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Foreword

These are lecture notes from a course in real analysis first given at Reed College in the
Fall of 2001. The following year, the course was repeated, but this time, each lecture was
assigned to a student “scribe”. The scribe was in charge of typesetting the notes in TEX.
I edited these TEX-ed notes, spliced them, and added an index. The final chapter of the
notes consists of homework problems. In addition to these problems, there are exercises
sprinkled throughout the text for the careful reader.

By the time they get to this course, Reed students have already had an introduction to
analysis (typically in the second semester) and a year-long course in multivariable calculus.
These notes are an attempt to take advantage of this background.

The material on metric spaces is based on I. Kaplansky’s Set Theory and Metric Spaces
[3] and the material on measure theory and integration is based on R. Bartle’s The elements
of integration and Lebesgue measure [1]. Other references I found useful: Topology; A First
Course, [5] by J. Munkres, Principles of mathematical analysis, [6] by W. Rudin, Real
analysis: modern techniques and their applications, [2] by G. Folland, and Introductory
Real Analysis, [4] by A. N. Kolmogorov and S. V. Fomin.

Acknowledgments. I would like to thank the Reed students that helped to make these
notes: Asher Auel, Brendan Bauer-Peters, Rebecca Beachum, Ryland Bell, John Collins,
Katie Davis, Rory Donovan, Rachel Epstein, Ananda Floyd, Harold Gabel, Jeffrey Green,
Thomas Harlan, Alice Hill, Jeffrey Hood, Ethan Jewett, Sean Kelly, Eric Lawrence, Jeremy
Levin, Michael Lieberman, Alexa Mater, Christian McNeil, Morgan Miller, Megan Othus,
Duncan Ramsey, David Rosoff, John Saller, Candace Schenk, Eric Scheusner, and Nakul
Shankar.

Thanks also to Irena Swanson and to J. J. P. Veerman for extensive useful suggestions.
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Chapter 1

Metric Spaces

1. Equivalence Relations

Definition 1.1. A relation on a set S is a subset R ⊆ S×S. If (a, b) ∈ R, we write a ∼R b
(or just a ∼ b).

Example 1.2.

(1) Let S be the set of members of our class, and let (a, b) ∈ R if person a is shorter
than person b.

(2) Let S = Z and R = {(a, b) ∈ Z | b = 2a}. Thus, 4 ∼ 8 and 8 ∼ 16.

Definition 1.3. A relation ∼ on a set S is an equivalence relation if for all a, b, c ∈ S,

(1) a ∼ a (reflexivity)

(2) a ∼ b =⇒ b ∼ a (symmetry)

(3) a ∼ b, b ∼ c =⇒ a ∼ c (transitivity).

Example 1.4. Examples of equivalence relations:

(1) a ∼ b in Z if a and b have the same parity.

(2) a ∼ b in Z if a− b is an integer multiple of some fixed number n.

(3) p ∼ q in R2 if p− q ∈ Z2 (a donut)

(4) p ∼ q on a sphere in R3 if p, q are equal or antipodal.

Example 1.5. a ∼ b in Z if a = 2b is not an equivalence relation.

Partitions. An equivalence relation on a set is the same thing as a partition. If ∼ is an
equivalence relation on a set S, then for each a ∈ S, define the equivalence class of a to
be the subset Sa := {b ∈ S | b ∼ a}. Then for all a, b ∈ S, we either have Sa = Sb or
Sa ∩ Sb = ∅ (check!). Thus, the collection of distinct equivalence classes forms a partition
of S.

Conversely, suppose we have a partition of S. Say S = ∪α∈ITα for some index set I,
with the Tα pairwise disjoint. Define a ∼ b in S if a, b ∈ Tα for some α. Then ∼ is an
equivalence relation on S (check!).

1



2 1. Metric Spaces

2. Cardinality I

Definition 2.1. Two sets S and T have the same cardinality if there is a bijection f : S → T .

Proposition 2.2. Let F be a collection of sets. For S, T ∈ F , say S ∼ T if S and T have
the same cardinality. Then ∼ is an equivalence relation on F .

Proof. For reflexivity, use the identity map; for symmetry, the inverse of bijection is bijec-
tion; and for transitivity, a composition of bijections is bijection. �

Definition 2.3. A set is countably infinite if it has the same cardinality as N = {1, 2, 3, . . . }.
A set is countable if it is countably infinite or finite.

Proposition 2.4. A subset of a countable set is countable.

Proof. We may assume S is a subset of N. By the well-ordering principle, S has a smallest
element, say s1. Then S \ {s1} has a smallest element s2, etc. We get a list of all elements
of S: s1 < s2 < s3 . . . . �

Theorem 2.5. A countable union of countable sets is countable.

Proof. Let S1, S2, . . . be a list of countable sets. List the elements of each Si: si1, si2, si3 . . .
(If Si is finite with k elements, define sij = sik for j ≥ k)

List the Si’s in an array
s11 s12 s13 · · ·
s21 s22 s23 · · ·
s31 s32 s33 · · ·
...

...
...

. . .
Then list the elements in the array by reading off the diagonals:

s11, s12, s21, s13, s22, s31, s14, s23, . . .

Throw out repeats to get a list of elements of ∪Si. �

Corollary 2.6. Z is countable.

Proof. Z = {. . . ,−2,−1} ∪ {0} ∪ {1, 2, . . . }. �

Corollary 2.7. Q is countable.

Proof. For each n ∈ N, define Qn = { an ∈ Q | a ∈ Z}. Then Q =
S
n∈NQn and each Qn is

countable (easy bijection to Z). �

Definition 2.8. α ∈ C is algebraic if there exists f ∈ Z[x] such that f(α) = 0.

Theorem 2.9. The collection A of algebraic numbers is countable.

Proof. For each f ∈ Z[x], let roots(f) = {α ∈ C | f(α) = 0}. Then roots(f) is finite for
all f . We can write A = ∪f∈Z[x]roots(f), so it suffices to show that Z[x] is countable. Note
Z[x] = ∪d≥0Z[x]d where Z[x]d is in the collection of polynomials in Z[x] with degree d. So
it is sufficient to show Z[x]d is countable for each d.

For each f ∈ Z[x] where

f =
d∑
i=0

aix
i



3. Cardinality II 3

define

m(f) :=
d∑
i=0

|ai|.

Then
Z[x]d = ∪k≥0{f ∈ Z[x]d | m(f) = k}

This exhibits Z[x]d as a countable union of finite sets. Hence, Z[x]d is countable. �

Theorem 2.10 (Cantor 1892, first proof 1874). R is not countable.

Proof. It suffices to show some subset of R is uncountable. Let T be all non-negative reals
less than 1 with decimal expansion involving only 0s and 1s. Suppose T is countable; say
f :N→ T is a bijection. Define x ∈ T by x = 0.x1x2x3 . . . where xi is 0 if the i-th digit of
f(i) is 1, else xi = 1. Then x differs from f(i) in the i-th digit for all i. Thus, x is not in
the image of f , contradicting the fact that f is a bijection. �

3. Cardinality II

Theorem 3.1. R is uncountable.

Corollary 3.2. Transcendental (i.e., nonalgebraic) real numbers exist.

Proof. Real algebraic numbers are countable, and R is not. �

In 1873, Hermite showed that e is transcendental, and in 1882, Lindemann showed π is
transcendental. Hilbert’s seventh problem was to show that αβ is transcendental if α, β are
algebraic, α 6= 0, 1, and β is irrational. (Eg., 7

√
2, ii = e−π/2). This was proved by Gelfond

in 1934.

Definition 3.3. Let S and T be sets. We’ll write

(1) |S| = |T | if S and T have the same cardinality,

(2) |S| ≤ |T | if there is an injection S ↪→ T , and

(3) |S| < |T | if |S| ≤ |T | and there does not exist an injection T ↪→ S.

Facts:

• If |S| ≤ |T | and |T | ≤ |S|, then |S| = |T | (Cantor-Bernstein Theorem).

• If |S| ≤ |T | and |T | ≤ |U |, then |S| ≤ |U |.
• For all S, T , either |S| ≤ |T | or |T | ≤ |S|.

Notation: If S is a set, then 2S is the set of all subsets of S.

Note: If S is finite, we’ll identify |S| with a natural number in the usual way. Then if S is
finite, |2S | = 2|S|.

Theorem 3.4. For every set S, |S| < |2S |.

Proof. First note that |S| ≤ |2S | using the natural injection,

S → 2S

x 7→ {x}



4 1. Metric Spaces

We’ll now show there is no surjection f :S � 2S . Suppose there is. Define

B = {s ∈ S | s /∈ f(s)}.

Since f is surjective, there exists b ∈ S such that f(b) = B. Question: Is b ∈ B? If yes,
then b ∈ B = f(b), so b /∈ B. If no, then b /∈ B = f(b), so b ∈ B. This is a contradiction.
�

What if we had defined B = {s ∈ S | s ∈ f(s)}?

Russell’s Paradox. Let U be the set of all sets. How could we have |U| < |2U|?

The problem here is that U is not a set. (To adapt the argument we used above to this
specific situation, consider the set B = {A ∈ U | A /∈ A}. Is B ∈ B? Albeit it strange, it is
possible for a set to be an element of itself. Can you think of an example?)

Fact: |2N| = |R|. Can you prove this?

Continuum Hypothesis (Hilbert’s First Problem). Is there a set S such that |N| <
|S| < |R|? The continuum hypothesis (CP) is that there is no such S. In 1938, K. Gödel
showed that CP is consistent with the ZF axioms, then in 1963, P. Cohen showed that the
negation of CP is consistent with the ZF axioms. So CP is independent of the ZF axioms.
We’re free to accept or reject it as a new axiom.

4. Metric Spaces

Definition 4.1. A metric space is a set M and a function d : M ×M → R, called the
metric on M , such that for all x, y, z ∈M ,

(1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y (positive definite),
(2) d(x, y) = d(y, x) (symmetry),
(3) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Example 4.2.

(1) M = R , d(x, y) = |x− y|.
(2) M = Rn, d(x, y) = |x− y| =

√∑n
i=1(xi − yi)2.

