seriesmap �1:VX ! P1(E) sine ok � = ok �1. The torsion sheaf measures where theTaylor series map drops rank. This paper fouses mainly on di�erential ranks; theanalysis of torsion sheaves is far from omplete. What is laking is a onvenientloal parametrization for a urve in a Grassmannian suh as that whih existsin the speial ase of a urve in projetive spae (B.1). However, it is lear thattorsion sheaves generalize the lassial notion of stationary indies, (Theorem 8.1.1),and thus desribe what might be alled the inetionary behavior of a urve in aGrassmannian. There are other ways of measuring this behavior, and we will brieymention these. We end the setion by seeing what the duality theorem says abouttorsion sheaves.8.1. Stationary Indies. In the speial ase of a urve in projetive spae, thelengths of the torsion sheaves are the lassial stationary indies measuring how aurve exes in spae.Let V � �(X;L) where dimV = n + 1 and L is a line bundle on the smoothprojetive urve X. Assume the harateristi of k is zero or greater than degL andn. By Theorem B.2.3, rkGi(L) = i+ 1 for i = 0; : : : n. In partiular, Gn(L) = VX .We have de�ned the map �n�1:VX �! Gn�1(L)and seen in Proposition 6.3.1 that the string of derived bundles of �n�1 isVX �! Gn�1(L) �! Gn�2(L) �! : : : �! LThe inetion numbers, �i, de�ned and disussed in Appendix B.1, satisfy theequation length(ok(Gi(L) ,! Pi(L))) = deg Pi(L)� iXj=1�jfor i = 1; : : : ; t.Theorem 8.1.1. The i-th torsion number for �n�1 islength(tori �n�1) = �n�i+1 � �n�ithe so-alled (n� i)-th stationary index.Proof. Let VX ��! E �! E1 �! : : :be the sequene of derived bundles for any map �. Letting SEi denote the kernelof the omposite, �i:VX ! Ei, there is a ommutative diagramSEi�1 ,!����! SEi��i�1??y ??y��i
X=k 
Ei�1 ����!� 
X=k 
Ei



32 DAVID PERKINSONwith � Æ ��i�1 = 0. This follows from the de�nition of derived bundles:
X=k 
Ei def= ok ��i�1=torsionThus, there is an indued map(�) SEi=SEi�1 j�! 
X=k 
 Eiwith ok j=torsion = 
X=k 
 Ei+1. In our ase, Ei = Gn�i�1(L), and the Pieneduality theorem (7.2.1) says that SEi = Gi(K�)� where K = ker�n�1, a linebundle. Therefore, (�) beomesGi(K�)�=Gi�1(K�)� j�! 
X=k 
Gn�i�1(L)with ok j=torsion = Gn�i�2(L). Counting ranks implies that j is injetive.Consider the exat sequenes0 �! Gi(K�)�=Gi�1(K�)� j�! 
X=k 
Gn�i�1(L) �! ok �! 0and 0 �! tori+1 �n�1 �! ok �! 
X=k 
Gn�i�2(L) �! 0Taking degrees yieldslength(tori+1 �n�1) = deg(ok)� deg(
X=k 
Gn�i�2(L))= deg(
X=k 
Gn�i�1(L))� deg(Gi(K�)�)+ deg(Gi�1(K�)�)� deg(
X=k 
Gn�i�2(L))Now use the exat sequene0 �! Gi(K�)� �! VX �! Gn�i�1(L) �! 0and let di = deg(Gi(L)) to getlength(tori+1 �n�1) = dn�i�1 + (n� i)(2g � 2) + dn�i�1� dn�i � dn�i�2 � (n� i� 1)(2g � 2)= 2dn�i�1 � dn�i � dn�i�2 + 2g � 2= �n�i � �n�i�1 (Pl�uker formula, B.3.3) �Remark 8.1.2. Let Di be the divisor orresponding to the i-th torsion sheaf. Theproof of Theorem 8.1.1 an be modi�ed to show thatDi = Xx2X(�n�i+1(x)� �n�i(x)) � xas divisor lasses. (The Pl�uker formulas an also be interpreted as a statementabout divisor lasses.)



CURVES IN GRASSMANNIANS 33Example 8.2. Another speial ase where we an alulate the torsion numbersis when X is a projetive urve, rkVX = 2 rkE, and the di�erential rank of E is aslarge as possible, namely, r = rkE. In that ase, the Taylor series map is injetiveand generially surjetive. Therefore, the torsion number isdeg P1(E)� deg VX = degP1(E)= deg
X=k 
 E + degE (A:3:2)= 2 degE + r(2g � 2)This alulation appears in [Cn℄, (also f. [Pi2℄). If this torsion number is zero,then g = 0 and degE = r. So X = P1 and E = �ri=1O(ni) with Pni = r.Moreover, sine VX ! E is surjetive, eah ni is nonnegative and, in fat, positivesine otherwise the �rst derived bundle would have a trivial fator instead of beingzero, (6.1.1). Thus, E = O(1)�rand V = �(P1;O(1)�r).8.3. Other Measures of Inetion. Canuto [Cn℄ has suggested three measuresof the inetionary behavior of a urve in a Grassmannian. The �rst omes fromembedding the Grassmannian in projetive spae by the Pl�uker embedding andonsidering the inetionary numbers for the urve in that projetive spae, (B.1).A seond set of invariants of the embedding of the urve are the orders of vanishingof the setions of E in im(�:V ! �(X;E)). The third measure omes from lookingat the order of ontat of the Shubert yles with the urve at a given point. Canutoshows that these notions are not equivalent for a urve in a general Grassmannian(as they are for a urve in projetive spae). We have not analyzed the relation ofthose measures of inetion with our torsion sheaves.8.4. Torsion Sheaves and the Duality Theorem. Take the dual of the exatsequene 0 �! SE �! VX ��! E to de�ne a map�?:V �X �! S�EThere are orresponding maps to the osulating bundles, (x4),�i�? :VX ! Gi(S�E)We use the duality theorem, (7.1), to showProposition 8.4.1. Assume the harateristi of k is zero or greater than i. Thentori � �= tor1 �i�?Proof. By (7.1.2), it suÆes to show the result for the ase i = 1. Sine the torsionsheaves are supported on a �nite set of points, the question is loal. Near any pointx 2 X, take loal oodinates as in x2. so that �� beomes a matrixA�n�r (v0i�wj)����! A�r



34 DAVID PERKINSONUsing dual ordinates, the map ��? may be writtenA�r (w0i�vj)����! A�n�rHowever, as in (2.6), sine vi � wj = 0, the produt rule says that(�) �� = (v0i �wj) = �(vi � w0j) = ��transpose�?The loal ring at x is a p.i.d., and any linear map between free modules over a p.i.d.an be diagonalized by hanging the basis of the domain and odomain (f. [J, p.176℄). Therefore, near x, we may assume �� is a diagonal matrix. In that ase, inlight of (�), we see that the okernels of �� and ��? are isomorphi. �9. ExamplesThis setion onsists of several examples involving di�erential ranks and derivedbundles. In (9.2), we desribe all surjetions of the formVP1 �! O(1)�rwhere O(1) is the tautologial bundle on projetive spae. We think of suh asurjetion as a join of lines in projetive spae and show how to deompose it intoa join of osulating spaes to rational normal urves. In (9.3) and (9.4), we try to�nd relations among the di�erential ranks of a surjetion VX �! E, the dimensionof V , and the rank of E. In (9.5), we lassify the surjetions with degE = 3 usingdi�erential ranks and torsion sheaves. Finally, in (9.6), we show that every sequeneof di�erential ranks and torsion numbers (subjet to obvious restritions) an ouron the projetive line.Example 9.1. From the de�nition of di�erential ranks, it is immediate thatdrk1 � � minfrkSE ; rkEgSuppose that rkE = n � 1, and E is generated by n linearly independent globalsetions. Let V � �(X;E) be the vetor spae spanned by these setions, andonsider the natural map �:VX ! E. It follows that the di�erential rank of � iseither one or zero. Therefore, either E is trivial (at least in the ase where theharateristi of k is zero, (6.1.3), or E �= Gm(L) �WX where L is a line bundlequotient E and W is a quotient of V , (6.2.2). In other words, f :X ! G is the oneover an assoiated urve.Example 9.2. Let O(1) be the tautologial bundle on P1k . We will determine thedi�erential ranks of any surjetion of the form�:VP1 �! O(1)�rwhere V is some k-vetor spae of dimension n. (To avoid trivialities, we will alwaysassume that � is injetive on global setions.) Geometrially, we are taking r lines



CURVES IN GRASSMANNIANS 35in Pn�1 all isomorphi to some �xed P1, say  i:P1 ��! Li � Pn�1 for i = 1; : : : ; r,and onsidering the map to the Grassmannian of (r � 1)-planes in Pn�1f :P1 �! Gr�1Pn�1 = G(V; r)(9.2.1) p 7! spanf 1(p); : : : ;  r(p)gIt is assumed that the Li and  i are hosen so that this map is de�ned everywhere.We will see that up to a hange of oordinates on the Grassmannian, every suhmap is formed as follows: Take n� r disjoint linear subspaes of Pn�1Pa1 ; Pa2 ; : : : ; Pan�rwhere P ai = r. (The ai will be determined by the higher di�erential ranks.) Ateah point p 2 P1, we an hose an osulating hyperplane to the rational normalurve of degree ai in Pai so that the span of these hyperplanes will be f(p). Thus,we may say that f omes from the join of the osulating developables of rationalnormal urves in disjoint linear subspaes of Pn�1.To desribe this, let W = �(P1;O(1)). For eah m � 0 onsider the naturalevaluation map SmW �= �(P1;O(m)) �0�! O(m)orresponding to the rational normal urve of degree m in Pm, and onsider theassoiated Taylor series map (A.6)SmW �m�1���! Pm�1(O(m))orresponding to the (m � 1)-th assoiated map sending a point on the rationalnormal urve to its osulating hyperplane, (B.4, B.3.1).On P1, every bundle is a diret sum of line bundles; soker� = �n�ri=1 O(�ai)where P ai = degO(1)�r = r.Theorem 9.2.2. Assume the harateristi of k is zero or greater than r. Thereare isomorphisms giving a ommutative diagram(�) VP1 �����! O(1)�ro??y ??yo�n�ri=1 SaiWP1 ��ai�1�����! �n�ri=1 Pai�1(O(ai))The torsion sheaves, tori �, of � are all zero, and the di�erential ranks aredrki � = ℄ fj �� aj � ig



