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Abstract. The totally nonnegative Grassmannian Gr(k, n)≥0 is the subset of the real Grassmannian Gr(k, n)

consisting of points with all nonnegative Plücker coordinates. The circular Bruhat order is a poset isomor-

phic to the face poset of Postnikov’s positroid cell decomposition of Gr(k, n)≥0 [Pos05]. We provide a closed
formula for the sum of its weighted chains in the spirit of Stembridge [Ste02].

1. Introduction.

Let Sn be the symmetric group on [n] := {1, . . . , n}. An inversion of π ∈ Sn is a pair i, j ∈ [n] such
that i < j and π(i) > π(j). The number of inversions of π is its length, denoted `(π). The Bruhat
order on Sn is a partial ordering on Sn, graded by length. It arises in geometry as the face poset for the
Schubert decomposition of the variety of complete flags in Cn. Its cover relations have the form πsij l π
where sij := (i, j) is a transposition such that `(π) = `(πsij) + 1. The maximal element of the Bruhat
order, written in row notation, is πtop = [n, n − 1, . . . , 1] of length r :=

(
n
2

)
and the smallest element is

the identity permutation id = [1, 2, . . . , n] of length 0. In the Bruhat order, each maximal chain has the
form id = π0lπ1l. . .lπr = πtop. Let α1, . . . , αn be indeterminates. Define the weight of a covering πsijlπ
with i < j to be αi + αi+1 + · · ·+ αj−1, and then define the weight of a maximal chain to be the product of
the weights of its cover relations. In a result that extends to all Weyl groups, Stembridge [Ste02] shows that
the sum of the weights of the maximal chains is(

n
2

)
!

1n−12n−2 · · · (n− 1)1

∏
1≤i<j≤n

(αi + · · ·+ αj−1).

For instance, this formula reduces to
(
n
2

)
! after setting all weights αi = 1.

The totally nonnegative Grassmannian Gr(k, n)≥0 is introduced in [Pos05] as the subset of points in
the real Grassmannian Gr(k, n) which have all nonnegative Plücker coordinates. It is related to areas
as diverse as cluster algebras [GL], electrical networks [Lam18], solitons [KW11], scattering amplitudes
in Yang-Mills theory [AHBC+16], and the mathematical theory of juggling [KLS13]. Postnikov gave a
decomposition of Gr(k, n)≥0 into positroid cells defined by setting certain Plücker coordinates equal to
zero, and he conjectured that this decomposition forms a regular CW-complex. A generalization of that
conjecture due to Williams [Wil07] was proved by Galashin, Karp, and Lam [GKL20]. Our object of interest
is the face poset of this complex, known as the circular Bruhat order [Pos05, Section 17]. Postnikov’s work
provides characterizations in terms of many different combinatorial objects, e.g., decorated permutations,
Grassmannian necklaces, Le-diagrams, and equivalence classes of certain plabic (planar, bi-colored) graphs.
The list is extended by Knutson, Lam, and Speyer [KLS13] to include bounded affine permutations, bounded
juggling patterns, and equivalence classes of intervals in the k-Bruhat order for Sn.

Our purpose is to give a Stembridge-like formula for the circular Bruhat order. We define “circular”
analogues of Stembridge’s weights (Definition 3.1) and our main result, Theorem 3.2, provides a closed
formula for the sum of the weights of the maximal chains in the circular Bruhat order:

τ(k, n)(α1 + · · ·+ αn)k(n−k),
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where τ(k, n) is the number of Young tableaux for the k × (n − k) rectangle (cf. Example 3.3). Using the
hook formula for τ(k, n), the above expression becomes

(k(n− k))!

[
k∏
i=1

(k − i)!
(n− i)!

]
(α1 + · · ·+ αn)k(n−k).