(3) M = Rn, d(x, y) = max1≤i≤n{|xi − yi|}.
(4) M = Rn, d(x, y) =

∑n
i=1 |xi − yi|.

(5) M = C([a, b]) = the continuous functions on [a, b] ⊆ R, d(f, g) = maxa≤t≤b |f(t)−
g(t)|.

(6) If (M,d) is a metric space andN ⊆M , then (N, d) is a metric space, too (restricting
d to N).

(7) Given any set M , the discrete metric on M is defined by

d(x, y) =
{

0 if x = y
1 if x 6= y

Definition 4.3. Fix a metric space (M,d). The open ball in M centered at x ∈ M with
radius r > 0 is the set B(x; r) = {y ∈M | d(x, y) < r}. The closed ball of radius r centered
at x is {y ∈M | d(x, y) ≤ r}.
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Definition 4.4. A subset U ⊆M is open if it contains an open ball about each of its points,
i.e, for all u ∈ U , there exists r > 0 such that B(u; r) ⊆ U .

Proposition 4.5. An open ball is open.

Proof. Given B(x; r), take y ∈ B(x; r). Claim: B(y, r − d(x, y)) ⊆ B(S; r). To see this,
note that

z ∈ B(y, r − d(x, y)) ⇒ d(y, z) ≤ r − d(x, y)⇒ d(x, y) + d(y, z) ≤ r

4-ineq.
=⇒ d(x, z) ≤ r ⇒ z ∈ B(x; r).

�

Proposition 4.6.

(1) ∅ is open.
(2) M is open
(3) If {U}α∈I is any collection of open sets, then ∪α∈IUα is open.

(4) For any k ∈ N, if U1, . . . , Uk are open, then so is ∩ k
i=1Ui.

Note. Arbitrary intersections of open sets are not always open. For example, in R with
the usual metric, let Un = (− 1

n ,
1
n). Then ∩n≥0Un = {0}, which is not open. In fact, if

arbitrary intersections of open sets are open in some metric space, then every subset of that
space is open (see the homework).

Definition 4.7. A neighborhood of a point x ∈ M is any set containing an open set
containing x.

Question: What are the open subsets of the real numbers (with usual metric)?

5. Closed Sets and Limits

Let (M,d) be a metric space.

Definition 5.1. Let S ⊆M . A point x ∈M is a contact point of S if every neighborhood
of x contains a point of S. A point x ∈ M is a limit point of S if every neighborhood of x
contains infinitely many points of S. A point s ∈ S is an isolated point of S if there is some
neighborhood of s containing no other points of S besides s. A point s ∈ S is an interior
point of S if there is a neighborhood U of s contained in S.

Thus, every limit point is a contact point, and a contact point is either a limit point or
an isolated point (cf. homework).

Example 5.2. Let M = R with the usual metric.

(1) The set of contact points of S = (0, 1) ⊂ R is [0, 1], which is the same as its set of
limit points.

(2) The set of contact points of S = N ⊂ R is just S, itself, and S has no limit points.
Every point of S is isolated.

Definition 5.3. The closure of S ⊆M , denoted S, is the set of all contact points of S.

Proposition 5.4.
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(1) S ⊆ S.

(2) S ⊂ T =⇒ S ⊂ T .

(3) S = S.

(4) S ∪ T = S ∪ T .

(5) ∅ = ∅.
(6) It is not necessarily true that S ∩ T = S ∩ T .

Proof. The proofs are straightforward. We’ll do (4). First note S ∪ T ⊇ S and S ∪ T ⊇ T ,
so by part (2), we have S ∪ T ⊇ S and S ∪ T ⊇ T . Thus S ∪ T ⊇ S ∪ T . For the converse,
suppose x /∈ S ∪ T . Therefore, there exists neighborhoods U , V of x with U ∩ S = ∅ and
V ∩ T = ∅. Let W = U ∩ V . Then W is a neighborhood of x such that W ∩ (S ∪ T ) = ∅.
Thus x /∈ S ∪ T , so S ∪ T ⊆ S ∪ T . �

Definition 5.5. S ⊆M is closed if S = S.

Example 5.6. Let d be the discrete metric and x ∈M . Then B(x; 1) = {x}, and B(x; 1) =
{x}. However, {y ∈M | d(x, y) ≤ 1} = M .

Proposition 5.7. S is closed if and only if it contains its limit points.

Proof. Exercise. �

Proposition 5.8. Single point sets are always closed.

Proof. Homework. �

Theorem 5.9. S is closed if and only if its complement Sc is open.

Proof. Sc is open ⇐⇒ Sc contains a neighborhood about each of its points ⇐⇒ no point
in Sc is a contact point of S ⇐⇒ S contains its contact points ⇐⇒ S is closed. �

Corollary 5.10.

(1) ∅ is closed.

(2) M is closed.

(3) Arbitrary intersections of closed sets are closed.

(4) Finite unions of closed sets are closed.

Proof. Take complements in the analogous theorem for open sets. �

Definition 5.11. A sequence {xn} in M converges to x ∈ M if for all ε > 0, there exists
N > 0 such that n ≥ N ⇒ d(xn, x) < ε. Notation: xn → x.

Thus, xn → x if and only if d(xn, x)→ 0 in R.

Theorem 5.12. Let x ∈M .

(1) The point x is a contact point of S ⊆M if and only if there exists a sequence {xn}
in S such that xn → x.

(2) The point x is a limit point of S ⊆ M if and only if there exists a sequence {xn}
of distinct points in S such that xn → x.
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6. Continuity

Definition 6.1. Let (X, dX) and (Y, dY ) be metric spaces. A function f :X → Y is continu-
ous at x0 ∈ X if for all ε > 0, there exists δ > 0 such that dX(x0, x) < δ ⇒ dY (f(x0), f(x)) <
ε.

Theorem 6.2. f : X → Y is continuous at x0 if and only if for each neighborhood V of
f(x0) there is a neighborhood U of x0 such that f(U) ⊆ V .

Proof. Straightforward. �

Theorem 6.3. f is continuous at x0 if and only if for each sequence xn → x0 we have
f(xn)→ f(x0), i.e. limn f(xn) = f(limn xn).

Proof. (⇒) Suppose f is continuous at x0 and xn → x0. Let ε > 0. By continuity, there
exists δ > 0 such that dX(x0, x) < δ ⇒ dY (f(x0), f(x)) < ε. Since xn → x0, there exists N
such that n ≥ N ⇒ dX(x0, xn) < δ. Hence, n ≥ N ⇒ dY (f(x0), f(xn)) < ε, as required.

(⇐) Suppose f is not continuous at x0. Then there is some ε > 0 such that for each
δn = 1

n , n = 1, 2, 3, . . . , there is an xn with dX(x0, xn) < δn = 1
n , but dY (f(x0), f(xn)) ≥ ε.

Then xn → x0, yet f(xn) 6→ f(x0). �

Theorem 6.4. Suppose X
f−→ Y

g−→ Z are mappings of metric spaces, f is continuous at
x, and g is continuous at f(x). Then g ◦ f is continuous at x.

Proof. Exercise. �

Definition 6.5. f : X → Y is continuous if it is continuous at all points x ∈ X.

Theorem 6.6. Let f : X → Y be a mapping of metric spaces. Then the following are
equivalent.

(1) f is continuous.
(2) For all open subsets S ⊆ Y , it follows that f−1(S) ⊆ X is open.
(3) For all closed subsets S ⊆ Y , it follows that f−1(S) ⊆ X is closed.

Proof. (1 ⇒ 2) Suppose f is continuous and V ⊆ Y is open. Let x ∈ f−1(V ). We need
to find an open set U containing x and contained in f−1(V ). This follows directly from
Theorem 4 in the previous notes.

(2 ⇔ 3) This is immediate since f−1(Sc) = f−1(S)c for any set S ⊆ Y .

(2 ⇒ 1) Exercise. �

Corollary 6.7. Let f : X → Y be a continuous mapping of metric spaces, and let y ∈ Y .
Then f−1(y) is a closed subset of X.

Proof. This follows since {y} is a closed subset of Y (cf. homework). �

Proposition 6.8. Suppose f, g : X → Y are continuous mappings of metric spaces. Define
B = {x ∈ X | f(x) = g(x)}. Then B is closed.

Proof. Suppose {xn} is a sequence in B converging to a point x ∈ X. Since f and g are
continuous, f(x) = limn f(xn) = limn g(xn) = g(x). Hence, x ∈ B. So B contains its limit
points. �
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Definition 6.9. A subset X ⊆M is dense if X = M .

Proposition 6.10. Suppose f, g : X → Y are continuous mappings of metric spaces and
f, g agree on a dense subset A ⊆ X. Then f = g on X.

Proof. Let B = {x ∈ X | f(x) = g(x)}. Then A ⊆ B ⊆ X. It follows that A ⊆ B. But
A = X since A is dense in X, and B = B by Proposition 6.8. Thus, B = X, as required. �

7. Miscellaneous

7.1. The Cantor Set.

Definition 7.1. The Cantor set is the set C = ∩i≥0Fi, where F0 is the closed interval [0, 1],
and each Fn is the set Fn−1 with the open middle third of each of its connected subintervals
removed.

C is closed since each Fi is a finite union of closed sets, hence closed, and C is the
intersection of closed sets, hence closed.

By construction, a number x ∈ [0, 1] is in the Cantor set if and only if it has a base-3
expansion as x = 0.a1a2a3 . . . where each ai ∈ {0, 2}. So x = a1

3 + a2
32 + a3

33 + . . . (Fine point:
Note that 1

3 = 0
3 + 2

32 + 2
33 + . . . )

Theorem 7.2. C is uncountable.

Proof. There is a surjection C ↔ [0, 1] as follows: Given x ∈ C with base-3 expansion
0.x1x2x3 . . . involving only 0’s and 2’s, associate x̃ ∈ [0, 1] with base-2 expansion x̃ =
0.x̃1x̃2x̃3 . . . where

x̃i =
{

0 if xi = 0
1 if xi = 2

�

Bonus Fun Facts:

(1) C has no isolated points. To see this, let x ∈ C = ∩iFi, and let U be any open
interval containing x. For each n, there is a closed interval In ⊂ Fn containing x.
Choosing n large enough, we may assume In ⊂ U . Both endpoints of In are in
Fn, and at least one of them is different from x. Thus, every neighborhood of x
contains a point of Fn different from x.