36 DAVID PERKINSONIn partiular, drk1 � = n� r.Proof. From (A.3.2), it follows that the degree and rank of Pm�1(O(m)) are bothm.Hene, there is an exat sequene0 �! O(�m) j�! �(P1;O(m)) �m�1���! Pm�1(O(m)) �! 0For m > 0, it is known, ([PS℄, [Pe2℄), thatPm�1(O(m)) �= O(1)�mTherefore the dual map, j�, is injetive on global setions. Counting dimensionsimplies that it is, in fat, an isomorphism on global setions. Therefore, we anhoose an isomorphism between �(P1;O(m)) and its dual so that the followingdiagram ommutes(��) �(P1;O(m))�P1 j�����! O(m)??yo �(P1;O(m))P1 ev����! O(m)where ev is the natural evaluation map.Now onsider the kernel, K = �iO(�ai), of � and the orresponding exatsequene(y) 0 �! K �! VP1 ��! O(1)�r �! 0Taking global setions shows that �(P1; K) = 0 sine we have assumed that � isinjetive on global setions. Hene, ai > 0 for i = 1; : : : ; n � r. Taking globalsetions of the dual of (y) shows that the natural map V � ! �(P1; K�) is injetive.Counting dimensions as before, shows that it is an isomorphism. Therefore, up toan automorphism of V , the map V �P1 ! K� is�n�ri=1 �(P1;O(ai)) �ev��! �n�ri=1 O(ai) = K�Therefore, the required isomorphism, (�), follows from (��).To see the laim about the torsion divisors and di�erential ranks, �rst note thattaking derived bundles and di�erential ranks ommutes with diret sums. Thisfollows, for example from (2.3) and the fat that the Taylor series maps respetdiret sums, (A.6.3.1). The evaluation map�(P1;O(m))P1 �! O(m)orresponds to a rational normal urve. It is well-known that suh urves arenoninetionary, (B.3.1). This means that eah assoiated Taylor series map�i: �(P1;O(m))P1 �! Pi(O(m))is surjetive (for i � m), i.e., Gi(O(m)) = Pi(O(m)). Thus, it follows from Propo-sition 6.3.1, that the j-th derived bundle of Pi(O(m)) is Pi�j(O(m)). The laimabout the higher di�erential ranks follows. The fat that the torsion sheaves of �are zero follows by diret alulation (or by Theorem 8.1.1). �



CURVES IN GRASSMANNIANS 37Remark 9.2.3. Further alulations in [Pe1℄ indiate that the di�erential ranksin the ase just onsidered determine the generality of the positions of the lines, Li.Example 9.3. For �:VP1 ! E, if the dimension of V is large enough relative tothe degree of E, then the di�erential rank must be greater than one. Consider theline bundle O(d) on P1 with d > 0. Let V � �(P1;O(d)) be a sub-vetor spae ofdimension n+1 of globally generating setions, i.e., so that the orresponding map�:VP1 �! O(d)is surjetive. We have the osulating bundle of order r, (x4 and A.8):�r:VP1 �! Gr(O(d))Proposition 9.3.1. Assume that the harateristi of k is zero or greater than d;then degGr(O(d)) � (r + 1)(n� r)Proof. By Theorem B.2.3, rkGi(O(d)) = i+ 1 anddegGi(O(d)) = (i+ 1)(d� i)� iXj=1�jfor i = 1; : : : ; n where the �j are the inetionary numbers for �. In partiular,(�) deg Gr(O(d)) = (r + 1)(d� r)� rXi=1 �iand VP1 = Gn(O(d)) so that(��) nXi=1 �i = (n+ 1)(d� n)Combining (�) and (��) and using the fat that �i � �i+1 givesdegGr(O(d)) = (r + 1)(d� r)� (n+ 1)(d� n) + �r+1 + � � �+ �n(� � �) � (r + 1)(d� r)� (n+ 1)(d� n) + (n� r)�rAgain using that �i � �i+1, (�) yieldsr�r � (r + 1)(d� r)� degGr(O(d))Along with (� � �), this saysdegGr(O(d)) � (r + 1)(d� r)� (n+ 1)(d� n)+ �n� rr � ((r + 1)(d� r)� degGr(O(d)))=)degGr(O(d)) � (r + 1)(d� r)� � rn� (n+ 1)(d� n)� (r + 1)(d� r)� (r + 1)(n� r) �



38 DAVID PERKINSONNote. To see that equality is possible in Proposition 9.3.1, let d = n and V =�(P1;O(n)). Then Gr(O(n)) = Pr(O(n)), (f. B.3.1), and deg Pr(O(n)) =(r + 1)(n� r), (f. A.3.2).Corollary 9.3.2. Assume the harateristi of k is zero. Let E be a vetor bundleof rank r on P1, and let V � �(P1; E) be a subspae of dimension n of generatingsetions. If the orresponding surjetionVP1 �! Ehas di�erential rank one, then degE � r(n� r)Proof. This follows diretly from Corollary 6.2.2 and Proposition 9.3.1. �Example 9.4. Corollary 9.3.2 shows that if n is large enough ompared to thedegree of E, then drk1 � > 1. It would be nie to �nd similar bounds for n deter-mining when drk1 is larger than any given value. At one extreme, if V = �(P1; E)with E any bundle (with no trivial fators) generated by global setions, then � hasfull di�erential rank, i.e., drk1 � is as large as possible, namely rkE, and E1 = 0.The reason for this is that if E = �ri=1O(ni), then by (A.6.3.1), the Taylor seriesmap �1� breaks up into a diret sum of the Taylor series maps�1: �(P1;O(ni))P1 �! P1(O(ni))for i = 1; : : : ; r. Eah of these Taylor series maps is surjetive (by diret alulationor (B.3.1)). Thus, by (2.3), E1 = 0.We might expet that if E is a bundle with no trivial fators on an arbitraryurve, X, and generated by global setions, then the natural map �(X;E)X ! Ewould have full di�erential rank. But this is not the ase:Proposition 9.4.1. Let E be an indeomposable bundle of rank r on an elliptiurve X with 2r > degE > r. Then E is generated by global setions, but thenatural evaluation map �: �(X;E)X �! Edoes not have full di�erential rank, i.e., E1 6= 0.Proof. First note that suh bundles, E, exist, ([Br℄). If � had full di�erential rank,then, by de�nition, the map �:SE �! 
X=k 
Eis generially surjetive. This says thatdim�(X;E) � 2r(f. 9.1). In our ase, degE > r implies that E is generated by global setionsand dim�(X;E) = degE < 2r, ([Br, Lemma A1℄). Hene, � annot have fulldi�erential rank. �



CURVES IN GRASSMANNIANS 39Example 9.5. We lassify all surjetions VX �! E where X is an arbitrary smoothprojetive urve and degE = 3. First, onsider the bundle E = O(1) � O(2) onP1. We want to see whih di�erential ranks and torsion numbers are possible for asurjetion �:VP1 �! EWe may assume by (3.1) that V � �(P1; E). To simplify matters, also assume thatthe harateristi of k is zero.dimV = 5: If dimV = 5, then V = �(P1; E), and � is the ordinary evaluation map.It an be represented by the matrix�x y 0 0 00 0 x2 xy y2 �Hene, the orresponding map f :P1 ! G1P4 omes from joining points on a linein P4 with mathing points on a oni in a disjoint plane. The union of the linesf(p) is a rational normal sroll. It is straightforward to hek that drk1 � = 2, andthat there is no torsion.dimV = 4: In this ase, drk1 = 2 and tor1 � has length two. If the di�erential rankwere one, then E1 would be a line bundle, and omparing ranks, the natural mapE ! G1(E1) of (4.2) would be an isomorphism. Proposition 9.3.1 shows this is notpossible. Thus, drk1 = 2 and �:SE �! 
X=k 
Eis injetive and generially surjetive. The �rst torsion number islength(ok �) = deg(
X=k 
E)� deg SE = 2The torsion sheaf an be supported at one point, e.g.,(�) � = �x y 0 00 x2 xy y2 �or it an be supported at two points, e.g.,(��) � = �x 0 y 00 x2 xy y2 �Diret alulation shows that in (�), tor1 � is supported at the point y = 0 and in(��) it is supported at the points x = 0 and y = 0.Consider the maps f; g:P1 ! G1P3 orresponding to (�), (��), respetively. Theassoiated loii ff(p)gp2P1; fg(p)gp2P1are the two types of ubi ruled surfaes in P3, (f. [E, x37℄). The former omes fromprojeting the rational normal sroll of degree three in P4 that we just onsideredfrom a point lying on a tangent to the sroll. The latter omes from projetingfrom a general point.



40 DAVID PERKINSONdimV = 3: If dimV = 3, then SE = O(�3) is a line bundle; so drk1 � = 1. By thePiene duality theorem, (7.2.1), there is a ommutative diagram0 ����! O(�3) j����! VP1 �����! E ����! 0??y  ??y0 ����! G1(O(3))� ����! VP1 �1����! E1 ����! 0The map P1 ! P2 orresponding to �1 is the dual of that orresponding to j�:V � !O(3) = S�E . So there are two possibilities, depending on whether j� represents anodal ubi or a uspidal ubi. If the former, then E1 �= O(4) sine the dual ofthe nodal ubi is a quarti. From the exat sequenes(y) 0 �! SE ��! 
X=k 
 E �! ok � �! 0and(z) 0 �! tor1 � �! ok � �! 
X=k 
E1 �! 0it follows that tor1 � = 0.If j� orresponds to a uspidal ubi, then E1 �= O(3) sine the dual of a uspidalubi is a uspidal ubi. The exat sequenes (y), (z) show that length(tor1 �) = 1.9.5.1. Arbitrary Curves of Degree Three. Let E be a vetor bundle of rank rand degree three on an arbitrary urve, X, and let V � �(X;E) be a subspae ofgenerating setions with evaluation map�:VX �! ETo avoid trivial ases, assume that the orresponding mapf :X �! G(V; r) Pl�uker����! PNexpresses X as a ubi urve in PN , i.e., f is birational to its image. Therefore,X is either a twisted ubi or a plane ubi. So either X is rational, and we areredued to the ase just onsidered in example (9.5), or X is ellipti. If X is ellipti,write E = �mi=1Ei where eah Ei is indeomposable. Sine eah Ei is generated byglobal setions, either Ei �= OX or degEi > rkEi, ([Br, Lemma A1℄). Therefore,forgetting about trivial fators, (6.1), there are two possibilities:a) E is a line bundle and � orresponds to a smooth plane ubi.b) E is an indeomposable bundle of rank two. Then dim�(X;E) = 3, ([Br, A.4℄);so V = �(X;E). By the duality theorem, (7.2.1), there is a ommutative diagram0 ����! O(�3P ) ����! VX �����! E ����! 0??y  ??y0 ����! G1(O(3P ))� ����! VX ����! E1 ����! 0for some point P 2 X. By (B.3.4) and Theorem B.2.3, G1(O(3P )) = P1(O(3P )).Therefore, degE1 = degG1(O(3P )) = 6. The map f :X ! G1P3 from � gives theenvelope of tangent lines to a plane ellipti sexti. From the sequenes (y) and (z),it follows tor1 � = 0.