Section 2 provides background and notation. The poset of bounded affine permutations, Bound(k, n), is

isomorphic to a lower order ideal in the Bruhat order for the Ãn−1 affine Coxeter group and is dual to the
circular Bruhat order [KLS13]. Throughout our paper, we use the language of bounded affine permutations,
including in the statement of our main result, Theorem 3.2. Section 3 states and proves Theorem 3.2. The
proof relies on two technical lemmas whose proofs are relegated to Section 4. These proofs rely on the
interpretation of Bound(k, n) in terms of intervals in the k-Bruhat order for Sn developed in [KLS13]. We
also use a result of Bergeron and Sottile [BS98, Corollary 1.3.1] on cyclic shifts of k-Bruhat intervals. Their
proof is a consequence of a symmetry they find for Littlewood-Richardson coefficients using geometry. It
would be nice to have a purely combinatorial proof of their cyclic shift result.

Acknowledgments. We thank Alex Postnikov for suggesting this project. We thank our anonymous ref-
erees for helpful comments.

2. Bounded affine permutations and the circular Bruhat order

We recall ideas and notation introduced in [KLS13], which built on earlier work by Postnikov on the

totally nonnegative Grassmannian [Pos05]. Our reference for the affine symmetric group is [BB96]. Let S̃n
denote the group of affine permutations consisting of bijections f : Z → Z satisfying f(i + n) = f(i) + n

for all i ∈ Z. We use the standard window notation f = [f(1), f(2), . . . , f(n)] to represent f ∈ S̃n. Define

the averaging function on S̃n by av(f) = 1
n

∑n
i=1(f(i) − i), and for 0 ≤ k ≤ n, let S̃kn := av−1(k). In

particular, S̃0
n is the affine symmetric group.

The affine symmetric group is generated by its simple reflections:

si =

{
[0, 2, 3, . . . , n− 1, n+ 1] if i = 0,

[1, 2, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] if 0 < i ≤ n− 1.

For instance,

[f(1), . . . , f(n)]s0 = [f(0), f(2), . . . , f(n− 1), f(n+ 1)] = [f(n)− n, f(2), . . . , f(n− 1), f(1) + n].

Then S̃0
n is Coxeter group of type Ãn−1 and is thus a graded poset under the Bruhat order. The reflections

for S̃0
n, i.e., the conjugates of the simple reflections, are

(1) [1, 2, . . . , i− 1, j − rn, i+ 1, . . . , j − 1, i+ rn, j + 1, . . . , n]

for 1 ≤ i < j ≤ n and r ∈ Z.
The mapping [f(1), . . . , f(n)] 7→ [f(1)−k, . . . , f(n)−k] is a bijection S̃kn → S̃0

n, and thus the Bruhat order

on S̃0
n induces a graded poset structure on S̃kn for which we now give an explicit description. A pair (i, j) ∈ Z2

is an inversion for f ∈ S̃kn if i < j and f(j) > f(i). Define an equivalence relation on the set of inversions
by (i, j) ∼ (i′, j′) if i′ = i+ rn and j′ = j + rn for some integer r. Then the length of f , denoted `(f), is the
number of equivalence classes of inversions of f . (This notion of length coincides with that inherited from the

Bruhat order [BB96, Proposition 4.1].) In general, if f ∈ S̃k′n and g ∈ S̃kn, then fg ∈ S̃k′+kn . In particular, S̃0
n

acts on S̃kn. If f, g ∈ S̃kn, then f covers g, denoted gl f , exactly when g = ft for some reflection t in S̃0
n and

`(f) = `(g) + 1.

A permutation f ∈ S̃n is bounded if i ≤ f(i) ≤ i + n for all i ∈ Z. For each 0 ≤ k ≤ n the bounded

elements of S̃kn are denoted

Bound(k, n) =
{
f ∈ S̃kn : i ≤ f(i) ≤ i+ n for all i ∈ Z

}
.

By Lemma 3.6 of [KLS13], Bound(k, n) is a lower order ideal in S̃kn and thus forms a graded poset with rank
function given by length.

The circular Bruhat order CB(k, n) was originally defined in [Pos05] in terms of decorated permutations.
These are permutations π ∈ Sn for which each fixed point is assigned a color—either black or white. The
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anti-excedances of a decorated permutation π are i ∈ [n] for which either π−1(i) > i or i is a white fixed
point. Then CB(k, n) is the set of decorated permutations with k anti-excedances and with a poset structure
determined by alignments and crossings in chord diagrams. See [Pos05] for details. As posets, Bound(k, n)
and CB(k, n) are anti-isomorphic, i.e. Bound(k, n) is isomorphic to the dual of CB(k, n). To go from a
bounded affine permutation f to a decorated permutation π, reduce the window of f modulo n, and then
color each fixed point i in the resulting permutation black if f(i) = i or white if f(i) = i+ n.