(2) C + C = [0, 2] (cf. Homework 2).

7.2. Open Subsets of R.

Definition 7.3. Let X ⊆ R. A point b ∈ R is the infimum of X if the following two
properties hold:

(1) b ≤ x for all x ∈ X (i.e., b is the lower bound).
(2) If c ≤ x for all x ∈ X, then c ≤ b (i.e., b is the greatest lower bound).

In this case, we write b = inf X.

A point b ∈ R is the supremum of X if the following two properties hold:

(1) b ≥ x for all x ∈ X (i.e., b is an upper bound).
(2) If c ≥ x for all x ∈ X, then b ≤ c (i.e., b is the least upper bound).



8. Completeness 9

In this case, we write b = supX.

Facts.

(1) If X is bounded above, then supX exists, and if X is bounded below, then inf X
exists.

(2) inf X and supX are unique if they exist.
(3) inf X and supX may or may not be elements of X.
(4) inf X = − sup(−X) where −X = {−x | X} (prove this!).
(5) If inf X exists, then for all ε > 0, there exists y ∈ X such that |x − y| < ε, so

x ≤ y < x+ ε. A similar result holds for supremums. (Prove this, too!)

Theorem 7.4. The open subsets of R are exactly countable unions of disjoint open intervals.

Proof. Let U ⊆ R be an open subset, and u ∈ U . Let Iu be the union of all open intervals
containing u and contained in U . Since U is open, Iu 6= ∅. Let a = inf Iu and b = sup Iu,
allowing a = −∞ and b =∞, if necessary.

Claim: Iu = (a, b). To see this, first note that neither a nor b is in Iu. For instance, if
a where in Iu, then Iu, being open, would contain an interval about a. However, then Iu
would contain elements smaller than a, contradicting the definition of a.

It is therefore clear that Iu ⊆ (a, b). To get the opposite inclusion, let x ∈ (a, b). We’ll
show x ∈ Iu. We may assume x 6= u. Suppose a < x < u (a similar argument will hold if
u < x < b). Since a = inf Iu, there exists y ∈ Iu such that a < y < x < u. By definition of
Iu, there is an open interval in U containing y and u. Since x is in that interval, it must be
in Iu, too.

Given any u, v ∈ U , we either have Iu = Iv or Iu ∩ Iv = ∅. This is because the union of
non-disjoint open intervals is an open interval.

We have thus shown that every open subset of R is a union of pairwise disjoint open
intervals. Since each of these intervals contains a rational number, and the rational numbers
are countable, the number of intervals occurring in the union is countable, too. �

8. Completeness

Definition 8.1. A sequence {xn} in a metric space (M,d) is a Cauchy sequence if for all
ε > 0, there exists N such that m,n ≥ N ⇒ d(xm, xn) < ε.

Theorem 8.2. Every convergent sequence is a Cauchy sequence.

Proof. Let xn → x. Then given ε > 0, there exists N such that n ≥ N ⇒ d(xn, x) < ε
2 .

Therefore, if m,n ≥ N , it follows from the triangle inequality that d(xm, xn) ≤ d(xm, x) +
d(x, xn) < ε

2 + ε
2 = ε, as required. �

Not every Cauchy sequence is convergent. For instance, consider the metric space Q,
and take any sequence of rational numbers converging to

√
2 ∈ R. The sequence will be

Cauchy, but its limit is not in Q.

Theorem 8.3. If {xn} has a subsequence {xni} converging to a point x, and {xn} is a
Cauchy sequence, then xn → x.

Proof. Homework. �
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Definition 8.4. If S is a subset of a metric space M , then the diameter of S is diam(S) =
sups,t∈S d(s, t). We say S is bounded if diam(S) <∞.

Example 8.5. If S = (−1, 1) ⊆ R, then diam(S) = 2.

Theorem 8.6. Every Cauchy sequence is bounded.

Proof. Let {xn} be a Cauchy sequence. Then there exists N such that d(xn, xN ) < 1 for
every n ≥ N . Let b = max1≤i≤N d(xi, xN ), then let B = max{b, 1}. It follows that for all
i ≥ 1 we have d(xi, xN ) ≤ B. By the triangle inequality, d(xi, xj) ≤ d(xi, xN ) +d(xN , xj) ≤
B +B = 2B for all i, j ≥ N . Therefore {xn} is bounded. �

Definition 8.7. If every Cauchy sequence in a metric space M converges (to a point in M)
then M is said to be complete.

Example 8.8.

• Q is not complete.

• The open interval (0, 1) is not complete.

• Every discrete metric space is complete. Why?

• R is complete. (We’ll talk about this later.)

• Rn is complete. (A proof follows, below.)

• C([a, b]) with the metric d(f, g) = maxt∈[a,b] |f(t) − g(t)| is complete (cf. Theo-
rem 6.6 of Homework 6). This metric is called the uniform metric and convergence
in this metric is called uniform convergence. Why?

• Let M be the collection of all bounded sequences x = {xn}, and define d(x, y) =
supn |xn−yn|. (Why does this sup always exist?) The metric space M is complete.
(Cf. homework.)

Theorem 8.9. Rn is complete.

Proof. (We’ll assuming R is complete.) Suppose {xi} is a Cauchy sequence in Rn. Write
xi = (xi1, xi2, ..., xin) for each i. Let ε > 0. We can choose N such that i, j ≥ N , implies
|xi − xj | < ε. But |xi − xj | =

√∑n
k=1(xik − xjk)2 ≥ |xis − xjs| for all s. So for each s, if

i, j ≥ N we have |xis−xjs| < ε. Hence, for each s, we have that {xis} is a Cauchy sequence
in R. Since R is complete, for every s, there exists ys such that limi xis = ys. Define
y = (y1, y2, ..., yn) ∈ Rn. Claim: xn → y. To see this, take ε > 0. For each s = 1, . . . , n,
there exists Ns such that i ≥ Ns ⇒ |xis − ys| < ε√

n
. Let N = max1≤s≤n{Ns}. Then

i ≥ N ⇒ |xi − y| =
√∑n

k=1(xik − yk)2 <
√∑n

k=1( ε√
n

)2 = ε. �

Example 8.10. If f : X → Y is a continuous mapping of metric spaces with a continuous
inverse, and X is complete, it does not necessarily follow that Y is complete. For example,
consider f : R→ (0,∞) defined by f(x) = ex. What is wrong with the following “proof” to
the contrary:

Fake proof. Let {yn} be a Cauchy sequence in Y , and let ε > 0. Since f−1 is continous,
there exists δ > 0 such that dX(f−1(y), f−1(ỹ)) < ε whenever dY (y, ỹ) < δ. Since {yn}
is Cauchy, there exists N such that for all m,n ≥ N , we have dY (ym, yn) < δ. Hence,
defining xn = f−1(yn), we have dX(xm, xn) < ε for all m,n ≥ N . Therefore, {xn} is a
Cauchy sequence in X. Since X is complete, xn → x for some x ∈ X. Then by continuity
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f(xn)→ f(x), i.e., yn → f(x). We’ve just shown that every Cauchy sequence in Y converges
in Y ; so Y is complete. �

The proofs of the following two theorems are left as homework:

Theorem 8.11. If S is subset of a metric space M and is complete (as a metric space with
the metric inherited from M), then S is closed.

Theorem 8.12. If S is a closed subset of a complete metric space M , then S is complete.

Roughly, Theorem 8.11 says complete implies closed, and Theorem 8.12 says closed in
a complete space implies complete.

9. Completeness II

Theorem 9.1. The following are equivalent.

(1) M is complete.

(2) For every nested sequence S1 ⊃ S2 ⊃ . . . of closed non-empty subsets Si with
diam(Si)→ 0, we have

⋂
Si 6= ∅.

Proof. (1 ⇒ 2) Suppose M is complete and S1 ⊃ S2 ⊃ . . . are as stated in (2). For each
i, choose si ∈ Si. Claim: {sn} is Cauchy. Given ε > 0, choose N such that n ≥ N ⇒
diam(Sn) < ε. Then if m,n ≥ N , we have sm, sn ∈ SN , so d(sm, sn) ≤ diam(SN ) < ε. Now
since M is complete sn → s for some s ∈ M . To see s ∈ ∩Si, choose i and consider the
sequence {si+n}n≥1 in Si. We have limn si+n = s and Si is closed. Hence, s ∈ Si for all i.

(2⇒ 1) Suppose (2) holds, and let {xn} be a Cauchy sequence in M . For each i, define
Ti = {xi, xi+1, . . . }. Each Ti is nonempty, T1 ⊃ T2 ⊃ . . . , and diam(Ti) → 0 for each i
since {xn} is Cauchy (Check!). Define Si = Ti. Then S1 ⊃ S2 ⊃ . . . satisfies the conditions
for (2). Therefore, there exists x ∈ ∩Si. To see xn → x, take ε > 0, and choose N so that
n ≥ N ⇒ diam(Sn) < ε. Then n ≥ N ⇒ d(xn, x) ≤ diam(Sn) < ε. �

Definition 9.2. Let (M,dM ) and (N, dN ) be metric spaces. A mapping f : M → N from
is a contraction mapping if there exists α < 1 such that for all x, y ∈M ,

dN (f(x), f(y)) ≤ αdM (x, y).

Proposition 9.3. A contraction mapping is always continuous.

Proof. Homework. �

Theorem 9.4. (Method of successive approximation) Let f : M → M be a contrac-
tion mapping and suppose M is complete. Then f has a unique fixed point.