CURVES IN GRASSMANNIANS 41Example 9.6. If the harateristi of k is zero or greater than t, then any sequeneof di�erential ranks d1 � � � � � dt � dt+1 = 0an our. For example, on P1, onsider the bundleE = �t�1i=0 Pi(O(i+ 1))�(di+1�di+2)For eah i, there is the natural Taylor series map�i: �(P1;O(i+ 1))P1 �! Pi(O(i+ 1))Take a diret sum of di+1 � di+2 opies of this map and then sum over i to get�:VP1 = h�t�1i=0�(P1;O(i+ 1))�(di+1�di+2)iP1 �! EBy (A.6.3.1) and Proposition 6.3.1Ej = �t�1i=j Pi�j(O(i+ 1))�(di+1�di+2)Therefore,drkj � = rkEj�1 � rkEj= t�1Xi=j�1(i� j + 2)(di+1 � di+2)� t�1Xi=j (i� j + 1)(di+1 � di+2)= t�1Xi=j�1(di+1 � di+2)= djExample 9.7. Any sequene of nonnegative integersk1; : : : ; knan our as the sequene of torsion numbers at a point. To see this, let�i = iXj=1 kn�j+1for i = 1; : : : ; n, and de�ne the mapf : C �! G(C �n+1) �= Pnz 7! (1; z1+�1 ; z2+�2 ; : : : ; zt+�n)Let L be the line bundle, C � C , on C , and onsider the map of x4,�n�1: C n+1 �! Gn�1(L)It suÆes to hek the following



42 DAVID PERKINSONClaim. The i-th torsion number of �n�1 is �n�i+1 � �n�i = ki.Sketh of Proof. We need a loal version of Theorem 8.1.1. The map Æ of (A.7)indues a ommutative diagram with exat rows0 ����! G1(Gk�1(L)) ����! Pk(L) ����! okk ����! 0??y� ??yÆ ??y�0 ����! P1(Gk�1(L)) ����! P1(Pk�1(L)) ����! P1(okk�1) ����! 0The map � omes from the Taylor series map C n+1 ! P1(Gk�1(L)). By Propo-sition 6.3.1, the i-th derived bundle of �n�1 is Gn�i�1(L). Hene, ok� modulotorsion is 
X=k 
Gk�2(L), (f. 2.3).By (A.8.3), G1(Gk�1(L)) �= Gk(L). Therefore, in the diagram, oki is the ok-ernel of the i-th Taylor series map, i = k � 1; k. Theorem B.2.3, (f. B.2.3.3)yields(�) lengthz(okk) = �1 + � � �+ �kSimilarly, lengthz(okk�1) = �1 + � � � + �k�1; hene, the fundamental exat se-quene, (A.3.2), shows that(��) lengthz(P1(okk�1)) = 2(�1 ++ : : : �k�1)By Proposition A.7.8, Æ is an inlusion. Thus, the snake lemma gives an exatsequene 0 �! ok�= ker� �! ok Æ �! ok � �! 0The proof of Proposition A.7.8 shows that ok Æ = 
X=k 
 Pk�2(L). Hene,ok�= ker � is torsion free; it is the (n� k + 1)-th derived bundle of �n�1, 
X=k 
Gk�2(L), and ker � is the orresponding torsion divisor. The map, ok�= ker� ,!ok Æ is just the natural inlusion, Gk�2(L)! Pk�2(L) tensored by 
X=k. Hene,lengthz(ok�) = �1 + � � �+ �k�2It follows from (�) and (��) that the (n� k + 1)-th torsion number islengthz(ker �) = �k � �k�1as required. � Appendix AContentsIntrodution.A.1. De�nition of the Prinipal Parts Sheaf



CURVES IN GRASSMANNIANS 43A.2. Funtorial PropertiesA.3. Fundamental Exat SequeneA.4. Loal Trivialization of Pt(E)A.5. The Bimodule Struture on Pt(F) and the Map dt.A.6. The Taylor Series Map, �tA.7. Pn+n0(F)! Pn(Pn0(F))A.8. Osulating BundlesIntrodution. This appendix gathers together the main fats about prinipalparts sheafs and is intended as a tehnial referene for the paper. For the mostpart, it is a ompilation of results found in [G℄, [K1℄, and [Pi1℄, worked out in thedetail neessary for our appliations. Propositions 7.8 and 8.3, used throughout thepaper, are new results.A.1. De�nition of the Prinipal Parts Sheaf. Let u:X ! S be a morphismof shemes and F an OX -module. Let �(t) be the t-th in�nitesimal neighborhoodof the diagonal. It is de�ned as a subsheme of X �S X by the ideal It+1 whereI is the ideal of the ordinary diagonal � = �(0). In the following diagram, let idenote the inlusion map and �1, �2 the natural projetions:
(1.1) �(t) i����! X �S X �2����! X�1??y ??yuX ����!u SLet p = �1 Æ i and q = �2 Æ i.De�nition 1.2. Pt(F) = p�q�F = �1� �OX�X=It+1 
 ��2F� is alled the sheaf oft-th order prinipal parts of F over S or the t-jets of setions of F over S.Applying �1� the the natural surjetion(�) OX�X=It+1 
 ��2F �! OX�X=It 
 ��2Fgives a map(1.3) Pt(F) �! Pt�1(F)whih is a surjetion sine the sheaves on (�) are supported on � and �1j� is ahomeomorphism. Sine tensor produts respet diret sums, so does this surjetion.A.2. Funtorial Properties. F ! Pt(F) is a ovariant funtor from the ate-gory of OX -modules to itself. In this setion we summarize its most basi properties.2.1. If X is noetherian, u of �nite type, and F quasi-oherent, then Pt(F) isquasi-oherent. If X is noetherian, X ! S proper, and F oherent, then Pt(F)is oherent, ([H, II.5.8℄). For X ! S smooth, if F is loally free, so is Pt(F),(Proposition 3.3).



44 DAVID PERKINSON2.2. Sine q� and p� preserve diret sums, so does Pt(� ).2.3. If we restrit Pt( � ) to at on loally free sheaves, then it is exat. This isbeause pulling bak loally free sheaves is always exat and p� is exat sine it isa homeomorphism.2.4. Let f : X ! Y be a morphism of shemes over S. There is a mapf� Pt(F) �! Pt(f�F)This map is mentioned in [K1℄ and in [Pi1℄; we onstrut it in the proof of Propo-sition 3.4, below. In partiular, if X ! S is a �nite type, separated morphism ofnoetherian shemes, e.g., a variety over a �eld, and U � X is an open subsheme,then Pt(F)jU �= Pt(FjU ): this follows from a ommutativity property of pullbaksand pushforwards, ([H, II.9.3℄). We will only need this result in the speial asewhere X ! S is smooth and F is loally free, (Corollary 3.5).2.5. It is lear from the de�nition of the natural surjetion Pt(F) ! Pt�1(F) of(1.3), that it is funtorial, i.e., given a map of sheaves F ! G, there is a naturalommutative diagram Pt(F) ����! Pt(G)??y ??yPt�1(F) ����! Pt�1(G)2.6. It is also lear that the natural surjetions of (1.3) preserve diret sums.A.3. Fundamental Exat Sequene. Assume now that I is loally generatedby a regular sequene, e.g., X ! S smooth, and assume F is loally free of rank r.Apply �1� ( � 
 ��2F) to the exat sequene(3.1) 0 �! It=It+1 �! OX�X=It+1 �! OX�X=It �! 0to get the fundamental exat sequene(3.2) 0 �! St(
X=S)
 F �! Pt(F) �! Pt�1(F) �! 0:where St(
X=S) denotes the t-th symmetri power of the relative otangent bundle.One assumes that I is loally generated by a regular sequene so that It=It+1 �=St(
), ([F, A.6.1℄). Note that �1� preserves the exatness of (3.1) sine the sheavesinvolved are supported on � whih is homeomorphi to X. By indution and thefat that P0(F) = F we getProposition 3.3. Suppose X has dimension n. Let X ! S be smooth and F aloally free sheaf of rank r on X. Then Pt(F) is loally free of rank r � �n+tt �.Given a map as in (2.4), there is a orresponding map between fundamentalexat sequenes:



CURVES IN GRASSMANNIANS 45Proposition 3.4. Let X and Y be smooth S-shemes and F a loally free sheafon Y . If f : X ! Y is a morphism of S-shemes, the map of (2.4) indues a mapof exat sequenes(�) 0 ��! St(f�
Y=S)
 f�F ��! f� Pt(F) ��! f� Pt�1(F) ��! 0??ySt(df)
id ??y ??y0 ��! St(
X=S)
 f�F ��! Pt(f�F) ��! Pt�1(f�F) ��! 0where df : f�
Y=S ! 
X=S is the otangent map.Proof. Using the notation in (A.1), let �X;i = �i for i = 1; 2. There is orrespondingdiagram for de�ning prinipal parts bundles on Y with projetions �Y;i, i = 1; 2.Let I (respetively, J ) be the ideal of the diagonal inX�SX (respetively, Y �SY ).The map f indues a ommutative diagram0 �! J t=J t+1 �! OY�Y =J t+1 �! OY�Y =J t �! 0??y ??y ??y0 �! (f � f)�It=It+1 �! (f � f)�OX�X=It+1 �! (f � f)�OX�X=It �! 0Apply f��Y;1�( � 
 ��Y;2F) to this diagram to get0 �! St(f�
Y=S)
 f�F �! f� Pt(F)??y ??y0 �! f��Y;1�((f � f)�It=It+1 
 ��Y;2F) �! f��Y;1�((f � f)�OX�X=It+1 
 ��Y;2F)(ontinuing from above)� � � ����! f� Pt�1(F) ����! 0??y� � � ����! f��Y;1�((f � f)�OX�X=It 
 ��Y;2F) ����! 0Again, we are using the smoothness of Y ! S to identify J t=J t+1 with St(
Y=S).We also use the standard fat that taking symmetri powers ommutes with pull-baks.Now use the maps f��Y;1� ! �X;1�(f � f)�(f � f)���Y;2 = ��X;2f��Y;1�(f � f)� = f��X;1�f�f� ! 1



46 DAVID PERKINSON(For the �rst map, f. [H, II.9.3℄.) Applying these to the �rst sheaf on the bottomof the previous diagram yieldsf��Y;1�((f � f)�It=It+1 
 ��Y;2F) = f��Y;1�(f � f)�It=It+1 
 f��Y;1���Y;2F= f�f��X;1�It=It+1 
 �X;1�(f � f)���Y;2F! �X;1�It=It+1 
 �X;1���X;2f�F= St
X=S 
 f�FSimilarly, f��Y;1�((f � f)�OX�X=It+1 
 ��Y;2F) = Pt(F). Finally, a similar argu-ment applies to the sheaf on the bottom right of the diagram. We thus get (�). Theleft-most vertial map of (�) has the right form sine df omes from the naturalmap J =J 2 �! (f � f)�I=I2while the left-most vertial map of the �rst diagram of this proof is obtained bytaking symmetri powers of this mapJ t=J t+1 = St(J =J 2) �! (f � f)�St(I=I2) = (f � f)�It=It+1(f. [F, B.7.1℄). �Corollary 3.5. Let U be an open subset of a smooth S-sheme X, and let F be aloally free sheaf on X. Then Pt(F)jU = Pt(FjU)Proof. Apply Proposition 3.4 to the inlusion f :U ,! X. The ase t = 1 followsfrom the 5-lemma and the fat that 
U=S = 
X=S jU . The general ase followsfrom Proposition 3.4 by indution using the 5-lemma and the fat that pullbaksommute with taking symmetri powers:St(
U=S) = St(f�
X=S) = f�St(
X=S) �Note. As mentioned earlier, Corollary 3.5 is true more generally for X ! S a�nite type, separated morphism of Noetherian shemes and F any sheaf. However,we will not need this in the paper.A.4. Loal Trivialization of Pt(E). Let X ! S be smooth and E be a bundle(loally free sheaf) on X. This setion gives loal oordinates for the jets of setionsof E. To make notation simpler, we will mainly onsider the ase where X ! Shas relative dimension 1, e.g., a nonsingular urve over an algebraially losed �eld.Remark 4.9, at the end of this setion, disusses the modi�ations neessary forhigher relative dimensions.Let U = SpeA be an open aÆne subset of X and V = SpeB be an open aÆnesubset of S with U � u�1(V ). Let I denote the kernel of the mapA
B A! Aa
 b 7! ab