We translate the notion of an anti-excedance from decorated permutations to bounded affine permutations:

Definition 2.1. The anti-excedances of f ∈ Bound(k, n) are the integers f(i) − n such that i ∈ [n] and
f(i) > n.

One may check that the elements of Bound(k, n) are exactly the bounded affine permutations with k anti-
excedances.

To describe the poset structure on Bound(k, n) in detail, note that for a reflection of an element of
Bound(k, n) to remain in Bound(k, n), it is necessary (but not sufficient) that the integer r in (1) be 0 or 1.
Thus, for i, j ∈ [n] with i 6= j, we define

tij =

{
[1, 2, . . . , i− 1, j, i+ 1, . . . , j − 1, i, j + 1, . . . , n] if i < j,

[1, 2, . . . , j − 1, i− n, j + 1, . . . , i− 1, j + n, i+ 1, . . . , n] if i > j.

The cover relations in Bound(k, n) are given by g l f if and only if there exists tij such that g = ftij
and `(f) = `(g) + 1.

By Lemma 17.6 of [Pos05], the unique minimal element of Bound(k, n) is

fmin = [1 + k, 2 + k, . . . , n+ k].

The maximal elements are in bijection with
(

[n]
k

)
. Given λ ∈

(
[n]
k

)
, the corresponding maximal element is

fmax,λ(i) =

{
i+ n if i ∈ λ,

i otherwise.

We have `(fmin) = 0, and `(fmax,λ) = k(n − k) for any maximal element. By Proposition 23.1 of [Pos05],
the exponential generating function for the cardinality of Bound(k, n) is∑

0≤k≤n

|Bound(k, n)|xk y
n

n!
= exy

x− 1

x− ey(x−1)
.

For the rank generating function of Bound(k, n), see [Wil05].

3. Main theorem

Definition 3.1. Let α1, . . . , αn be indeterminates. The weight of a covering ftij l f in Bound(k, n) is the
sum of αi through αj−1 in cyclic order:

wt(ftij l f) =

{
αi + αi+1 + · · ·+ αj−1 if i < j,

αi + · · ·+ αn + α1 + α2 + · · ·+ αj−1 if i > j.

The weight of a saturated chain in Bound(k, n) is the product of the weights of its cover relations (the empty
chain is assigned weight 1).1 For r ∈ [n], a covering is r-good if αr appears in its weight. A saturated chain
in Bound(k, n) is r-good if all of its cover relations are r-good. For arbitrary r ∈ Z, we define r-good covers
and chains by replacing r with its representative in [n] modulo n.

Our main theorem is the following.

Theorem 3.2. The sum of the weights of the maximal chains in Bound(k, n) is

τ(k, n)(α1 + · · ·+ αn)k(n−k)

where τ(k, n) is the number of standard Young tableaux of a k × (n− k) rectangle.

1Since Bound(k, n) and the circular Bruhat order CB(k, n) are anti-isomorphic, their covers are in bijection, as are their

maximal chains. Thus, Theorem 3.2 could be stated as giving the sum of the weights of maximal chains in CB(k, n) .
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Example 3.3. Figure 1 illustrates Bound(2, 3) with its cover weights. The sum of the weights of its six
maximal chains is

α1α2 + α1(α1 + α3) + α2(α1 + α2) + α2α3 + α3α1 + α3(α2 + α3) = τ(2, 3)(α1 + α2 + α3)2,

where τ(2, 3) = 1 since there is only one standard Young tableau for the 2× 1 rectangle.

[3, 4, 5]

[4, 3, 5] [3, 5, 4] [2, 4, 6]

[4, 5, 3] [4, 2, 6] [1, 5, 6]

α1 α2 α3

α2

α1
+ α3

α
1 + α

2
α3 α1

α2 + α3

Figure 1. Bound(2, 3) with edge weights.