Proof. First, we’ll show uniqueness. Suppose f(x) = x and f(y) = y. Then
d(x, y) = d(f(x), f(y)) ≤ αd(x, y) ⇒ (α − 1)d(x, y) ≥ 0. Since α < 1, we have d(x, y) = 0.
Hence, x = y. Now we’ll show existence. Choose x0 ∈M and define xi+1 = f(xi) for i ≥ 0.
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Hence, xi = (f ◦ · · · ◦ f)︸ ︷︷ ︸
i−times

(x0) = f i(x0). Take any m ≤ n. Then

d(fm(x0), fn(x0)) ≤ αmd(x0,

xn−m︷ ︸︸ ︷
fn−m(x0))

≤ am(d(x0, x1) + d(x1, x2) + d(x2, x3) + · · ·+ d(xn−m−1, xn−m))

= αm(d(x0, x1) + d(f(x0), f(x1)) + d(f2(x0), f2(x1)) + . . .

+d(fn−m−1(x0), fn−m−1(x1)))

≤ αm(d(x0, x1) + αd(x0, x1) + α2d(x0, x1) + · · ·+ αn−m−1d(x0, x1))

= αmd(x0, x1)(1 + α+ α2 + · · ·+ αn−m−1)

=
αm(1− αn−m)

1− α
d(x0, x1) ≤ αmd(x0, x1)

1− α
.

Given ε > 0, by choosing N large, we can thus assure that m,n ≥ N ⇒ d(xm, xn) < ε.
Therefore, {xn} is Cauchy. Since M is complete, xn → x for some x ∈ M , and since f is
continuous, lim f(xn) = f(x). On the other hand, by definition of xn, we have limn f(xn) =
limn xn+1 = x. Therefore, f(x) = x. �

10. Picard’s Theorem

Example 10.1. (A contraction mapping.) Suppose f :[a, b] → R is a continuous function,
differentiable on (a, b), and |f ′(x)| ≤ α < 1 for all x ∈ (a, b). Then f is a contraction
mapping.

Proof. Given x, y ∈ [a, b], distinct points, the Mean Value Theorem says that there exists
c between x and y such that f(x)− f(y) = f ′(c)(x− y). Hence, |f(x)− f(y)| ≤ α |x− y|. �

Picard’s Theorem says y′ = f(x, y) has unique solutions given an initial condition, provided
f is “nice.”

Theorem 10.2 (Picard’s Theorem). Let f(x, y) be a continuous function on a closed rec-
tangle R ⊆ R2 containing (x0, y0). Suppose there exists M ≥ 0 such that

|f(x, y1)− f(x, y2)| ≤M |y1 − y2|

for all (x, y1), (x, y2) ∈ R (f satisfies a Lipschitz condition in the second variable). Then
there exist δ > 0 and a function φ defined on [x0− δ, x0 + δ] such that φ′(t) = f(t, φ(t)) and
φ(x0) = y0. Any solution with these properties agrees with φ locally.

Proof. Choose δ > 0 and b > 0 such that [x◦ − δ, x◦ + δ] × [y0 − b, y0 + b] ⊆ R. Let D
denote the collection of continuous functions with domain Iδ = [x0−δ, x0 +δ] and codomain
[y0 − b, y0 + b]. Then, with respect to the uniform metric, D is a closed subset of C(Iδ)
(check!). Since C(Iδ) is complete and a closed subset of a complete metric space is complete
(cf. Homework 3) it follows that D is complete..

Define λ : D → D by (λφ)(t) = y0 +
∫ t
x0
f(s, φ(s)) ds. First, let’s check λφ ∈ D. By

Math 212, λφ is continuous (differentiable even). By work we’ll do later, since R is compact
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and f is continuous, there exists K such that |f(x, y)| ≤ K for all (x, y) ∈ R. Hence,

|(λφ)(t)− y0| = |
∫ t

x0

f(s, φ(s)) ds| ≤
∫ t

x0

|f(s, φ(s))| ds ≤
∫ t

x0

K ds ≤ δK.

Choose δ so that δk ≤ b, and then the image of λφ lies in [y0 − b, y0 + b].
In fact, λ is a contraction mapping. For φ, ψ ∈ D,

d(λφ, λψ) = sup
t∈Iδ
|(λφ)(t)− (λψ)(t)|

≤ sup
t∈Iδ

∫ t

x0

|f(s, φ(s))− f(s, ψ(s))| ds

≤ sup
t∈Iδ

∫ t

x0

M |φ(s)− ψ(s)| ds

≤ M sup
t∈Iδ

∫ t

x0

sup
u
|φ(u)− ψ(u)| ds

≤ M sup
u
|φ(u)− ψ(u)| sup

t∈Iδ

∫ t

x0

ds

≤ M d(φ, ψ)δ.

Thus, d(λφ, λψ) ≤ δM d(φ, ψ). Take δ small so that δM < 1. In that case, λ is a contraction
mapping, so it has a unique fixed point, φ. Therefore,

φ(t) = λφ(t) = y0 +
∫ t

x0

f(s, φ(s)) ds.

Take derivatives to get
φ′(t) = f(t, φ(t)).

�

Exercise. Let f(x, y) = y and solve y′ = y, with initial condition y(0) = 1, using the
contraction mapping from the proof of Picard’s Theorem. Try starting with φ(t) = 1, then
try φ(t) = 1 + t2. What’s the difference?





Chapter 2

Topological Spaces

1. Topology

Definition 1.1. A topology on a set X is a collection of subsets τ of X such that

(1) ∅ ∈ τ .

(2) X ∈ τ .

(3) τ is closed under arbitrary unions.

(4) τ is closed under finite intersections.

The elements of τ are called the open sets for the topology and (X, τ) (or just X, if τ is
understood from context) is called a topological space.

Definition 1.2. A subset of a topological space is closed if its complement is open.

We can define contact points, limit points and neighborhoods as we have before. The closure
of a set can be defined as the collection of all contact points of the set, as before, or
equivalently, as the intersection of all closed subsets containing the given set, i.e., the
smallest closed set containing the given set.

Example 1.3. Examples of topological spaces:

(1) A metric space with its collection of open sets is a topological space.

(2) If X is any set, let τ = 2X to define the discrete topology on X. This is called the
finest topology.

(3) If X is any set, let τ = {∅, X} to define what is called the coarsest topology.

(4) Let X = {a, b} and τ = {∅, {b}, X}. The closed sets on this topology are {a}, ∅
and X.

(5) The finite complement topology: if X is a set, we say U ⊆ X is open if U is the
empty set or X \ U is finite.

Definition 1.4. If X is a topological space and Y ⊆ X, then the subspace topology on Y
is defined by declaring a subset of Y open if and only if it is the intersection of an open set
of X with Y .

15
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Here is a strange use of topology due to Fürstenberg in 1955 to prove something Euclid did
a long time ago.

Theorem 1.5. There are infinitely many primes.

Proof. Given a, b ∈ Z with b 6= 0, consider the arithmetic sequence

Na,b = {a+ bn | n ∈ Z}.
We’ll call a subset of Z open if it is empty or union of some Na,b. Then:

(1) This defines a topology on Z.
(2) Every nonempty open set contains an infinite number of elements.

(3) Each Na,b is closed since Z \ Na,b = ∪b−1
i=1Na+i,b.

(4) Z\{-1,1} = ∪p∈PN0,p, where P is the set of prime numbers.

If P is finite, then parts (3) and (4) say Z\{-1,1} is a finite union of closed subsets, and so
{-1,1} is open, which contradicts part (2). Therefore, P must be infinite. �

2. Separation Axioms

Definition 2.1. A topological space X is T1 if for every pair of distinct points x, y ∈ X
there exists a neighborhood Ux of x and a neighborhood Uy of y such that x 6∈ Uy and
y 6∈ Ux. Equivalently X is T1 if each subset consisting of a single point is closed.

Example 2.2. The set X = {a, b}, with topology τ = {φ, {b}, X} is not T1.

Definition 2.3. A topological space X is Hausdorff if for each pair of distinct points
x, y ∈ X there exists a neighborhood Ux of x and a neighborhood Uy of y such that
Ux ∩ Uy = ∅.

Example 2.4.

(1) Every metric space is Hausdorff.
(2) A discrete space (i.e., every subset is open) is Hausdorff.
(3) The coarsest topology on a set X is not Hausdorff if X has more than two points.
(4) The Zariski topology from algebraic geometry is a common, useful topology that is

not Hausdorff.

Definition 2.5. A collection of subsets B of a topological space is a base for a topology if
every open set of X is a union of elements of B.

Example 2.6. The set of open balls form a base for the topology in a metric space.

Definition 2.7. Given topological spaces X and Y , the product topology on X × Y is the
topology with base consisting of sets of the form U × V where U is open in X and V is
open in Y .

Proposition 2.8. X is Hausdorff if and only if the diagonal, q

4 = {(x, x) ∈ X ×X | x ∈ X},
is closed in X ×X.

Proof. Homework. �
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Definition 2.9. A topological space is normal if for every pair of disjoint closed sets A,
and B, there are disjoint open sets containing A and B, respectively.

Theorem 2.10 (Urysohn’s Metrization Theorem). A topological space with a countable
base is metrizable if and only if it is normal.

Proof. See Munkres, [5]. �

3. Connectedness

Definition 3.1. A topological space X is connected if the only subsets of X which are both
open and closed are ∅ and X. Thus, a set is not connected if and only if it is the union of
two non-empty disjoint open sets.

Example 3.2.

(1) Discrete topology. The discrete topology on a set with two or more elements is
totally disconnected, i.e., there are no connected subsets containing two or more
points.

(2) If a topological space has the indiscrete (i.e., coarsest) topology, it is connected.
(3) The union of two disjoint open balls in a metric space forms a disconnected topo-

logical space.
(4) R is connected. To see this, recall that an open subset of R is a countable disjoint

union of open intervals.
(5) Rn is connected. In fact, one may show that X × Y is connected in the product

topology if X and Y are connected (see Munkres, [5]).
(6) Q is totally disconnected. Given p, q ∈ Q with p < q, choose r ∈ R\Q with

p < r < q. Then,

Q = (Q ∩ (−∞, r)) ∪ (Q ∩ (r,∞))

Proposition 3.3. Suppose f : X → Y is locally constant, i.e., given x ∈ X there is a
neighborhood, U , of x such that f |U is constant. Then if X is connected, f is constant.