CURVES IN GRASSMANNIANS 47So ~I �= IjU , and gI=I2 �= 
jU , the relative otangent bundle of X ! S restrited toU . The ideal I is generated by fdaga2A where da = 1 
 a � a 
 1, ([M, Chapter9℄). With this notation, the exat sequene (3.2) restrited to U and with F = OXbeomes 0 �! ItÆ It+1 �! (A
B A)=It+1 �! (A
B A)=It ! 0We are free to identify 

tjU with ^It/ It+1 sine X ! S is smooth. (We have alsoused that Pt(E)jU �= Pt(EjU ), (2.4).)Now take U small enough so that 
jU is trivial with generator dz = 1
z�z
1.By indution on t, it follows that (A
B A)=It+1 is a free A-module with basis theimage of f(dz)igti=0. De�ne a map �z: A! A by the formula db = 1
 b� b
 1 =�zb dz. Indutively, de�ne(4.1) �iz:A �! Aby �izb = �z(�i�1z b). Finally, de�ne the map�t: (A
 A)=It+1 ! A�t+1(4.2) a
 b 7! a(b; �zb; 12!�2zb; : : : ; 1t!�tzb)Note 4.3. In order for this map to make sense, we make the assumption that theharateristi of eah residue �eld of S is zero or greater than t.Note 4.4. If X is a nonsingular urve over an algebraially losed �eld k = S,the ompletion of the loal ring OX;x at a point x 2 X is the ring of formal powerseries k[[z℄℄ in a loal parameter z. By inluding OX;x in its ompletion, we mayinterpret �izb as formal di�erentiation with respet to z.We will see that �t is well-de�ned as part ofProposition 4.5. �t is an isomorphism.Proof. It suÆes to show that �t(dzj) = (0; : : : ; 0; 1; 0; : : : ; 0) with the 1 in the(j+1)-th omponent. Sine dzt+1 7! 0, �t is well-de�ned. The (`+1)-th omponentof �t(dzj) is �t(dzj)`+1 = �t((1
 z � z 
 1)j)`+1= jXi=0(�1)i�ji� 1̀!zi�z̀zj�i= zj�` jXi=1(�1)i�ji��j � i` �where �ab� = 0 for b > a. However,jXi=1(�1)i�ji��j � i` � = 1̀!�z̀(z � 1)j����z=1 = � 1 j = `0 j 6= `



48 DAVID PERKINSONas required. �Let E be an arbitrary vetor bundle of rank r. Using (2.2) and the fat thatPt(E)jU �= Pt(EjU), Proposition 4.5 allows us to onstrut a loal trivialization ofPt(E). Use the notation from above and assume, in addition, that a trivializationEjU �= O�rU is hosen. Then�(U;Pt(E)) �= A
AIt+1 
A A�r �= �A
AIt+1 ��r ��rt��! (A�t+1)�rwhere we onsider (A
 A)=It+1 as a right A-module for the purpose of tensoringover A. By abuse of notation, we will all the omposite of the above maps(4.6) �t: �(U;Pt(E)) �! (A�t+1)�rRestriting (3.2) to U gives an isomorphism of exat sequenes(4.7) 0 ��! �(U;

t 
 E) ��! �(U;Pt(E)) ��! �(U;Pt�1(E)) ��! 0??y�tj ??y�t ??y�t�10 ��! A�r ��! (A�t+1)�r ��r��! (A�t)�r ��! 0The inlusion of A�t in A�t+1 as the �rst t fators indues a map (A�t)�r !(A�t+1)�r giving a splitting of the rows of (4.7). In sum, we haveCorollary 4.8. A hoie of a loal trivialization of 
X=S and E determines aloal trivialization of Pt(E) for eah t and loal splittings of the fundamental exatsequene (3.2).Remark 4.9. The analysis given in this setion requires little hange if the dimen-sion of X is n > 1, the main di�erene being that in de�ning the map �t of (4.2),one must onsider all mixed partials with respet to the loal oordinates on X. Tobe spei�, onsider the ase of Pt(L) where L is a line bundle. Take an open aÆneU = SpeA so that LjU �= OU and 
jU �= gI=I2 as before. Take U small enough sothat 
jU is trivial, say O�rU �= 
jU . Take the images of the standard basis elementsof O�nU to get generators dzi = 1
 zi � dzi 
 1, i = 1; : : : n for 
jU . De�ne a map�t: (A
 A)=It+1 �! A�(n+tt )(4.10) a
 b 7! a� 1i1! � � � ij !�i1 � � ��ij b�0�j�t; fi1;:::;ijg�f1;:::;ngwhere �ib is de�ned by the formula db = 1 
 b � b 
 1 = Pni=1 �ib dzi. As before,one may verify that �t is an isomorphism. If E is any bundle on X, it is loally thediret sum of line bundles, and one takes a diret sum of �t's to get a trivializationof Pt(E)jU . The analogue of (4.6) is(4.11) �t: �(U;Pt(E)) �! (A�(n+tt ))�r



CURVES IN GRASSMANNIANS 49Diagram (4.7) beomes(4.12) 0 ��! �(U; St(
)
 E) ��! �(U;Pt(E)) ��! �(U;Pt�1(E)) ��! 0??y�tj ??y�t ??y�t�10 ��! (A�(n+t�1t ))�r ��! (A�(n+tt ))�r ��r��! (A�(n+t�1t�1 ))�r ��! 0where � is the projetion onto the �rst �n+t�1t�1 � fators.A.5. The Bimodule Struture on Pt(F) and the Map dt. Realling thenotation of De�nition 1.2, Pt(OX) = p�(O�(t)) = p�(OX
OX=It+1). By de�nitionof p, there is a map OX �! p�(O�(t)) = Pt(OX)de�ning the (usual) left module struture on Pt(OX). By slight abuse of notation,we write OX �! (OX 
OX)=It+1 = Pt(OX)(5.1) a 7! a
 1On the other hand, we an derive the following map from q, ([G, 16.7.5.1℄):dt: OX �! (OX 
OX)=It+1(5.2) a 7! 1
 aThis de�nes the right module struture on Pt(OX).As pointed out in [G, 16.7.2.1℄, basi properties of pullbaks and pushforwardsyield an isomorphism(5.3) Pt(F) �= Pt(OX)
OX Fwhere in order to tensor over OX , Pt(OX) is onsidered as a right OX -module.Thus, Pt(F) inherits a bimodule struture from Pt(OX). One way to see (5.3) isto hek|using the notation of (A.1)|that the natural mapPt(OX)
F = �1�((OX
OX )=It+1)
F �! �1�((OX
OX )=It+1
��2F) = Pt(F)is an isomorphism. By abuse of notation, we will sometimes writePt(F) = OX 
OXIt+1 
 FDe�ne a map ([G, 16.7.5.1℄):dtF = dt: F ! Pt(F) �= Pt(OX)
OX F(5.4) s 7! (1
 1)
 s



50 DAVID PERKINSONThis is a map of OX -modules if Pt(F) is onsidered as a right module. The mapsdt are ompatible with the natural projetions prt: Pt(F)! Pt�1(F), (1.3). Thatis to say, prt Æ dt = dt�1.Consider the ase of a line bundle L on a nonsingular urve X over an alge-braially losed �eld. Using the trivialization desribed in (A.4) with E = L,identify L with A = OU (U) and Pt(L) with A�t+1 via �t, (4.6). Then the map dtmay be thought of as taking trunated Taylor expansions of setions of Ldt: A! A�t+1(5.5) a 7! (a; �za; 12!�2za; : : : ; 1t!�tza)A.6. The Taylor Series Map, �t. With the notation of A.1, the natural mapsu�u� ! �2���1 and 1! i�i� may be used to de�ne what we will all the t-th Taylorseries map, (f. [K1℄, [Pi1℄): �t: u�u�F �! �1���2F(6.1) �! �1�i�i���2F�= Pt(F)If V is a sheaf on S and �:u�V ! F any map, then there is a natural mapVX = u�V �! u�u�u�V �! u�u�FComposing this with the Taylor series map yields a map VX = u�V ! Pt(F) whihwill also be alled a Taylor series map and be denoted by �t� or just �t if � is learfrom ontext. If we onsider Pt(F) as a left OX -module (as usual), then �t is anOX -module map.If X is a noetherian sheme and S = SpeB, then the Taylor series map is�t: H0(X;F)
B OX �! Pt(F)(f. [H, 8.5℄). With the notation of (A.5), we may write this asH0(X;F)
B OX �! Pt(F) �= Pt(OX)
OX F(6.2) s
 1 7! 1
 1
 sTherefore, we an also onstrut �t by taking global setions of dt: F ! Pt(F) andthen evaluatingH0(X;F)
B OX dt�! H0(X;Pt(F))
B OX �! Pt(F)6.3. Funtorial Properties of the Taylor Series Map.6.3.1. The Taylor series map preserves diret sums sine pullbaks, pushforwards,and the map 1! i�i� preserve diret sums.



CURVES IN GRASSMANNIANS 516.3.2. The Taylor series map is ompatible with the natural surjetions Pt(F) !Pt�1(F). To see this, let ik:�(k) ! X �S X denote the inlusion of the thikeneddiagonal (f. A.1). The ompatibility of the Taylor series map omes from applying�1�( � )��2 to the natural ommutative diagram of funtors1 ����! it�i�t ??y1 ����! it�1�i�t�1and omposing with the map u�u� of (6.1).6.3.3. If F ! G is a map of sheaves on X, the naturality of the map u�u� ! �1���1gives a ommutative diagram(6:3:3:1) u�u�F ����! Pt(F)??y ??yu�u�G ����! Pt(G)where the horizontal maps are the Taylor series maps and the vertial maps are thenatural ones.In the paper, (6.3.3.1) is most often used in the following form:Proposition 6.3.3.2. Let V and W be sheaves on S, and let F and G be sheaveson X. Suppose we are given a ommutative diagram of sheaves on X:VX ����! WX??y ??yF ����! GThen the following diagram ommutesVX ����! WX??y ??yPt(F) ����! Pt(G)where the vertial maps are the Taylor series maps and the horizontal maps are thenatural ones.Proof. This follows immediately from the expression for �t given in (6.2). �6.3.4. Let SE be the kernel of the map VX ! F from Proposition 6.3.3.2. Assumein addition that X ! S is smooth and F is loally free. The ompatibility ofthe Taylor series map with the standard projetions, (6.3.2), gives a ommutativediagram that is used repeatedly in the paper:(6.3.4.1) 0 ����! SE ����! VX ����! F ����! 0??y ??y�1 0 ����! 
X=S 
 F ����! P1(F) ����! F ����! 0The bottom row of this diagram is the fundamental exat sequene (3.2). Thisdiagram is funtorial in F :