We say a saturated chain f0 l · · · l f` in a poset is upward-saturated if f` is maximal. The proof of
Theorem 3.2 follows from two lemmas whose proofs appear in the next section.

Lemma 3.4. Let f ∈ Bound(k, n). Then the number of r-good upward-saturated chains in Bound(k, n) with
minimal element f is independent of r.

Lemma 3.5. The number of n-good maximal chains in Bound(k, n) is τ(k, n).

Proof of Theorem 3.2. Let δ(f) be the number of r-good upward-saturated chains with minimal element
f ∈ Bound(k, n). This number is independent of r by Lemma 3.4. It follows that

(2)
∑
g:flg

δ(g) wt(f l g) =

n∑
r=1

αr

n∑
flg

r−good

δ(g) = δ(f)(α1 + · · ·+ αn).

Let C(m) denote the set of maximal chains C in Bound(k, n) such that min(C) = fmin and `(max(C)) = m.
We now show by induction on m that∑

C∈C(m)

δ(max(C)) wt(C) = δ(fmin)(α1 + · · ·+ αn)m

for 0 ≤ m ≤ k(n − k). In the case m = k(n − k), we are summing over maximal chains C of Bound(k, n).
For these δ(max(C)) = 1, and Theorem 3.2 will then follow from Lemma 3.5. The case m = 0 is a tautology
since the only element of Bound(k, n) with length 0 is fmin. To proceed with induction, fix some m with
0 ≤ m < k(n− k). Then∑

C∈C(m+1)

δ(max(C)) wt(C) =
∑

C′∈C(m)

∑
max(C′)lf

δ(f) wt(max(C ′) l f) wt(C ′)

=
∑

C′∈C(m)

δ(max(C ′))(α1 + · · ·+ αn) wt(C ′) (by (2))

= δ(fmin)(α1 + · · ·+ αn)m+1 (by induction).

�
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4. Proofs of lemmas

4.1. k-Bruhat order. Our references for the k-Bruhat order are [BS98] and [KLS13].

Definition 4.1. The k-Bruhat order ≤k on the symmetric group Sn is given by u ≤k v if

(1) u(i) ≤ v(i) for 1 ≤ i ≤ k;
(2) u(j) ≥ v(j) for k < j ≤ n;
(3) u(i) < u(j) implies v(i) < v(j) if 1 ≤ i < j ≤ k or if k < i < j ≤ n

The cover relations for the k-Bruhat order have the form u lk v if u l v (in the ordinary Bruhat order)
and {u(1), . . . , u(k)} 6= {v(1), . . . , v(k)}. Each interval [u,w]k in the k-Bruhat order is a graded poset of
rank `(w)− `(u).

Definition 4.2. A permutation w ∈ Sn is k-Grassmannian if w(1) < · · · < w(k) and w(k + 1) < · · · <
w(n). These are in bijection with λ ∈

(
[n]
k

)
by letting wλ be the unique k-Grassmannian permutation such

that {w(1), . . . , w(k)} = λ.

Denote the positions of the anti-excedances of f ∈ Bound(k, n) by

Λ(f) = {i ∈ [n] : f(i)− n is an anti-excedance of f} = {i ∈ [n] : f(i) > n} .

Then associate a k-Grassmannian permutation to f by

wf = wΛ(f).

Fixing λ ∈
(

[n]
k

)
, we define two posets. The first is the principal order ideal in the k-Bruhat order generated

by wλ:

Sn,λ = {u ∈ Sn : u ≤k wλ} .
As sets, Sn,λ and the usual Bruhat interval [e, wλ] are identical [KLS14, Proposition 2.5], although their
poset structures differ, in general. The second is

Bound(k, n)λ = {f ∈ Bound(k, n) : Λ(f) = λ}

with partial order ≤γ defined by its cover relations: f lγ g if f is covered by g in Bound(k, n) and the
covering f l g is n-good (γ is a mnemonic for “good”). Note that a covering ftij l f in Bound(k, n) is
n-good if and only if i > j, in which case Λ(ftij) = Λ(f).