Proof. Choose x0 ∈ X and define A = {x ∈ X | f(x) = f(x0)}. Then A is nonempty,
open, and closed. Since X is connected, A = X; that is, f is constant. �

3.1. Continuity in Topological Spaces.

Definition 3.4. A function between topological spaces, f : X → Y , is continuous at x0 ∈ X
if for every neighborhood V of f(x0), there is a neighborhood U of x0 such that f(U) ⊆ V .

Definition 3.5. Topological spaces X and Y are homeomorphic if there exists a bijection,
f : X → Y , such that f and its inverse are continuous.

Theorem 3.6. A function f : X → Y is continuous (i.e., continuous at every point) if and
only if f−1(U) is open for every open set U ⊆ X.

Proof. As before, for metric spaces. �

Corollary 3.7. A function f : X → Y is continuous if and only if f−1(C) is closed for all
closed sets C ⊆ Y .
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Proof. Follows quickly from the observation that f−1(U c) = f−1(U)c. �

The following theorem states that connectedness is a topological property, i.e., it is
preserved by continuous functions.

Theorem 3.8. Suppose f : X → Y is continuous and X is connected. Then f(X), with
the subspace topology, is connected.

Proof. We may assume that f is surjective, that is f(X) = Y . Note that if Y = A ∪ B
with A, B disjoint and open, then,

X = f−1(Y ) = f−1(A) ∪ f−1(B).

Since f is continuous, f−1(A) and f−1(B) are open. By connectedness, we may assume
that f−1(A) = ∅. Since f is surjective, this means A = ∅. �

Theorem 3.9 (Intermediate Value Theorem). Suppose f : X → R is continuous, and there
are a, b ∈ X and r ∈ R such that f(a) < r < f(b). Then if X is connected, there exists
some c ∈ X such that f(c) = r.

Proof. Begin by noting that,

f(X) ⊇ (f(X) ∪ (−∞, r)) ∩ (f(X) ∪ (r,∞))

By the previous theorem, we can’t have equality, lest f(X) be disconnected. Therefore,
there must be some c ∈ X such that f(c) = r. �

4. Compactness I

Definition 4.1. An open cover of a subset Y of a topological space X is a collection of
open sets whose union contains Y .

Example 4.2. In R, the collection {(−1, 1), (0, 5)} is an open cover of [0, 1].

Definition 4.3. A subset Y of a topological space X is compact if every open cover of Y
has a finite subcover, i.e., if {Uα} is a collection of open sets with ∪αUα ⊇ Y , then there
exists α1, α2, · · · , αk for some k such that ∪ki=1Uαi ⊇ Y .

Example 4.4.

(1) (0, 1) ⊂ R is not compact. Consider the open cover {( 1
n , 1) | n = 1, 2, . . . }.

(2) {0} ∪ { 1
n | n = 1, 2, · · · } is compact (cf. homework).

(3) R is not compact, as we shall see later.

Theorem 4.5. A closed subset Y of a compact space X is compact.

Proof. Let {Uα} be an open covering of Y . Then Y c ∪ (∪αUα) = X. Since X is compact,
there exist α1, α2, . . . , αk such that Y c ∪ Uα1 ∪ · · · ∪ Uαk = X. So Uα1 ∪ · · · ∪ Uαk ⊇ Y . �

Theorem 4.6. A compact subset K of a Hausdorff space X is closed.

Proof. Take x ∈ X \ K. Since X is Hausdorff, for each y ∈ K, there exists an open
neighborhood Uy of y and an open neighborhood Vy of x with Uy ∩ Vy = ∅. Then {Uy}y∈K
is an open covering of K. Since K is compact, there exists a finite subcovering Uy1 , . . . , Uyk .
Then ∩ki=1Vyi is an open set containing x and disjoint from K. We have shown that an
arbitrary point outside of K is contained in an open set that is disjoint from K. Hence, K
is closed. �
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Corollary 4.7. A compact subset of a metric space is closed.

The converse of this corollary does not hold; consider R ⊆ R or [0,∞) ⊆ R.

The next theorem says that compactness is a topological property: the continuous image
of a compact set is compact.

Theorem 4.8. Suppose f : X → Y is a continuous mapping of topological spaces. If X is
compact then f(X) is compact.

Proof. Suppose X is compact, and {Vα} is an open covering of f(X). Since f is continuous,
each f−1(Vα) is an open covering of X. Say f−1(Vα1), . . . , f−1(Vαk) is a finite subcovering.
Then Vα1 , . . . , Vαk covers f(X). �

Theorem 4.9. If f : X → Y is a bijective, continuous mapping between compact Hausdorff
spaces, then f is a homeomorphism.

Proof. We need to show that f−1 is continuous, or, what amounts to the same thing, that
f is open. This is a homework problem. �

Definition 4.10. A collection {Xi} of subsets of a set X is centered if every finite subcol-
lection has non-empty intersection.

Theorem 4.11. A topological space X is compact if and only if every centered collection
of closed subsets has non-empty intersection.

Proof. Let {Cα} be a collection of closed subsets of X. Define Uα = Ccα. Then {Cα} is
centered if and only if no finite subcollection of the Uα’s cover X, and {Cα} has empty
intersection if and only if {Uα} covers X. �

Corollary 4.12. Suppose X is compact and C1 ⊃ C2 ⊃ · · · is a nested sequence of non-
empty closed subsets. Then ∩∞i=1Ci 6= ∅.

(In fact, this corollary is equivalent to compactness in a metric space).

5. Compactness In Metric Spaces

Joke 5.1. A graduate student is taking his qualifying exam, and having a difficult time of
it. He’s nervous, and keeps on making foolish mistakes. To loosen him up, the examiner
gives him an easy question: “Is R compact?”

Punchline. The student replies, “What topology?” �

Theorem 5.2. The following are equivalent for a metric space M :

(1) M is compact.
(2) Every infinite subset of M has a limit point.
(3) Every sequence in M contains a convergent subsequence.

Proof. (1 ⇒ 2) Suppose M is compact, and E is an infinite subset of M . Suppose E has
no limit point. Then for each x ∈ M , there exists an open ball Ux about x that intersects
E in at most one point, namely, x itself. Then {Ux}x∈M is an open covering of M and no
finite subcovering covers E (which is infinite), let alone M . This contradicts the assumption
of the compactness of M ; so E must have a limit point.
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(2⇒ 3) Suppose every infinite subset has a limit point and let {xn} ∈M be a sequence. Let
E be the set {xn}. If E is infinite, it has a limit point, so there exists a sequence {xni} ∈ E
that converges to the limit point: since {xni} ∈ E = {xn}, this sequence is a subsequence of
{xn}. If E is finite, then some subsequence of {xn} is actually constant by the pigeon-hole
principle.

(3 ⇒ 1) First, show that M has a countable dense subset, i.e., that M is separable (step i).
Then show that M has a countable basis for its topology, i.e., that M is second countable
(step ii). We’ll then show that every open covering of M has a countable covering (step
iii), and that every open covering of M has a finite subcovering (step iv).

Step i. M has a countable dense subset.
For each n = 1, 2, . . . , let Cn be the collection of all subsets S ⊆M such that d(x, y) ≥ 1

n for
all x, y ∈ S. If S1 ⊂ S2 ⊂ . . . is a nested sequence in Cn, then ∪iSi ∈ Cn. By Zorn’s lemma,
there exists a maximal element Tn ∈ Cn. So if S ⊂ Cn and S ⊇ Tn, then S = Tn. If Tn were
infinite it would have a limit point by assumption, but that’s not possible (every pair of
points in Tn is separated by a distance of 1

n). Hence Tn is finite. Now define T = ∪n≥1Tn.
Then T is dense: Given x ∈ M and ε > 0, choose n so that 1

n < ε. By maximality of Tn,
there exists some y ∈ Tn such that d(x, y) < 1

n .

Step ii. Countable basis for the topology of M .
Let U be the collection of open balls centered at some point in T with a rational radius. U

is countable since T and the rational numbers are countable. To see that U is a basis, take
x ∈ M and a neighborhood U of x. Choose an open ball B centered at x and contained
in U . Now choose t ∈ T with d(t, x) a small fraction of the radius of B. Then take a ball
of rational radius that is centered at t, contains x, and is contained in B. Thus U is a
countable basis for the topology on M .

Step iii. Every open covering of M has a countable subcovering.
Let V = {Vα} be an open covering of M . For each element U ∈ U, if U is contained in one
or more Vα, choose one, and call it VU . Then {VU} is countable, and it covers M : to see
the latter, choose any x ∈M . Since V covers M , there exists a Vα such that x ∈ Vα. Since
U is a basis, there is some U ∈ U with x ∈ U ⊆ Vα. Hence, for this U , there is a VU ∈ V

such that x ∈ U ⊆ VU .

Step iv. Every open covering of M has a finite subcovering.
Let V be an open covering of M . We may assume that V is countable: say V = {V1, V2, . . . }.
For each n, define Fn = (∪ni=1Vi)

c = V c
1 ∩ V c

2 ∩ · · · ∩ V c
n . Then F1 ⊇ F2 ⊇ . . . . For each

n, suppose that Fn 6= ∅, and choose xn ∈ Fn. By assumption {xn} has a subsequence
converging to some point x ∈ M . Now for each n, there is a sequence in Fn converging
to x, and since Fn is closed, this means x ∈ Fn. Hence, x ∈ ∩nFn; so x 6∈ ∪nF cn = ∪nVn,
contradicting the fact that V covers M . Therefore, Fn = ∅ for some n, which means that
{V1, . . . , Vn} is a finite subcovering of M . �

6. Compactness in Metric Spaces II

Theorem 6.1. If M is a compact metric space, there exists x, y ∈M such that diam(M) =
d(x, y). In particular, diam(M) <∞.
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Proof. Homework. Idea: There exist sequences {xn}, {yn} in M such that d(xn, yn) →
diam(M). Passing to subsequences, we may assume xn → x, and yn → y for some x, y ∈M .
�

Theorem 6.2. A compact metric space, M , is complete.

Proof. The result follows from Theorem 9.1 and Corollary 4.12. �

Corollary 6.3. [0, 1] ∩Q is not compact.

Definition 6.4. A mapping of metric spaces f : M → N is uniformly continuous if for all
ε > 0, there exists δ > 0 such that d(x, y) < δ ⇒ d(f(x), f(y)) < ε.