52 DAVID PERKINSONProposition 6.3.4.2. With the notation as in (6.3.3.2), assume in addition thatX ! S is smooth and that F and G are loally free. Let SF (respetively, SG)denote the kernel of the given map VX ! F (respetively, WX ! G). Consider thenatural ommutative diagrams with exat rows(�) 0 ����! SF ����! VX ����! F ����! 0??y �1??y 0 ����! 
X=S 
 F ����! P1(F) ����! F ����! 0and(��) 0 ����! SG ����! VX ����! G ����! 0??y �1??y 0 ����! 
X=S 
 G ����! P1(G) ����! G ����! 0where the bottom rows of these diagrams are the fundamental exat sequenes of(A.3). Proposition 3.4 indues a natural map of ommutative diagrams (�)! (��).6.3.5. Taylor series maps are ompatible with the maps of (2.4), f� Pt(F) !Pt�1(F). This is immediate from the onstrution of the maps of (2.4), given inthe proof of Proposition 3.4.6.4. Desription of the Taylor Series Map in Loal Coordinates. Letu:X ! S be smooth of some relative dimension, F be loally free of rank r, andV be a loally free OS-module of rank n. Assume we are given a map�:VX = u�V �! FWe now want to give a areful loal desription of �t(�) = �t. So we may assumeX and S are rings, A and B, respetively, and that F = A�r, VX = A�n, and� is given by a matrix M = (aij):A�n ! A�r. De�ne Pt(A�r) = �(X;Pt(F)),and de�ne �t aordingly. Let d:A ! 
A=B be the standard derivation. Oursmoothness assumption means that 
A=B is a free A-module with generators, say,dzi. De�ne the map �jzi :A �! Aindutively as follows da =X �zia dzi(6.4.1) �jzia = �zi(�j�1zi a)Note 6.4.2. If A is a disrete valuation ring and B = k is a �eld isomorphi to theresidue �eld of A, then the ompletion of A is isomorphi to the power series ringk[[z℄℄. Emdedding A into its ompletion, �jzai an be thought of as the ordinaryj-th derivative of a power series. This interpretation will be relevant when X is asmooth urve over an algebraially losed �eld and we onsider a Taylor series mapat a �ber over a point in X.To make the loal desription more intelligible, we will start out with the easyase of relative dimension and r both equal to one, then work our way up to thegeneral ase.



CURVES IN GRASSMANNIANS 53Proposition 6.4.3. Let B ! A be a map of rings with the harateristi of eahresidue �eld of A and B either zero or greater than t. Assume 
A=B has rank one,generated by the single element dz, and suppose given a mapM :A�n �! Awhere M = [a1; : : : ; an℄, ai 2 A. Then the orresponding t-th Taylor series maphas the form
�t(M):A�n

26666666664 a1 : : : an�za1 � � � �zan12!�2za1 � � � 12!�2zan... � � � ...1t!�tza1 � � � 1t!�tzan
37777777775�������������������! Pt(A) �= A�t+1Proof. Let ei be the i-th standard basis vetor for A�n. De�ne I as in (A.4) sothat 
A=B = I=I2. By the desription in (6.2),�t(ei) = (1
 1)
 ai 2 (A
 A)=It+1 
A= 1
 ai 2 (A
 A)=It+1 = Pt(A)Using �t of (4.2) to trivialize Pt(A) yields�t(ei) = (ai; �zai; 12!�2zai; : : : ; 1t!�tzai)as required. �We will now onsider the ase where X ! S has relative dimension one but r,the rank of F , is arbitrary. Loally, F �= A�r, and the loal desription of theTaylor series map follows diretly from Proposition 6.4.3.Proposition 6.4.4. Let B ! A be a map of rings with the harateristi of eahresidue �eld of A and B either zero or greater than t. Assume 
A=B has rank one,generated by the single element dz, and suppose given a mapM :A�n �! A�rwhere M = (aij), aij 2 A. Then the orresponding t-th Taylor series map is a blokmatrix

�t(M):A�n
26666666664 M�zM12!�2zM...1t!�tzM

37777777775��������! Pt(A�r) �= (A�r)�t+1where �kzM = (�kz aij)i;j.Proof. This follows diretly from Proposition 6.4.1 and the fat that �t preservesdiret sums, (6.3.1). �Finally, we onsider the ase of arbitrary relative dimension. It is the same as(6.4.4) exept we must take all mixed partials of the entries of � with respet toloal parameters for X.



54 DAVID PERKINSONProposition 6.4.5. Let B ! A be a map of rings with the harateristi of eahresidue �eld of A and B either zero or greater than t. Assume 
A=B has rank k,generated by dz1; : : : ; dzk, and suppose given a mapM :A�n �! A�rwhere M = (aij), aij 2 A. Then the orresponding t-th Taylor series map is a blokmatrix�t(M):A�n � 1i1!���ij !�zi1 ����zijM�0�j�t; fi1;:::;ijg�f1;:::;ng������������������������������! Pt(A�r) �= (A�r)�(k+tt )where �zk1 � � ��zk`M = (�zk1 � � ��zk`aij)i;j. Eah � 1i1!���ij !�i1 � � ��ijM� is a row ofthe blok matrix �t(M).Proof. For the ase r = 1, proeed as in the proof to Proposition 6.4.1 using themap �t of (4.10). (The n of (4.10) is our k.) Then, for general r, use the fat that�t preserves diret sums, (6.3.1). �A.7. Pn+n0(F)! Pn(Pn0(F)). There is a natural map, ([G, 16.8.9.1℄),(7.1) Æ = Æn;n0 : Pn+n0(F)! Pn(Pn0(F))funtorial in F , making the following diagram ommute(7.2) F dn+n0F����! Pn+n0(F)dnF??y ??yÆPn0(F) ����!dn0Pn(F) Pn(Pn0(F))Using (5.3) and the notation of (A.5), the map is given byPn+n0(F) = OX 
OXIn+n0+1 
 F(7.3) �! OX 
OXIn+1 
 OX 
OXIn0+1 
 F = Pn(Pn0(F))(a
 b)
 f 7! (a
 1)
 (1
 b)
 f(As in (A.5), we are abusing notation slightly.) As noted after (5.3), we must beareful of the module struture when taking these tensors. Thus,(a
 b)
 f = (a
 b)
 f 2 (OX 
OX)=In+n0+1 
Fand(a
 b)
 (
 d)
 ef = (a
 b)
 (1
 de)
 f= (a
 1)
 (b
 de)
 f 2 OX 
OXIn+1 
 OX 
OXIn0+1 
 F



CURVES IN GRASSMANNIANS 55Here a, b, , d, e (respetively, f) represent setions of OX (respetively, F) oversome open set of X.We will need to know that Æ is ompatible with the Taylor series map. Considerthe Taylor series maps u�u�F �! Pn0(F)and u�u� Pn0(F) �! Pn(Pn0(F))Applying u�u� to the �rst of these maps and using the natural map 1! u�u� givesthe left vertial map in the following diagram(7.4) u�u�F ����! Pn+n0(F)??y ??yu�u� Pn0(F) ����! Pn(Pn0(F))The horizontal maps are Taylor series maps. Using (7.3) , it is lear that thisdiagram ommutes, i.e., Æ is ompatible with Taylor series maps.It also lear from (7.3) that Æ ommutes with the natural surjetions from t-jets to (t � 1)-jets in several senses. For example, there are natural ommutativediagrams:(7.5) Pn+n0(F) Æn;n0����! Pn(Pn0(F))??y ??yPn+n0�1(F) Æn;n0�1�����! Pn(Pn0�1(F))and(7.6) Pn(Pn0(F)) ����! Pn�1(Pn0(F))??y x??Æn�1;n0Pn(Pn0�1(F))  �����Æn;n0�1 Pn+n0�1(F)Remark 7.7. Letting n = 1, (7.6) shows that P1(Pn0(F))! P1(Pn0�1(F)) fatorsthrough the surjetion P1(Pn0(F))! Pn0(F).We will need the following tehnial result:Proposition 7.8. Assume that the harateristi of S is zero or greater than n+1.If X ! S is smooth of relative dimension one, and F is a loally free sheaf on X,then the map Æ: Pn+1(F)! P1(Pn(F)) is an inlusion with a loally free okernel.Proof. The ompatibility of Æ with the natural surjetions of prinipal parts bundlesgives a ommutative diagram(7.8.1) 0 ����! Sn+1(
X=S)
F ����! Pn+1(F) ����! Pn(F) ����! 0??y ??y 0 ����! 
X=S 
 Pn(F) ����! P1(Pn(F)) ����! Pn(F) ����! 0



56 DAVID PERKINSONWe will now show that sine X ! S has relative dimension one, that the left-most vertial map in (7.8.1) beomes 
X=S 


nX=S 
F �
i��! 
X=S 
Pn(F) wherei:F 
 
n ! Pn(F) denotes the natural inlusion of (3.2), and �: 
X=S ! 
X=S ismultipliation by (n + 1). In partiular, � 
 i is injetive; hene the propositionfollows from the snake lemma.By (7.3) we may writeÆ: OX 
OXIn+2 
 F �! OX 
OXI2 
 OX 
OXIn+1 
 F(a
 b)
 f 7! (a
 1)
 (1
 b)
 fWe need to �nd the image ofdzn+1 
 f 2 (In+1=In+2)
F = 

n+1X=S 
 FCalulate Æ(dzn+1 
 f) = Æ(1
 z � z 
 1)n+1 
 f= [(1
 1)
 (1
 z)� (z 
 1)
 (1
 1)℄n+1 
 f= [dz 
 (1
 1) + (1
 1)
 dz℄n+1 
 f=  n+1Xk=0�n+ 1k �dzk 
 dzn+1�k!
 f= (n+ 1) dz 
 dzn 
 fThus, the left-most vertial map of (7.8.1) is as required. �A.8. Osulating Bundles.The following de�nition is due to Piene, [Pi1℄.De�nition 8.1. Let V be a sheaf on S, let F be a sheaf on X, and let �:VX ! Fbe a map of sheaves. For t � 0, the image of the Taylor series map �t�:VX ! Pt(F)is alled the osulating sheaf of order t for � and denoted by Gt(�) or just Gt(F)when � is lear from ontext. It omes with a natural surjetion�t:VX ! Gt(F)The natural surjetions, Pt(F)! Pt�1(F), indue surjetions, Gt(F)! Gt�1(F).Proposition 8.2. Let V , W be sheaves on S, and let F , G be sheaves on X.Suppose there is a ommutative diagramVX `����! WX�??y ??y F f����! G