Embed Sn in S̃n via u 7→ [u(1), . . . , u(n)] and define the translation element tk = [1 + n, 2 + n, . . . , k +

n, k + 1, k + 2, . . . , n] ∈ S̃kn. Taking our lead from [KLS13], for each u ∈ Sn,λ define fu = fu,λ = utkw
−1
λ .

Therefore,

fu(wλ(i)) =

{
u(i) + n if 1 ≤ i ≤ k
u(i) if k < i ≤ n.

Since wλ is k-Grassmannian and u ≤k wλ, we have 1 ≤ u(i) ≤ wλ(i) ≤ n for 1 ≤ i ≤ k, and wλ(i) ≤ u(i) ≤ n
for k < i ≤ n. Therefore, i ≤ f(i) ≤ i+ n for all i. Further, Λ(fu) = λ. Hence, fu ∈ Bound(k, n)λ.

For each f ∈ Bound(k, n)λ, define uf = uf,λ = fwλt
−1
k so that

uf (i) =

{
f(wλ(i))− n if 1 ≤ i ≤ k
f(wλ(i)) if k < i ≤ n.

Since λ = Λ(f), it follows that 1 ≤ uf (i) ≤ n for i ∈ [n]. To see that u ≤k wλ, first note that wλ(i) ≤
f(wλ(i)) ≤ wλ(i) + n for all i since f ∈ Bound(k, n). Properties (1) and (2) of Definition 4.1 then follow.
Property (3) holds since wλ is a k-Grassmannian element and, therefore, wλ(i) is increasing for 1 ≤ i ≤ k
and for k < i ≤ n.

Example 4.3. Let λ = {2, 4, 5} ∈
(

[5]
3

)
and f = [3, 6, 5, 9, 7]. Then wλ = [2, 4, 5, 1, 3], and f ∈ Bound(3, 5)λ

since its anti-excedances appear in positions 2, 4, and 5. We have uf = [1, 4, 2, 3, 5], which is formed by
first listing the anti-excedances of f , reduced modulo 5, as they appear in order by position in f , i.e.,
1 = 6−5, 4 = 9−5, and 2 = 7−5, and then listing the non-anti-excedances, 3 and 5. Reversing this process
yields fuf

= f .
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Proposition 4.4. Let λ ∈
(

[n]
k

)
. Then the mapping

(Sn,λ,≤k)→ (Bound(k, n)λ,≤γ)

u 7→ fu

is an isomorphism of posets with inverse f 7→ uf .

Proof. It is clear that u 7→ fu and f 7→ uf are inverses. We must show they preserve cover relations.
Let u, v ∈ Sn,λ with corresponding f := fu and g := fv in Bound(k, n). The condition that u lk v is
equivalent to:

1. There exists p ≤ k < q such that v = usp,q where sp,q = (p, q) is the transposition swapping p and q,
and

2. `(v) = `(u) + 1, i.e.,
(i) u(p) < u(q), and

(ii) there is no integer r such that p < r < q and u(p) < u(r) < u(q).

On the other hand, the condition that f lγ g is equivalent to:

1∗. There exists i < j such that f(i) is a non-anti-excedance, f(j) is an anti-excedance, g = ftji, and
2∗. `(g) = `(f) + 1, i.e.,

(i) f(j) < f(i) + n, and
(ii) there is no integer a such that j < a < i+ n and f(j) < f(a) < f(i) + n.

To show equivalence of these two sets of conditions, first suppose that u lk v ≤k wλ. We will show
that f lγ g. Take p ≤ k < q as in condition 1, and let i := wλ(q) and j := wλ(p). It follows from
the k-Bruhat order that i < j:

i = wλ(q) ≤ v(q) = u(p) ≤ v(p) ≤ wλ(p) = j.

We have that f(r) = g(r) for r ∈ [n] \ {i, j}, and

g(i) = g(wλ(q)) = v(q) = u(p) = f(wλ(p))− n = f(j)− n
g(j) = g(wλ(p)) = v(p) + n = u(q) + n = f(wλ(q)) + n = f(i) + n.