Example 6.5.

(1) A contraction mapping is uniformly continuous.
(2) f : (0,∞) → R defined by f(x) = 1

x is not uniformly continuous. To see this,
consider points x, x+ 1

n ∈ (0, 1). We have d(x, x+ 1
n) = 1

n , and d(f(x), f(x+ 1
n)) =

| 1n −
1

x+ 1
n

| =
1
n

x(x+ 1
n

)
> 1 for x close to 0.

Theorem 6.6. If f : M → N is a continuous mapping of metric spaces and M is compact,
then f is uniformly continuous.

Proof. Suppose not. Then there exists ε > 0 such that for each n = 1, 2, . . . there are
points xn, yn in M with d(xn, yn) < 1

n , but d(f(x), f(y)) ≥ ε. There are subsequences
{xni} and {yni} such that xni → x and yni → y for some x, y ∈ M . So by the triangle
inequality we have x = y. (Check!)

By continuity of f , we have f(xni)→ f(x) and f(yni)→ f(y) = f(x), and by continuity
of d, we then have d(f(xni), f(yni)) → d(f(x), f(x)) = 0. This contradicts the fact that
d(f(xn), f(yn)) ≥ ε for all i. Hence f must be uniformly continuous. �

Definition 6.7. A topological space X is locally compact at x ∈ M if there is a compact
neighborhood of X, i.e., a compact set containing an open set containing x. The space X
is locally compact if it is locally compact at each of its points.

Definition 6.8. Let X be a locally compact Hausdorff space and consider the set Y :=
X ∪{∞} where ∞ denotes some point not in X. Define a topology on Y be declaring a set
open if it is an open subset of X or if it is the complement of a compact subset of X. The
space Y is called the one-point compactification of X.

Exercise. Show that the above definition really does define a topology on Y .

Example 6.9. The one-point compactification of Rn is homeomorphic to the n-sphere, Sn,
via “stereographic projection.”

7. Compactness in Rn

Theorem 7.1. [a, b] ⊆ R is compact.

Proof. Let U be an open covering of [a, b]. Let S = {x ε [a, b] | [a, x] has a finite subcovering}.
Note that S is nonempty since a ε S, and S is bounded above by b. Let c = supS. Choose
Uc εU such that c ε Uc. Since Uc is open, there exists ε > 0 such that (c − ε, c + ε) ⊆ Uc.
Choose x ε S ∩ (c − ε, c + ε). Then [a, x] has a finite subcover U‘ ⊆ U and U‘ ∪ {Uc} is a
finite subcover of [a , c+ ε

2 ]. This forces c = b. �
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Theorem 7.2 (Tychonoff Theorem). Arbitrary products (including uncountable products)
of compact spaces are compact.

Proof. See Munkres, [5]. �

Corollary 7.3.
∏n
i=1 [ai, bi] ⊆ Rn is compact.

Theorem 7.4. A subset X ⊆ Rn is compact if and only if it is closed and bounded.

Proof. (⇒) A compact subset of any Hausdorff space is closed, and in a metric space, we’ve
seen that the diameter if a compact subset is finite (in fact, it equals the distance between
some pair of points in the subset)

(⇐) Suppose X ⊆ Rn is closed and bounded. Since X is bounded, X is contained
in some rectangle

∏n
i=1[ai, bi], which is compact. A closed subset of a compact space is

compact. �

Note. An infinite discrete metric space is closed and bounded but not compact.

Theorem 7.5 (Extreme Value Theorem, EVT). Let f : X → R be a continuous mapping
from a compact space X. Then f has a minimum and a maximum.

Proof. Since f is continuous, f(X) is closed and bounded. Since f(X) is bounded, its inf
and sup exist, and since f(X) is closed, there exist x, y εX such that f(x) = inf f(X) and
f(y) = sup f(X) (f(X) contains its limit points). �

Corollary 7.6. A continuous real-valued function on a closed and bounded subset of Rn
attains its minimum and maximum.

Definition 7.7. Let U be an open covering of a metric space M . A Lebesgue number for U

is any ε > 0 such that if A ⊆M and diam(A) < ε, then there exists U εU with A ⊆ U .

Example 7.8. If M = [0, 3] ⊆ R, and U = { [0, 2), (1, 3] }, then a Lebesgue number for U is
1.

Theorem 7.9. If M is a compact metric space, every open covering of M has a Lebesgue
number.

Proof. Homework. �



Chapter 3

Valuations and
Completions

1. Valuations

Definition 1.1. A valuation on a field K is a function | | : K → R such that for all x, y ∈ K,

(1) |x| ≥ 0 with |x| = 0 if and only if x = 0.

(2) |xy| = |x||y|.
(3) |x+ y| ≤ |x|+ |y|.

If | | satisfies (3)∗: |x + y| ≤ max{|x|, |y|}—which is stronger than (3)—then it is said
to be non-archimedean. Otherwise, | | is called archimedean. The valuation | | is non-trivial
if |x| 6= 1 for some x ∈ K \ {0}.

Remarks.

(1) The multiplicativity of | | implies |1| = 1, and | − 1| = 1. Also, if y 6= 0 then
| 1y | =

1
|y| (proof: 1 = |1| = |y 1

y | = |y||
1
y |).

(2) Given a valuation | | on K, we get a metric on K by defining d(x, y) = |x − y|.
Therefore, the ideas of convergence, Cauchy sequences, open sets, etc., apply to
any field with a valuation.

Example 1.2.

(1) If K is a subfield of R, we have the usual valuation

|x| =
{
x if x ≥ 0
−x if x < 0.

(2) Let K = Q, then pick a prime number p and a real number c ∈ (0, 1). Given q ∈ Q
define vp(q) to be the power to which p appears in the prime factorization of q.
Then define |q| = cvp(q). We write vp(0) =∞ and define |0| = 0. Choosing c = 1

p ,
define the p-adic valuation on Q by |q|p = (1

p)vp(q).

Definition 1.3. Two valuations | |1, | |2 on a field K are equivalent if |x|1 < 1 if and only
if |x|2 < 1 for all x ∈ K. Equivalent valuations give same topology.

23
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Proposition 1.4. | |1, | |2 are equivalent if and only if there exists a ∈ R>0 such that
|x|2 = |x|a1 for all x ∈ K.

Proof. (⇒) First suppose | |1 trivial. Then | |2 trivial also, for if |x|2 6= 1 and x 6= 0,
then by considering x and 1

x , we may assume |x|2 < 1. But then |x|1 < 1. Therefore, both
valuations are trivial, and we can take a = 1.

Now suppose | |1 not trivial. Choose any y ∈ K such that |y|1 > 1. Let a =
log |y|2
log |y|1

.

Given any x ∈ K \{0}, choose b ∈ R such that |x|1 = |y|b1. For any rational number
m

n
> b,

|x|1 = |y|b1 < |y|
m
n
1 ⇒ |x|

n
1 < |y|m1 ⇒ |xn|1 < |ym|1 ⇒ |

xn

ym
|1 < 1

By definition of equivalence, | xnym |2 < 1 and thus |x|2 < |y|
m
n
2 . Taking the inf over all mn > b,

we get |x|2 ≤ |y|b2. Repeating the argument for m
n < b, we get |x|2 ≥ |y|b2. Hence, |x|2 = |y|b2.

Therefore,
log |x|2
log |x|1

=
b log |y|2
b log |y|1

= a.

So |x|2 = |x|a1.

(⇐) The converse is obvious. �

This proposition says:

(1) Choosing different c’s in the second part of Example 1.2, above, produces equivalent
valuations (homework).

(2) Equivalent valuations | |1, | |2 on a field K induce the same topology on K. (To
see this, suppose |x|a1 = |x|2 for all x ∈ K. Then

B1(x; r) = {y ∈ K | |x− y| < r} = {y ∈ K | |x− y|2 < ra} = B2(x; ra).

Hence, the collection of open balls with respect to | |1 and | |2 are the same.)

2. Classification

Proposition 2.1. A valuation | | on a field K is non-archimedean if and only if {|n| | n =
1, 2, . . . } is bounded.

Proof. (⇒) Suppose | | is non-archimedean. Then |1 + 1| ≤ max{|1|, |1|} = 1, and |1 + 1 +
1| ≤ max{|1 + 1|, |1|} = 1, etc. So {|n| | n = 1, 2, . . . } is bounded by 1.

(⇐) Conversely, suppose {|n| | n = 1, 2, . . . } is bounded, say by N , and let x, y ∈ K. Then
for n ≥ 1,

|x+ y|n = |(x+ y)n| = |
n∑
k=0

(
n

k

)
xkyn−k|

≤
n∑
k=0

|
(
n

k

)
|x|k|y|n−k ≤

n∑
k=0

N max{|x|, |y|}n

= (n+ 1)N max{|x|, |y|}n.
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Take n-th roots to get |x + y| ≤ (n + 1)
1
nN

1
n max{|x|, |y|}; then take the limit as n → ∞

to get |x+ y| ≤ max{|x|, |y|}, as required. �

The least positive integer n such that n · 1 = 0 in a field K is called the characteristic
of K and denoted charK. If no such integer exists, we say the characteristic is 0. The
characteristic of a field is either 0 or a prime. For example, charQ = 0 and charZ/7Z = 7.

Corollary 2.2. If charK = p > 0, then every valuation on K is non-archimedean.

Theorem 2.3. (Ostrowski) A non-trivial valuation on Q is equivalent to either the usual
absolute value or a p-adic valuation.

Proof. Let m and n be integers greater than 1, and write the n-adic expansion of m,

m = a0 + a1n+ a2n
2 + ...+ arn

r,

where 0 ≤ ai < n for all i. [For example, let m = 35 and n = 3. Then 33 is the highest
power of 3 less than 35, and 35− 33 = 8. Then 8− 2 · 3 = 2, So the 3-adic expansion of 35
is 35 = 2 + 2(3) + (33).]