CURVES IN GRASSMANNIANS 57Then there are maps between osulating sheaves ft : Gt(F)! Gt(G) suh thatVX `����! WX�t(�)??y ??y�t( )Gt(F) ft����! Gt(G)??y ??yGt�1(F) ft�1����! Gt�1(G)ommutes for t � 1. The bottom vertial maps are the natural surjetions, and theomposition of the vertial maps on the left (respetively, right) is �t�1(�) (respe-tively, �t�1( )).For (2) and (3) below, assume that F and G are loally free.(1) If ` is surjetive, then so are the ft.(2) If f is injetive, so are the ft.(3) If f is injetive and ` is surjetive, then the ft are isomorphisms;Proof. The maps ` and f give rise to a ommutative diagram, (6.3.3.2)VX `����! WX�t(�)??y ??y�t( )Pt(F) ����! Pt(G)Taking images of the vertial maps de�nes ft. The required ompatibility withthe natural surjetions follows from the orresponding fat for prinipal parts ofsheaves, (6.3.2).(1) is lear from the de�nition of ft.Restrited to loally free sheaves, Pt( � ) is an exat funtor (2.3). This aountsfor (2), and as a trivial onsequene of (1) and (2), we get (3). �Proposition 8.3. Let F be loally free. There is a surjetion(�) Gt(F) �! G1(Gt�1(F))ompatible with the natural surjetions from VX . It is funtorial in F and is ompat-ible with the natural surjetions of osulating bundles, i.e., there is a ommutativediagram Gt+1(F) ����! G1(Gt(F))??y ??yGt(F) ����! G1(Gt�1(F))If X ! S is smooth of relative dimension one and the harateristi of eah residue�eld of S is zero or greater than t, then (�) is an isomorphism.Proof. By (2.3), applying P1( � ) to the inlusion Gt�1(F) ,! Pt�1(F) yields(y) G1(Gt�1(F)) ,! P1(Gt�1(F)) ,! P1(Pt�1(F))



58 DAVID PERKINSONOn the other hand, we have(z) Gt(F) ,! Pt(F) Æ�! P1(Pt�1(F))where Æ is the map of (7.1). Sine these maps are ompatible with the naturalsurjetions from VX , Gt(F) surjets onto the image of G1(Gt�1(F)) in P1(Pt�1(F)).This gives (�). With the additional assumption on X ! S and the harateristiof S, it follows from Proposition 7.8 that Æ in (z) is injetive. Therefore, in thatase, (�) is an isomorphism.The funtoriality of (�) omes from that of Pt( � ) and of Æ. Compatibility withthe surjetions of osulating bundles follows from (7.5). �Appendix BContentsIntrodution.B.1. Inetion NumbersB.2. Prinipal PartsB.3. ExamplesB.4. Osulating Spaes, Assoiated Maps, and Higher Order DualsB.5. Piene Duality TheoremIntrodution. This appendix is an outline of the basi theory of inetions ofurves in projetive spae. It is intended as bakground and a onvenient referene.For the most part, results are presented without proofs. The main theorems are dueto Piene, and details may be found in [Pi1℄ and [Pe1℄. The two most fundamentaltheorems in the theory are Theorem 2.3, stating the degrees and ranks of theosulating bundles, and the duality theorem in (B.5).Throughout the appendix, V denotes a vetor spae of dimension n+ 1 over analgebraially losed �eld k, and X is a smooth urve over k. Let(0.1) f :X �! P(V ) �= Pnkbe a map to the projetive spae of quotients of V . There is a orrespondingsurjetion(0.2) �:VX �! Lwhere L is a line bundle on X. The map on global setions will be denoted(0.3) ��:V �! �(X;L)De�nition 0.4. If m is the dimension of the smallest linear spae ontaining theimage of f , then f is said to span a Pm or span a linear spae of dimension m. Thenumber m is one less than the dimension of the image of ��.



CURVES IN GRASSMANNIANS 59B.1. Inetion Numbers. In this setion, we introdue the fundamental in-variants desribing the inetionary behavior of a urve in projetive spae. Thismaterial an also be found in [GH1℄, [Pi1℄, and [L1℄.De�nition 1.1. Let f span a Pm. For eah x 2 X, de�ne integers �i = �i(x) with0 = �0 � �1 � � � � � �m byf0; 1 + �1; 2 + �2; : : : ;m+ �mg = fordx(�)g�2��(V )(A Gram-Shmidt-type argument shows that this de�nition yields m numbers.)The number �i is alled the i-th inetion number for � (or f) at x. If some �iis nonzero, x is said to be an inetionary point for � at x. Under appropriateonditions, (2.3), there will be a �nite number of inetionary points. In this ase,it makes sense to sum an �i over all points to get a global i-th inetion number for�, also denoted by �i, and we de�ne the i-th inetion divisor to bePx2X �i(x) �x.Later we will de�ne a related inetion sheaf, (2.4).Inetionary points are also alled points of hyperosulation sine, at eah of thesepoints, an osulating spae meets f(X) with higher multipliity than expeted,(4.1.1).Remark 1.2. Let L = O(D) for a divisor D on X. For x 2 X onsider thedereasing sequene of integers`x(n) = dimkf� 2 ��(V ) �� � 2 �(X;O(D � nx))gfor n = 0; 1; 2; : : : . If `x(n � 1) 6= `x(n), then n is alled a gap value for � at x.(Note: If `x(n�1) 6= `x(n), then `x(n�1) = `x(n)�1, (f. [H, proof of PropositionIV.3.1℄).) If the gap values are not 1; 2; : : : ;m, then the point x is alled a generalizedWeierstrass point. Denote the i-th gap value by ai. The Weierstrass weight for �at x is the integer Pmi=1(ai � i). In terms of the inetionary indies, the i-th gapvalue is �i�1+ i. The lassial situation is when the genus of X is greater than oneand �:V =�! �(X;
X=k) ! 
X=k, (3.2); the gap values measure the inetionarybehavior of the anonial embedding.1.3. Normal Form. By a normal form for the map f at x we mean a hoie ofoordinates for Pn that is nie with respet to the inetion numbers. Spei�ally,hoose a basis, �0; : : : ; �m, for the image of � suh that ordx(�i) = i+ �i. IdentifyLx with the loal ring at x, A = OX;x, and let z be a loal parameter at x. Wean think of the �i's as elements in the ompletion Â �= k[[z℄℄, so that f is givenparametrially by(1.3.1) z 7! v(z) = (1 + � � � ; z1+�1 + � � � ; : : : ; zm+�m + � � � ; 0; : : : ; 0)where \+ � � � " denotes the sum of terms of higher order in z. Thus, if �1 > 0, thenf(x) is a usp of the image of f , and if �1 = 0 but �2 > 0, then f(x) is an inetionpoint of the image of f .Let x0; : : : ; xn be oordinates on Pn. The expression (1.3.1) shows that the t-plane fxt+1 = 0; : : : ; xn = 0g meets f(x) with multipliity t + 1 + �t+1 along thebranh of f(X) orresponding to x.



60 DAVID PERKINSON1.4. Base Points. We may also de�ne inetion numbers for arbitrary linearsystems or for any map (i.e., not neessarily surjetive)(�) VX �! LThe only di�erene is that the smallest inetion number �0 may no longer be zero.If L = O(D) is the line bundle orresponding to a divisor D, and B is the base ofthe linear system orresponding to (�), then the map in (�) fators asV  �! �(X;O(D � B)) ,! �(X;O(D))Letting �i(x) denote the inetion numbers (or divisors) for the surjetion,  , it islear from the normal form, (1.3), that�i(x) = � �i; if x is not a base point�i(x)� �0(x); if x is a base pointB.2. Prinipal Parts. The main result of this setion is Theorem 2.3, stating thedegree and rank of Piene's osulating bundles. It leads diretly to the generalizedPl�uker formulas, (3.3), and the degrees of varieties assoiated with the exing ofa urve in spae, (B.4).For eah integer t � 0, the map � of (0.2) an be lifted to the t-th order Taylorseries map, (A.6),(2.1) �t = �t�:VX ! Pt(L)where Pt(L) is the bundle of t-th order jets of setions of L. Loally, we an thinkof � as given by a n+ 1-tuple of funtions in a loal parameter for the urve. Themap �t an then be thought of as a matrix with rows onsisting of the derivativesof � up to order t, (A.6.4).Reall from (A.8) that the image of �t is the t-th osulating bundle for �, denotedby Gt(L) (or by Gt(�) or Gt(f), if neessary). From �t, there is a natural surjetion(2.2) �t:VX �! Gt(L)(Gt(L) is a bundle sine it is a subsheaf of Pt(L) and, hene, is torsion free.)The following theorem, due to Piene [Pi1℄, (with a slight orretion due toLaksov, [L1℄), shows how the Taylor series maps, �t, are related to the inetionnumbers de�ned in (B.1). It is the main result from Appendix B needed in themain body of the paper.Theorem 2.3. Let X be a smooth projetive urve, and assume the harateristiof k is zero or greater than t and the degree of L. Then(1) If t � m = dimk ��(V )� 1, then �t is generially surjetive withlength(ok �tx) = tXi=1 �i(x)In partiular, rkGt(L) = t + 1, and �t is surjetive if and only if � isnoninetionary at x up to order t.(2) There is a �nite number of inetionary points.(3) If t � m, then the image is a trivial bundle of rank m + 1, i.e., im �t =Gt(L) = ��(V )X .



CURVES IN GRASSMANNIANS 61Remark 2.3.1. To see that the assumption on the harateristi is neessary inTheorem 2.3 and in Corollary 2.5.3, below, see Remark 3.4.2.Remark 2.3.2. If X is a smooth projetive urve, then with no assumption onthe harateristi of k, �i(x) � degL � ifor eah x 2 X. Sine �i(x) � ai+1(x), this means thatai(x) � degL�mfor i = 1; : : : ;m. This inequality is sharp. For instane, onsider the mapP1 �! Pmz 7! (1; z1+(d�m); z2+(d�m); : : : ; zm+(d�m))given by setions of the line bundle O(d). Here, �i = d�m for all i.Remark 2.3.3. The projetivity assumption an be replaed with the onditionthat if the harateristi of k is not zero, then it is larger than m and �m +m.De�nition 2.4. From the natural surjetion of prinipal parts bundles, we get theommutative diagram with exat rows0 ����! Gt(L) ����! Pt(L) ����! ok �t ����! 0??y ??y ??y0 ����! Gt�1(L) ����! Pt�1(L) ����! ok �t�1 ����! 0The vertial map on the right, ok �t ! ok �t�1is a surjetion whose kernel we all the t-th inetion sheaf of � and denote byinft. Aording to Theorem 2.3, it has length �t. The divisor orresponding to thiskernel is the t-th inetion divisor de�ned in (B.1).2.5. Degrees. In (B.4), we will give the standard de�nitions of the osulating de-velopables, assoiated urves, and higher order dual varieties of a urve in projetivespae. The following result will give the degrees of these varieties.Denote the kernel of �t by Et(L), and onsider the exat sequenes(2.5.1) 0 �! Et(L) �! VX �t�! Gt(L) �! 0and(2.5.2) 0 �! Gt(L) �! Pt(L) �! ok �t �! 0The degrees of Gt(L) and Et(L) are an immediate onsequene of Theorem 2.3.First we need some notation: if F is any vetor bundle on X, then de�ne 1(F ) tobe the divisor lass orresponding to the line bundle detF ; if F is a torsion sheafon X, de�ne [F ℄ to be the lass of the divisor Px2X length(Fx) � x.