Therefore, condition 1∗ holds, and 2∗(i) follows from 2(i).
Condition 2∗(ii) says that the graph of f has no points inside a certain box:

j i+ n

f(j)

f(i) + n

tji

j i+ n

g(j) = f(i) + n

g(i+ n) = f(j).

To verify condition 2∗(ii) holds, it helps to divide the set of integers strictly between j and i+n into two parts:
X := {a ∈ Z : j < a ≤ n}, and Y := {a ∈ Z : n < a < i+ n}. If a ∈ X and f(a) is not an anti-excedance,
then f(a) < n < f(j) and, hence, condition 2∗(ii) is not violated. Similarly, if a ∈ Y and f(a − n) is an
anti-excedance, then f(i) + n ≤ 2n < f(a− n) + n = f(a) and, hence, 2∗(ii) is again not violated.

It remains to check anti-excedances whose positions are in X and non-anti-excedances whose positions
are in −n+ Y . Take a ∈ X and suppose that f(a) is an anti-excedance. Since a > j = wλ(p), there exists r
with p < r ≤ k < q such that f(a) = u(r) + n. By condition 2(ii), u(r) is not between u(p) and u(q), which
implies that f(a) is not between f(i) + n = u(q) + n and f(j) = u(p) + n in accordance with 2∗(ii). Now,
instead, take a ∈ Y and suppose that f(a − n) is not an anti-excedance. Since a − n < i = wλ(q), there
exists r with p ≤ k < r < q such that f(a − n) = u(r). As above, u(r) is not between u(p) and u(q), and
this implies that f(a) = u(r) + n is not between f(i) + n = u(q) + n and f(j) = u(p) + n.

We have shown that the mapping u 7→ fu preserves cover relations. The proof that its inverse f 7→ uf
preserves cover relations is similar. �

Remark. Theorem 3.16 of [KLS13] gives an isomorphism between Bound(k, n) and a posetQ(k, n) consisting
of classes of k-Bruhat intervals with respect to a certain equivalence relation. Identifying u ∈ Sn,λ with the
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equivalence class for the interval [u,wλ]k, Proposition 4.4 then shows that the isomorphism of [KLS13]
restricts to an isomorphism of the weak subposets Sn,λ ⊆ Q(k, n) and Bound(k, n)λ ⊆ Bound(k, n).

Corollary 4.5. Let f ∈ Bound(k, n) with corresponding k-Grassmannian permutation wf . Then the n-good
upward-saturated chains in Bound(k, n) with minimal element f are in bijection with the maximal chains in
the k-Bruhat interval [uf , wf ]k.

Proof. Let λ = Λ(f). Since an n-good covering preserves anti-excedance positions, upward-saturated n-good
chains in Bound(k, n) with minimal element f are exactly upward saturated chains in Bound(k, n)λ with
minimal element f . By Proposition 4.4 these are in bijection with upward saturated chains in Sn,λ with
minimal element uf . Since Sn,λ has unique maximal element wλ = wf , these upward-saturated chains are
exactly the maximal chains in [uf , wf ]k. �

Example 4.6. Let f = [2, 5, 4, 7] ∈ Bound(2, 4). Then wf = [2, 4, 1, 3] ∈ Sn. We have uf = [1, 3, 2, 4] and
fwf

= [1, 6, 3, 8]. As seen in Figure 2, the interval [uf , wf ]2 has two maximal chains:

[1, 3, 2, 4] l2 [1, 4, 2, 3] l2 [2, 4, 1, 3] and [1, 3, 2, 4] l2 [2, 3, 1, 4] l2 [2, 4, 1, 3].

Under the isomorphism of Proposition 4.4, these correspond to the two 4-good upward-saturated chains
in Bound(2, 4) with minimal element f :

[2, 5, 4, 7] l [2, 5, 3, 8] l [1, 6, 3, 8] and [2, 5, 4, 7] l [1, 6, 4, 7] l [1, 6, 3, 8].