By the triangle inequality |m| ≤
∑r

i=0 |ai||n|i ≤
∑r

i=0 |ai|Br where B = max{1, |n|}.
Now |ai| = |1 + · · · + 1| ≤ ai|1| < n. Hence, |m| ≤

∑r
i=0 nB

r = (r + 1)nBr. Now m ≥ nr

implies
logm
log n

≥ r. Therefore, |m| ≤ (
logm
log n

+ 1)nB

log n
logm . For any integer s > 1, replace

m by ms to get |m|s ≤ (s
logm
log n

+ 1)nB
s

log n
logm . Take s-th roots, then let s → ∞ to get

|m| ≤ B
logm
log n . Therefore,

|m|
1

logm ≤ max{1, |n|}
1

log n (1)

for all integers m,n > 1.
Case 1. Suppose n > 1 ⇒ |n| > 1 for all integers n. In that case, inequality (1) implies

|m|
1

logm ≤ |n|
1

log n for all m,n > 1. Interchanging m and n, we get the reverse inequality.

Hence, |n|
1

log n = |m|
1
m for all m,n > 1. Let c denote the common value. So |n| = clogn for

all n > 1. Since |−n| = |n| and |a
b
| = |a|
|b|

we get |q| = clog ‖q‖ where ‖q‖ is the usual absolute

value for all q 6= 0. Letting c = e, we get an equivalent valuation: |q| = elog ‖q‖ = ‖q‖, i.e.,
the usual absolute value.

Case 2. Suppose there exists some integer n > 1 with |n| ≤ 1. In this case, inequality (1)
implies |m| ≤ 1 for all m > 1. But since | −m| = |m| and |1| = 1, we have |m| ≤ 1 for
all m ∈ Z. From Proposition 2.1, | | is non-archimedean. Define P = {m ∈ Z | |m| < 1}.
Since | | is non-trivial, P contains some positive integer. Let p be the smallest positive
integer in P. Given any m ∈ P, write m = kp+ r with 0 ≤ r < p. Then |r| = |m− kp| ≤
max{|m|, |kp|} < 1. So by minimality of p, it follows that r = 0. Hence, p divides every
element of P.
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It turns out that p is prime. To see this, say p = ab with a, b > 0. Then 1 > |p| = |ab| =
|a||b|, Hence, either |a| < 1 or |b| < 1, so a or b is in P. Therefore, a = p or b = p.

Given any integer m, we can write m = ape where p does not divide a. It follows that

a 6∈ P; so |a| = 1. Therefore, |m| = |a||pe| = |p|e. Since |a
b
| =
|a|
|b|

, we get that if q ∈ Q,

the |q| = |p|e, where e is the exponent to which p appears in the factorization of q. This
valuation is equivalent to the p-adic valuation. �

Theorem 2.4. Let x ∈ Q, let | |p denote the p-adic valuation for each prime p, and let | |∞
denote the usual absolute value. Then

∏
p |x|p = 1 where the product runs over all primes

and ∞.

Proof. Homework. �

3. Completions

Let K be a field with valuation | |. Then K is naturally a metric space with d(x, y) = |x−y|
for all x, y ∈ K.

Theorem 3.1. There exists a field K̂ with valuation | |∧ such that: (i) K ⊆ K̂; (ii)
|x|∧ = |x| for all x ∈ K, (iii) K is dense in K̂; and (iv) K̂ is complete. Further K̂ is
unique up to a field isomorphism preserving | |∧.

Construction of K̂ : Say two Cauchy sequences {an}, {bn} in K are equivalent if limn |an−
bn| = 0.

Facts.

(1) This defines an equivalence relation on the set of Cauchy sequences in K.
(2) If {an}, {bn} are Cauchy sequences, then so are {an + bn} and {anbn}.
(3) If {an} is a Cauchy sequence and {an} does not converge to zero, then there exists

N such that if n ≥ N , then an 6= 0. Also, in this case {a−1
n }n≥N is a Cauchy

sequence.
(4) If {an} is a Cauchy sequence in K; then {|an|} is a Cauchy sequence in R.

Let K̂ be the set of all equivalence classes of Cauchy sequences in K. If {an}, {bn} are
Cauchy sequences in K, denote their equivalence classes by {an}?, {bn}?, respectively, and
define

{an}? + {bn}? := {an + bn}? {an}?{bn}? := {anbn}?.
This makes K̂ into a field. Embed K in K̂ by identifying x ∈ K with the equivalence
class of the constant sequence: {x}∗. Define a valuation | |∧ on K̂ by |{an}?|∧ = limn |an|.
This gives a valuation on K̂, and K̂ is complete with respect to this valuation. To check
completeness, suppose {an} is a Cauchy sequence in K̂. Say αn = {a(n)

i }?i for each n, where
{a(n)

i }i is a Cauchy sequence in K. For each n, choose Nn such that |a(n)
i − a

(n)
j | ≤

1
n for

all i, j ≥ Nn. Define bn = aNn . It turns out that {bn} is a Cauchy sequence in K, and
αn → {bn}? ∈ K̂.

Example 3.2. The p-adic completion of Q is denoted Qp. Nonzero elements of Qp can be
expressed uniquely in the form

x = pe(a0 + a1p+ a2p
2 + . . . ),
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where a0 6= 0 and 0 ≤ ai < p for all i. If the ai’s are periodic, then x ∈ Q. For instance, in
Q2, we have 1 + 2 + 22 + 23 + · · · = 1

1−2 = −1.

Real Numbers. To define the real numbers, start with Q and its usual valuation | | :
Q −→ Q. Define R to be the set of equivalence classes of Cauchy sequences in Q. To extend
the valuation from Q to R, define |{an}?| = {|an|}? ∈ R.





Chapter 4

Measure Theory

1. Measure

Definition 1.1. A rectangle in R is a set of the form (a, b), [a, b), (a, b], or [a, b] with a ≤ b.
An interval in R is either a rectangle or a set of the form (−∞, b), (−∞, b], [a,∞) or (a,∞).
The length of a rectangle I with endpoints a ≤ b is `(I) = b− a. The length of an interval
with at least one endpoint ±∞ is ∞.

Definition 1.2. A rectangle, (resp., interval) in Rn is a product I = I1 × · · · × In where
each Ii is a rectangle (resp., interval) in R.

Definition 1.3. The n-dimensional volume of I is then `(I) =
∏n
i=1 `(Ii). We’ll say `(I) = 0

if at least one `(Ii) = 0; otherwise, we’ll say `(I) =∞ if at least one `(Ii) =∞.

Example 1.4. `([0, 0]× (−∞,∞)) = 0 in R2.

Exercise. ` is translation invariant: if I is a rectangle in Rn and p ∈ Rn, then `(p+I) = `(I).

Definition 1.5. If X ⊆ Rn, the outer measure of X is

m∗(X) = inf{
∑

k `(Ik)},

where the infimum is over all sequences of rectangles I1, I2, . . . in Rn that cover X, i.e.
∪kIk ⊇ X.

Remarks.

(1) m∗(X) exists since there is always some cover of X by sequence of rectangles and∑
`(Ik) is always non-negative.

(2) If m∗(X) <∞—for example, if X is bounded—then for each ε > 0, there exists a
sequence {Ik} of rectangles such that m∗(X) ≤

∑
`(Ik) ≤ m∗(X) + ε.

(3) Since `(Ik) ≥ 0 for all k, it follows that
∑
`(Ik) converges absolutely if it converges

at all. So in that case, any rearrangement of the series will converge. Therefore,
we are really estimating the measure of X via countable covers, not sequences.

(4) We may assume that all Ik are closed, or all open, or half-open, etc. Reason: Given
a cover {Ik}, then {Ik} is a cover by closed rectangles, and `(Ik) = `(Ik). Thus,

29



30 4. Measure Theory

we could assume that m∗(X) is defined using only closed rectangles. Alternatively,
given ε > 0, choose {Ik} such that m∗(X) ≤

∑
`(Ik) ≤ m∗(X)+ ε

2 . Then, for each
k, choose an open interval Jk ⊇ Ik such that `(Jk) ≤ `(Ik) + ε

2k+1 . It follows that

m∗(X) ≤
∑
k

`(Jk) =
∑

(`(Ik) +
ε

2k+1
) = (

∑
`(Ik)) +

ε

2
≤ m∗(X) + ε.

So we could define m∗(X) equivalently using only open rectangles. The argument
for half-open rectangles is similar.

(5) Given δ > 0, we may assume diam(Ik) < δ for all Ik in the cover.

Theorem 1.6.

(1) 0 ≤ m∗(X) ≤ ∞ for all X ⊆ Rn and m∗(∅) = 0.

(2) If X ⊆ Y , then m∗(X) ≤ m∗(Y ).

(3) If X1, X2, . . . are subsets of Rn, then m∗(∪Xi) ≤
∑
m∗(Xi). (countable sub-

additivity).

Proof. (1) Clear.

(2) Clear.

(3) We may assume no m∗(Xi) = ∞, otherwise the result is trivial. Given ε > 0,
choose a cover {I(i)

k } for each Xi such that m∗(Xi) ≤
∑

k `(I
(i)
k ) ≤ m∗(Xi) + ε

2i
.

Then ∪i{I(i)
k } is a countable cover of ∪Xi, so

m∗(∪Xi) ≤
∑
i

∑
k

`(I(i)
k ) ≤

∑
i

(m∗(Xi) +
ε

2i
) =

∑
i

m∗(Xi) + ε.

Since ε > 0 is arbitrary, m∗(∪Xi) ≤
∑

im
∗(X).

�

Question. What if the Xi’s are disjoint in part (3)? Is it even true that m∗(A) + m∗(B)
if A ∩B = ∅?

2. Measure II

Theorem 2.1. Let A,B be subsets of Rn, and suppose

d(A,B) = inf
a∈A,b∈B

d(a, b) > 0.

Then m∗(A ∪B) = m∗(A) +m∗(B).

Proof. First note that m∗(A ∪B) ≤ m∗(A) +m∗(B) by subadditivity. So we just need to
show that m∗(A ∪B) ≥ m∗(A) +m∗(B). Choose a cover {Ik} of A ∪B by rectangles such
that ∑

`(Ik) ≤ m∗(A ∪B) + ε.