62 DAVID PERKINSONCorollary 2.5.3. Let X be a smooth projetive urve of genus g, and assumethe harateristi of k is zero or greater than t and the degree of L. Then fort � m = dimk ��(V )� 1,1(Gt(L)) = �1(Et(L)) = �t+ 12 �1(
X=k) + (t+ 1)1(L)� [ok �t℄as divisor lasses. In partiular,degGt(L) = � deg(Et(L)) = �t+ 12 �(2g � 2) + (t+ 1) degL � tXi=1 �i= (t+ 1)(tg � t+ degL)� tXi=1 �iLetting t = m, we getmXi=1 Xx2X �i(x) � x = �m+ 12 �1(
X=k) + (m+ 1)1(L)as divisor lasses, and taking degrees givesmXi=1 �i = �m+ 12 �(2g � 2) + (m+ 1) degL= (m+ 1)(mg �m+ degL)Proof. The orollary follows diretly from: Theorem 2.3; the Whitney sum formulaapplied to (2.5.1), (2.5.2), and (A.3.2); and the fat that if  :E ! F is a generiallysurjetive map between bundles of the same rank on a smooth projetive urve, then1(E)� 1(F ) = [ok ℄(f. [F, A.2.3℄). �B.3. Examples. Here we present several standard examples. As a re�nement ofthe theory, we onsider the e�et of overing maps and projetions.Example 3.1. ([GH1, p. 270℄, [Pi1℄) Suppose that f has no inetionary points.Under the assumptions of Corollary 2.5.3, this means thatmXi=1 �i = 0 = �m+ 12 �(2g � 2) + (m+ 1) degLThis is only possible if g = 0 and degL = m, i.e., L = O(m). Counting dimensions,this means that ��(V ) = �(P1;O(m)), and the map f is just the embedding ofP1 as a rational normal urve of degree m in a linear subspae of dimension m inP(V ).



CURVES IN GRASSMANNIANS 63Remark 3.1.1. For a natural extension of the above example to a haraterizationof the Veronese embeddings of any Pn, f. [FKPT℄.Example 3.2. Weierstrass Points. ([GH1, p. 275℄) Let X have genus g � 1, andonsider the anonial morphism f :X �! Pg�1determined by the natural surjetion�: �(X;
X=k)X �! 
X=kReall Remark 1.2. The inetionary points for the anonial morphism are alledWeierstrass points. By de�nition, `x(0) = g, and sine deg
X=k = 2g � 2, we alsohave `x(2g� 1) = 0 for any point x 2 X. Therefore, there are g gap values at eahpoint of X. From Corollary 2.5.3, the total weight of all the Weierstrass points,i.e., the sum of the weights at eah point, isgXi=1(ai � i) = gXi=1 �i�1= �g2�(2g � 2) + g(2g� 2)= (g � 1)g(g+ 1)Example 3.3. Generalized Pl�uker Formulas. ([GH1, p. 270℄, [Pi1℄) Assume thatthe harateristi of k is zero or greater than t+1 and the degree of L. Let 1(Gi(L))denote the divisor lass of the determinant of the osulating bundle of order i. FromCorollary 2.5.3,(3.3.1) 1(Gt�1(L))� 21(Gt(L)) + 1(Gt+1(L)) = 1(
X=k)�Xx2X �k+1(x) � xLetting di = degGi(L) and taking degrees in (3.3.1) yields(3.3.2) dt�1 � 2dt + dt+1 = 2g � 2� �k+1The expressions (3.3.2) for t � 1 are alled the generalized Pl�uker formulas. Thenumber di is the degree of the osulating developable of order i, of the i-th assoiatedmap, and of the dual variety of order i, (4.2, 4.3).Example 3.4. Ellipti Curves. Let L be a line bundle of degree n+ 1 � 3 on anellipti urve E. Consider the inetion numbers �i, i = 1 : : : ; n, for the evaluationmap(�) �(E;L)E �! LBy Riemann-Roh, �i = 0 for i < n and �n � 1 at eah point, (f. 1.2). (We analso see that �n � 1 by Remark 2.3.2.) Thus, Corollary 2.5.3 says that there areexatly n+ 1 inetionary points. At eah of the inetionary points, �n = 1.



64 DAVID PERKINSONTheorem 3.4.1. (Kato [Ka℄) Choose any inetionary point for (�) to be theidentity in the group E. Then the inetionary points are exatly the points oforder n+ 1.Proof. Let p0; : : : ; pn be the inetionary points, and take p0 = 0 in the group E.By looking at the normal form, we see that the inetionary points are exatly thepoints where a hyperplane of P(�(E;L)) meets the image of E under the embeddingdetermined by (�) with multipliity n + 1 = degL, (1.3). Therefore, L �= O((n +1)p0), and (n+ 1)pi � (n+ 1)p0 for eah i. In other words, (n+ 1)pi = 0 for all i.Remark 3.4.2. Assuming that the harateristi of k is zero or greater than n+1,Corollary 2.5.3 and the omments made in the preeding example show that thereare (n+1)2 points of E where �n = 1. For an ellipti urve in the plane (i.e., n = 2)in harateristi three, there are three or zero points of order three, depending onwhether the urve is ordinary or supersingular, respetively, ([S, p. 106℄). By Kato'stheorem, this means that there are three or zero points where �2 = 1. In any ase,the sum of the inetion numbers is not nine. This shows that the assumption onthe harateristi in Theorem 2.3 and Corollary 2.5.3 is needed.Example 3.5. Let grd be a generi non-speial linear system of dimension r anddegree d without base points on a smooth projetive urve X over the omplexnumbers. Let f :X ! Pr be the orresponding map with inetion numbers �i.Canuto, [Cn℄, shows that �i = 0 for i = 1; : : : ; r � 1 for eah point of X and thatthere are exatly (r + 1)(rg � r + d) points where �r = 1, otherwise �r = 0.Example 3.6. Coverings. Let g:X ! Y be a �nite, separable morphism of smoothprojetive urves over k. We want to relate the inetion numbers for a map of Yinto projetive spae with those of the indued mapping of X.Suppose we are given a map fY :Y �! P(V )with orresponding surjetion to a line bundle�Y :VY �! LYComposing fY and g gives fX :X �! P(V )and the orresponding surjetion �X :VX �! LXwhere LX = g�LY .Let m+1 = dimk ��Y (V ) = dimk ��X (V ), and for i = 1; : : : ;m, let �X;i, �Y;i bethe inetion numbers for �X , �Y , respetively. The following result an be foundin [Pe1℄:



CURVES IN GRASSMANNIANS 65Proposition 3.6.1. Let ex be the rami�ation index at x 2 X. Then(1) For x 2 X, �X;i(x) = ex � �Y;i(g(x)) + ex � 1(2) Summing (1) over all points of X gives the following relation for globalinetion divisors:Xx2X �X;i � x = deg(g)Xx2X �Y;i � x+ i �Xx2X(ex � 1) � xAssume, in addition, that the harateristi of k is either zero or greater than t andthe degree of LX . Then(3) Letting Et( � ) denote the kernel of the map to the osulating bundle �t, thenatural map g�Pt(LY ) ! Pt(LX) of (A.2.4) indues an isomporphism ofexat sequenes0 ����! g�Et(LY ) ����! g�VY ����! g�Gt(LY ) ����! 0??y  ??y0 ����! Et(LX) ����! VX ����! Gt(LX) ����! 0(4) For any bundle F on X or Y , let 1( � ) denote the divisor lass of detF .Then 1(Gt(LX)) = g�1(Gt(LY ))In partiular, degGt(LX) = deg(g) degGt(LY )(5) For t � m, the natural map g�Pt(LY ) ! Pt(LX) is generially surjetive.The divisor orresponding to its okernel is�t+ 12 � �Xx2X(ex � 1) � x(6) For the inetion sheaves, (2.4), there is an exat sequene0 �! g� inftY �! inftX �! 

tX=Y 
 L �! 0Remark 3.6.2. Proposition 3.6.1 is losely related to the Riemann-Hurwitz The-orem. Summing (2) over i yields(�) mXi=1 Xx2X �X;i � x = deg g mXi=1 Xx2X �Y;i � x+ �m+ 12 �Xx2X(ex � 1) � xHowever, if we assume the harateristi of k is either zero or greater than m andthe degree of LX , Corollary 2.5.3 says thatmXi=1 �X;i = �m+ 12 �(2g(X)� 2) + (m+ 1) degLXand similarly for P�Y;i. Substituting this into (�) and simplifying gives theRiemann-Hurwitz Theorem:2g(X)� 2 = deg g (2g(Y )� 2) + Xx2X(ex � 1)



66 DAVID PERKINSONExample 3.7. Projetions. Suppose that V � �(X;L), and let W be a subspaeof V of dimension n = dimV � 1 of globally generating setions. Consider theindued map  :W � V ��! LThe orresponding map, g:X ! P(W ), is obtained from the original map, f , byprojetion from a point. We an ompare the inetionary behavior of f and g.(For the de�nition of an osulating spae, used in the following proposition, f.(B.4).)Proposition 3.7.1. Let f�igi=1;:::;n and f�igi=1;:::;n�1 be the inetion numbersfor f and g, respetively. If the point of projetion is ontained in the osulatingspae of order t at x but not in an osulating spae of order t� 1, then�i(x) = � �i(x); for i = 1; : : : ; t� 1�i+1(x) + 1; for i = t; : : : ; n� 1Proof. Choose a basis for V , �0; : : : ; �n, suh that ordx(�i) = i+ �i and suh that�0; : : : ; �̂t; : : : ; �n is a basis for W . Taking the orresponding normal forms for fand g, (1.3), we are projeting from the point (0; : : : ; 1; : : : ; 0)|whose oordinatesare all zero exept for the t-th|onto the hyperplane fxt = 0g. Sine the osulatingspae of order i is given by fxi+1 = � � � = xn = 0g, the result is lear. �Thus, the inetionary behavior of the projeted urve is the same as that forthe original urve exept at speial points. If a point of the original urve hassome osulating spae that passes through the point of projetion, the image willbe \more" inetionary.Example 3.8. Osulating urves. Let X be an irreduible plane urve, not ne-essarily smooth. Let X(t; d) be the subset of the projetive spae of plane urvesof degree d onsisting of urves meeting X with multipliity at least t + 1. Theseurves are said to osulate X with order t. To study X(t; d), we linearize the prob-lem, using the d-uple Veronese embedding, �d:P2 ! PN , with N = d(d+3)2 . Let ~Xdenote the normalization of X, and de�ne the map�d: ~X ! X � P2 �d�! PNThe urves of degree d osulating X with order t are in this way identi�ed withhyperplanes of PN that meet �d( ~X) with multipliity at least t+ 1.Basi results about X(t; d) appear in [Pe1℄, inluding a re�nement of Cayley'sformula for the number of sextati points on a plane urve, ([Ca℄): those pointswhere a oni meets the urve with multipliity at least six.B.4. Osulating Spaes and Higher Order Duals. We present the standardde�nitions of osulating spaes, developables, and assoiated maps, and we presenta de�nition, due to Piene, [Pi2℄, of higher order dual varieties. We then givePiene's interpretation of these onstrutions using osulating bundles along withher alulation of the degrees of these onstrutions.