[2, 4, 1, 3]

[1, 4, 2, 3] [2, 1, 4, 3] [2, 3, 1, 4]

[1, 2, 4, 3] [1, 3, 2, 4] [2, 1, 3, 4]

[1, 2, 3, 4]

[1, 6, 3, 8]

[2, 5, 3, 8] [4, 6, 3, 5] [1, 6, 4, 7]

[4, 5, 3, 6] [2, 5, 4, 7] [3, 6, 4, 5]

[3, 5, 4, 6]

Figure 2. The posets S4,λ and Bound(2, 4)λ in the case λ = {2, 4} ∈
(

[4]
2

)
. They are

isomorphic in accordance with Proposition 4.4.

4.2. Cyclic shifts. Define the cyclic shift of f ∈ Bound(k, n) by

χ(f) = [f(0) + 1, f(1) + 1, . . . , f(n− 1) + 1].

The following properties of χ are immediate: (i) i ≤ χ(f)(i) ≤ i+n for all i ∈ [n], (ii) χ(ftij) = χ(f)ti+1,j+1

for all reflections ti,j (with indices taken modulo n), and (iii) (i, j) ∈ Z2 represents an inversion for f if
and only if (i + 1, j + 1) represents an inversion for χ(f). Therefore, χ is an automorphism of the graded
poset Bound(k, n) and induces a faithful action of the cyclic group of order n on Bound(k, n). The following
is an immediate implication of property (ii).

Proposition 4.7. A saturated chain C in Bound(k, n) is r-good if and only if χ(C) is (r + 1)-good.

The following result of Bergeron and Sottile is an important step in the proof of Lemma 3.4.

Theorem 4.8 ([BS98, Corollary 1.3.1]). Let u ≤k v and x ≤k y in the k-Bruhat order on Sn, and suppose
that cvu−1c−1 = yx−1 where c = [2, 3, . . . , n, 1] = (1, 2, . . . , n). Then the intervals [u, v]k and [x, y]k have the
same number of maximal chains.
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4.3. Proofs of lemmas.

Proof of Lemma 3.4. For general g ∈ Bound(k, n), let δr(g) denote the number of r-good upward-saturated
chains in Bound(k, n) with minimal element g. Fix f ∈ Bound(k, n). We first show that Theorem 4.8 applies
to the pair of intervals [uf , wf ]k and [uχ(f), wχ(f)]k by checking that cufw

−1
f = uχ(f)w

−1
χ(f)c where c =

[2, 3, . . . , n, 1]. Let i ∈ [n]. Working modulo n,

cufw
−1
f (i) = cuf tkw

−1
f (i) = f(i) + 1 = χ(f)(i+ 1) = uχ(f)tkw

−1
χ(f)c(i) = uχ(f)w

−1
χ(f)c(i),

and the conclusion follows. Therefore, the number of maximal chains in [uf , wf ]k is the same as the number
of maximal chains in [uχ(f), wχ(f)]k and, by iteration, as the number of maximal chains in [uχr(f), wχr(f)]k
for all r ∈ [n]. Applying Corollary 4.5 and Proposition 4.7,

δn(f) = δn(χr(f)) = δr(f)

for all r ∈ [n]. �

Proof of Lemma 3.5. Let wmax = w{n−k+1,n−k+2,...,n}. Then [id, wmax]k is an interval of rank k(n − k)
consisting exactly of the k-Grassmannian elements of Sn. By Corollary 4.5 its maximal chains are in corre-
spondence with maximal n-good chains in Bound(k, n).

Let L(k, n − k) denote the poset of Young diagrams fitting inside a k × (n − k) rectangle, ordered by

containment, as usual. There is a well-known correspondence between
(

[n]
k

)
and L(k, n− k): given λ ∈

(
[n]
k

)
with λ = {λ1 < · · · < λk}, let Yp(λ) be the Young diagram corresponding to the partition p(λ) = {p1 > · · · >
pk} where pi := (n − k) − λi + i. In English notation, Yp(λ) is the diagram determined by the left-down

walk in Z2 from (k, n− k) to (0, 0) whose λi-th step is its i-th vertical step. This correspondence yields an
anti-isomorphism wλ 7→ Yp(λ) from the interval [id, wmax]k with its k-Bruhat order and L(k, n − k). The
result now follows since Young tableaux for the k × (n − k) rectangle are in bijection with maximal chains
in L(k, n− k). �
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