CURVES IN GRASSMANNIANS 67For the main results of the paper, it is only neessary to be familiar with thede�nitions, (4.1), and their interpretation via osulating bundles, Proposition 4.2.4.As a new example, we onsider a urve in projetive spae, and onstrut a mapof the urve into a ag variety by onsidering the ag of osulating spaes of theurve at eah point. We alulate the lass of this urve in the intersetion ring ofthe ag variety, (4.4).De�nition 4.1. (See Proposition 4.2.4 for the interpretation of the onstrutionspresented here in terms of vetor bundles.) With the notation as at the beginningof this appendix, assume that f :X ! P(V ) spans a Pm. For t � m, the osulatingspae of order t at x 2 X is the unique t-plane having maximal order ontat withf(X) at f(x) along the branh orresponding to x. Taking a normal form for f atx, (1.3), and letting x0; : : : ; xn be the orresponding oordinates on Pn, this t-planeis given by fxt+1 = � � � = xn = 0g. For t > m, de�ne the osulating spae of ordert to be the Pm spanned by f . The osulating developable of order t of f (or f(X))is the union of the osulating spaes of order t.Let Ostx = Ostx(f) denote the osulating spae of order t at x. For t � m,assoiate eah point of X with its osulating t-plane in the Grassmannian of t-planes in P(V ) to get the t-th assoiated map of fft:X �! GtP(V )x 7! Ostx(f)The image of ft will be alled the t-th assoiated urve of f .The dual variety of order t for f is the set of hyperplanes|onsidered as a subsetof the dual projetive spae P(V �)|ontaining some osulating spae of order t.For t > m, the dual variety of order t is just the (n � m � 1)-dimensional linearspae of hyperplanes ontaining the Pm spanned by f .Let Htx = Htx(f) denote the set of hyperplanes ontaining the osulating spaeof order t at x. Taking a normal form for f at x and oordinates on Pn as above,a hyperplane de�ned by Pni=0 aixi is in Htx if and only if a0 = � � � = at = 0. Fort � m, de�ne the t-th dual map of f byf t:X �! Gn�t�1P(V �)x 7! HtxThe image of f t is alled the t-th dual urve of f .Remark 4.1.1. Let t � m. If f is birational to its image, then the osulatingspae of order t meets f(X) at f(x) along the branh orresponding to x withmultipliity t+ 1 + �t+1. For a general map, this number must be replaed byt+ 1+ �t+1deg fRemark 4.1.2. If X is not smooth, let �: ~X ! X be the map from the normal-ization of X, and de�ne all the onstrutions of De�nition 4.1 for f to be those off Æ �. In terms of line bundles, we are replaing � by���:V ~X �! ��LHene, if X is embedded in Pn as a urve with singularities, this de�nition allowsus to onsider the osulating spaes of X along its branhes.



68 DAVID PERKINSON4.2. Modern Viewpoint. In [Pi1℄, [Pi2℄, Piene has given the modern interpre-tation of the onstrutions of De�nition 4.1 using her osulating bundles. Thisappears as Proposition 4.2.4, below.Let Et(L) denote the kernel of the natural map to the t-th order osulatingbundle, �t, and onsider the exat sequene(4.2.1) 0 �! Et(L) �! VX �t�! Gt(L) �! 0This indues maps of projetive bundles(4.2.2) !t:P(Gt(L)) �! P(VX ) = X � P(V ) �2�! P(V )and(4.2.3) Æt:P(Et(L)�) �! P(V �X ) = X � P(V �) �2�! P(V �)where �2 denotes the seond projetion in both ases.Proposition 4.2.4. Assume that X is a smooth projetive urve and the hara-teristi of k is zero or greater than t and the degree of L. Then the image of the�ber at x, !t(P(Gt(L))x), is the osulating spae of order t at x, and similarly,Æt(P(Et(L)�)x) = Htx. Therefore, the image of !t is the osulating developable oforder t, and the image of Æt is the dual variety of order t.For t � m, the map X ! GtP(V ) indued by �t:X ! Gt(L) through theuniversal property of a Grassmannian is the t-th assoiated map. Similarly, themap X ! Gn�t�1P(V �) indued by the natural surjetion V �X ! Et(L)� is the t-thdual map of f .Corollary 4.2.5. With the assumptions of Proposition 4.2.4, the osulating devel-opable and dual variety of order t are irreduible.Proof. The osulating developable of order t is the image of P(Gt(L)), and the dualvariety of order t is the image of P(Et(L)�). �Remark 4.2.6. Let X � Pn be a smooth embedding of a urve in projetive spaedetermined by setions of a line bundle L. (Note: The disussion given here is easilygeneralized to the ase dimX > 1.) De�neY = f(x;H) 2 X � (Pn)� �� TxX � Hgwhere TxX is the embedded tangent spae to X at x. Letting NXPn be the normalbundle to X in Pn, we have that Y is isomorphi to P(NXPn) over X, ([F, 3.2.21℄).The dual variety to X is usually de�ned to be the image of the projetion Y !(Pn)�. However, sine TxX is just the �rst osulating spae at x, the dual varietyoinides with our dual variety of order one. In fat, Kleiman, [K1℄, shows that inour situation, E1(L) �= (NXPn)� 
 L. Sine L is a line bundle,P(E1(L)�) = P(NXPn 
 L�) �= P(NXPn)



CURVES IN GRASSMANNIANS 694.3. Degree of the Osulating Developable and the Higher Order Dual.The next proposition is Piene's omputation of the degrees of the osulating devel-opables and higher order dual varieties as yles in the intersetion ring of projetivespae.Proposition 4.3.1. Let t < m. Let X be a smooth projetive urve of genus g,and assume that the harateristi of k is zero or greater than t and the degree ofL. Then the dimension of the osulating developable of order t is t + 1 , and thedimension of the higher order dual variety of order t is n� t. In other words,dim(im!t) = t+ 1; dim(im Æt) = n� tFurther, deg(!t) deg(im!t) = deg(Æt) deg(im Æt)= deg(ft) deg(im ft)= deg(f t) deg(im f t)= dt = degGt(L)= �t+ 12 �(2g � 2) + (t+ 1) degL� tXi=0 �iwhere deg !t is the degree of the map from the domain to the image of !t andsimilarly for Æt, ft, and f t.Remark 4.3.2. Proposition 3.3.1 of the main body of the paper shows that ifthe harateristi of k is equal to zero or is larger than t and dt = degGt(L), andif f is birational to its image, then ft is birational to its image, i.e., the generiosulating spae of order t is the osulating spae of order t at only one point off(X). Similarly, f t is birational to its image.The birationality of !t and Æt seems to be a more diÆult question. One wouldnot expet !m�1 to be birational. For example, the tangent developable to a planeurve �lls the whole plane; the generi point on a tangent line will lie on othertangent lines as well. (On the other hand, sine fm�1 is birational to its image,so is Æm�1.) What if t < m � 1? This would imply the triseant lemma: that thegeneri seant of a nonplanar urve does not meet the urve again. For a proof ofthe triseant lemma, f. [L2, Lemma 15℄.Example 4.4. Flags. At eah point x 2 X, the osulating spaes form a ag oflinear subspaes of projetive spae,fxg � Os1x � Os2x � � � �Assoiating a point with its orresponding ag, in this way, determines a map ofthe urve into the variety of ags in projetive spae. We will ompute the lassof this urve in the intersetion ring of the variety of ags. For simpliity, assumethat f :X ! Pn is birational to its image and spans Pn.



70 DAVID PERKINSONLet F be the variety of omplete ags in Pn, ([F, 14.7.16℄). The points of F arethe ags of linear subspaes of PnL0 � L1 � � � � � Ln�1where dimLi = i. Fix suh a ag �0 � �1 � � � � � �n�1. A basis for the intersetionring of F in dimension one is`j = f(L0; : : : ; Ln�1) �� Li = �i for i 6= j; Lj � �j+1gfor j = 0; : : : ; n� 1. The dual basis in odimension one is`�j = f(L0; : : : ; Ln�1) �� Li \ �n�i�1 6= ;gDe�ne ~f :X ! Fx 7! (x;Os1x; : : : ;Osn�1x )The lass of ~f�(X) in the intersetion ring for F is[ ~f�(X)℄ = n�1Xi=0( ~f�(X) � `�i ) `iAssume that the assoiated maps, ft, are birational to their images; for example,we ould assume that the harateristi of k is zero or large enough (Proposition3.3.1 of main body of the paper). Then, ~f�(X) � `�i is the number of osulatingspaes of order i meeting a generi (n� i�1)-plane; in other words, it is the degreeof the osulating developable and the assoiated map, dt, (4.3.1). Thus, we �nd,[ ~f�(X)℄ = n�1Xi=0 dt`iB.5. Piene Duality Theorem. The purpose of this setion is to state Piene'sduality theorem for urves in projetive spae. This result, found in [Pi1℄, is themodern expression of the duality theorems of the nineteenth entury for urves inprojetive spae. A main result of our paper is an extension of her duality theoremto one for urves in Grassmannians.Let V � �(X;L) be a vetor spae of dimension n+1 of generating setions of aline bundle L on X. The orresponding map, f :X ! P(V ), spans P(V ). In (B.4),we de�ned the t-th assoiated mapft:X ! GtP(V )sending a point to its osulating spae of order t, and we de�ned the t-th dual mapf t:X ! Gn�t�1P(V �)sending a point x 2 X to the linear spae of hyperplanes ontaining the osulatingspae of order t at x.



CURVES IN GRASSMANNIANS 71De�nition 5.1. The dual of f is the mapf�:X �! P(V �)x 7! Osn�1xsending a point x 2 X to the osulating hyperplane at x. This dual is the (n�1)-thdual map of (B.4), i.e., f� = fn�1We saw in Proposition 4.2.4, with an assumption on the harateristi of k, thatthe assoiated map orresponds to the map of vetor bundles�t:VX ! Gt(L)There is an exat sequene0 �! Et(L) �! VX �t�! Gt(L) �! 0and the t-th dual map, f t, orresponds to the natural surjetion(�) V �X ! Et(L)�By Theorem 2.3, Gt(L) has rank t + 1 for t � n. Therefore, En�1(L) is a linebundle.Theorem 5.2. (Piene Duality Theorem, [Pi1℄) Let X be a smooth projetive urve,and assume that the harateristi of k is zero or greater than n and the degree ofL. Then the t-dual map of the dual map, f�, is the (n� t� 1)-th assoiated mapof f . In symbols, (f�)t = fn�t�1In partiular, the double dual of f is f , itself:(f�)� = fFor more disussion, see x7 of the main body of the paper.Referenes[AK℄ A. Altman and S. Kleiman, Introdution to Grothendiek Duality Theory, SpringerLeture Notes 146, Berlin, Heidelberg, New York, 1970.[Ba1℄ E. Ballio, Weierstrass loi for vetor bundles on urves, preprint (1994).[Ba1℄ , On the di�erential properties of algebrai morphisms into Grassmannians,preprint (1994).[Br℄ A. Brugui�eres, Maps of ellipti urves to Grassmannians, Compositio Math. 63 (1987),15{40.[Ca℄ A. Cayley, On the sextati points of a plane urve, Phil. Trans., CLV (1865), 545{578.[Cn℄ G. Canuto, Assoiated urves and Pl�uker formulas in Grassmannians, Invent. Math.53 (1979), 77{90.[E℄ W. L. Edge, The Theory of Ruled Surfaes, Cambridge Univ. Press, London, 1931.[F℄ W. Fulton, Intersetion Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1984.
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