We may assume that diam(Ik) < d(A,B) for all k. So no Ik contains both a point in A and
a point in B. Divide the Ik into three classes: those that meet A, {IAk }; those that meet B,
{IBk }; and the others, {I∅k}. Then

m∗(A ∪B) + ε ≥
∑

`(Ik) =
∑

`(IAk ) +
∑

`(IBk ) +
∑

`(I∅k)

≥ m∗(A) +m∗(B)
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since {IAk } covers A and {IBk } covers B. Since ε > 0 is arbitrary, m∗(A ∪ B) ≥ m∗(A) +
m∗(B). �

Theorem 2.2. Let I ⊆ Rn be a rectangle. Then m∗(I) = `(I).

Proof. Since I covers itself, m∗(I) ≤ `(I). We need to show the reverse inequality. Given
ε > 0, choose a cover {Ik} of I such that

∑
`(Ik) ≤ m∗(I) + ε. We may assume each Ik

is open (as remarked earlier). We would like to get a finite subcover. If I is closed, no
problem. Otherwise, choose a closed rectangle J ⊆ I with `(J) ≥ `(I)− ε, and consider J ,
covered by {Ik}. Since J is compact, we know I1, . . . Im cover J for some m. Now consider
the collection of hyperplanes {xi = r} as r ranges through the endpoints of the intervals
I1, . . . , Im and J . In general, if the hyperplane xj = r intersects a rectangle T =

∏n
i=1(ai, bi),

then it dissects the rectangle into two parts T ′ = (a1, b1)× · · · × (ai, r]× · · · × (an, bn) and
T ′′ = (a1, b1)×· · ·×[r, bi)×· · ·×(an, bn), and `(T ) = `(T ′)+`(T ′′). Dissect each of I1, . . . , Im
and J with respect to each hyperplane in our collection. Say the resulting rectangles are
{Ĩk} with a subcollection of these, {Ĩ ′k}, exactly covering J . Then

`(I)− ε ≤ `(J) =
∑

`(Ĩ ′k) ≤
∑

`(Ĩk) =
∑

`(Ik) ≤ m∗(I) + ε,

and the result follows. �

Theorem 2.3. m∗ is translation invariant, i.e. for all p ∈ Rn and X ⊆ Rn we have

m∗(p+X) = m∗(X).

Proof. There is a one to one correspondence between covers of X by rectangles and covers
of p+X by rectangles: {Ik} ↔ {p+ Ik}; and `(Ik) = `(p+ Ik). �

Definition 2.4. Let X be any set. A σ-algebra on X is a collection of subsets Σ of X such
that:

(1) ∅ ∈ Σ.

(2) A ∈ Σ⇒ Ac ∈ Σ.

(3) {Ai}∞i=1 ⊆ Σ⇒ ∪∞i=1Ai ∈ Σ.

Example 2.5. Examples of σ-algebras on a set X:

(1) Σ = {∅, X}.
(2) Σ = 2X .

(3) Pick any A ⊆ X, then let Σ = {∅, A,Ac, X}.

Definition 2.6. Let X be a set, and let Σ be a σ-algebra on X. A function µ : Σ→ R∪{∞}
is a measure on (X,Σ) if

(1) µ(∅) = 0,

(2) 0 ≤ µ(X) ≤ ∞ for all X ∈ Σ, and

(3) µ(∪∞i=1Ai) =
∑∞

i=1 µ(Ai) for any pairwise disjoint collection {Ai} ⊆ Σ.

Remarks. A measure is necessarily subadditive, i.e., if A,B ∈ Σ, then µ(A ∪B) ≤ µ(A) +
µ(B), without assuming A and B are disjoint. Also note that if A ⊆ B, then µ(A) ≤ µ(B).
(Prove!)
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Example 2.7. Let X be any set, and let Σ = 2X . Define µ : Σ→ R ∪ {∞}by

µ(A) =
{
|A| if A is finite
∞ if A is infinite.

µ(A) is called the counting measure on (X,Σ).

Definition 2.8. Letm∗ be outer measure on Rn. A subsetX ⊆ Rn satisfies the Carathéodory
condition if for all A ⊆ Rn

m∗(A) = m∗(A ∩X) +m∗(A ∩Xc).

(We say X splits every set additively in measure.)

Note: The set X satisfies the Carathéodory condition if and only if for all A with m∗(A) <
∞

m∗(A) ≥ m∗(A ∩X) +m∗(A ∩Xc).
Reason: A = (A ∩X) ∪ (A ∩Xc) so m∗(A) ≤ m∗(A ∩X) + m∗(A ∩Xc) by subadditivity
of m∗.

Theorem 2.9 (Carathéodory). Let L denote all subsets X ⊆ Rn satisfying the Carathéodory
condition. Then L is a σ-algebra and m∗ restricted to L is a measure on L.

Proof. See Bartle, [1]. �

Definition 2.10. L is called the Lebesgue σ-algebra on Rn and m∗ restricted to L, denoted
by m, is called the Lebesgue measure on Rn.

3. Measure III

Theorem 3.1. (Translation Invariance) If X ∈ L and p ∈ Rn, then p + X ∈ L and
m(X) = m(p+X).

Proof. See Bartle, [1]. �

Theorem 3.2. Let I ⊆ Rn be a rectangle. Then I ∈ L and m(I) = `(I).

Proof. We’ve already shown m∗(I) = `(I), so we just need to show I ∈ L. Define Ik =
{x ∈ I | d(x, Ic) > 1

k} for k = 1, 2, . . . So I1 ⊂ I2 ⊂ · · · ⊂ I. Note that I \ Ik is
contained in 2n rectangles and each of these rectangles has one dimension of length 1

k and
the rest bounded by some constant c, independent of k. Therefore, m∗(I \ Ik) ≤ 2ncn−1

k . So
limk→∞m

∗(I \ Ik) = 0. Now let A ⊆ Rn. We must show m∗(A) = m∗(A∩ I) +m∗(A∩ Ic).
Since d(Ik, Ic) = 1

k > 0 and A ⊇ (A ∩ Ik) ∪ (A ∩ Ic), we know

m∗(A) ≥ m∗((A ∩ Ik) ∪ (A ∩ Ic)) = m∗(A ∩ Ik) +m∗(A ∩ Ic)

We now show limk→∞m
∗(A ∩ Ik) = m∗(A ∩ I) to finish. To see this, note

A ∩ Ik ⊆ A ∩ I = (A ∩ Ik) ∪ (A ∩ (I \ Ik)) ⊆ (A ∩ Ik) ∪ (I \ Ik)

so m∗(A ∩ Ik) ≤ m∗(A ∩ I) ≤ m∗(A ∩ Ik) + m∗(I \ Ik). Since limk→∞m
∗(I \ Ik) = 0, we

have limk→∞m
∗(A ∩ Ik) = m∗(A ∩ I). �

Theorem 3.3. Let µ be a measure on L such that µ(I) = m(I) for all rectangles I. Then
µ = m.
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Proof. See Bartle, [1]. �

Theorem 3.4. Suppose X ⊂ Rn and m∗(X) = 0. Then X ∈ L, and if Y ⊆ X, then
m∗(Y ) = 0, so Y ∈ L, too.

Proof. Homework. �

Proposition 3.5. Every open set and every closed set of Rn is Lebesgue measurable.

Proof. Since L is closed under complementation, it suffices to show that L contains all
open sets. But every open set in Rn is a countable union of open rectangles and L is closed
under taking countable unions. �

Definition 3.6. The smallest σ-algebra on Rn containing all open sets of Rn is called the
Borel σ-algebra, B, and its elements are called Borel sets.

Besides open and closed sets, the Borel algebra contains all countable intersections of open
sets (Gδ sets) and all countable unions of closed sets (Fσ sets). It also contains countable
unions of Gδ sets (Gδσ sets) and countable intersections of Fσ sets (Fσδ sets), etc.

Fact: B  L.

Theorem 3.7. (Approximation theorem for measurable sets) The following are
equivalent for X ⊆ Rn.

(1) X is Lebesgue measurable.

(2) For all ε > 0 there exists an open set U ⊇ X with m∗(U \X) < ε.

(3) For all ε > 0 there exists a closed set F ⊆ X with m∗(X \ F ) < ε.

If, in addition, m∗(X) <∞, then 1–3 are equivalent to

4. For all ε > 0 there exists a compact set K ⊆ X with m∗(X \K) < ε.

Proof. See Bartle, [1], Chapter 15. �

Corollary 3.8. If X ⊆ Rn is Lebesgue measurable, then for all ε > 0, there exists a
closed set F ⊆ X and an open set U ⊇ X such that m(F ) ≤ m(X) ≤ m(F ) + ε and
m(U)− ε ≤ m(X) ≤ m(U) (suitably interpreted when m(X) =∞).

Proof. Homework. �

Theorem 3.9. Let X ⊆ Rn be Lebesgue measurable with m(X) < ∞. Then Y ⊆ X is
Lebesgue measurable if and only if m(X) = m∗(Y ) +m∗(X \ Y ).

Proof. See Bartle, [1], Theorem 16.3. �

4. Weird Sets

Definition 4.1. If X,Y are subsets of Rn, let X � Y = {x− y | x ∈ X, y ∈ Y }.

Lemma 4.2. Let K ⊆ Rn be compact and m(K) > 0. Then K �K contains an open ball
about the origin.
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Proof. By the approximation theorem, we can choose an open set U ⊇ K with m(U) <
2m(K). Since K is compact, U c is closed, and K ∩Kc = ∅, we have δ := d(K,U c) > 0.
We claim that K �K contains the open ball of radius δ about the origin. To see this, let
|x| < δ. Then x+K ⊆ U (otherwise, if there exists k ∈ K with x+ k = v ∈ U c, we would
have |x| = |v−k| = d(k, v) ≥ δ). We would like to show that (x+K)∩K = ∅. For then we
could write x+ k1 = k2 for some k1, k2 ∈ K, and x = k2 − k1 ∈ K �K, as required. Now,
if (x+K) ∩K = ∅, then by additivity of m and the fact that K ∪ (x+K) ⊆ U ,

2m(K) = m(K) +m(x+K) = m(K ∪ (x+K)) ≤ m(U) < 2m(K),

a contradiction. �

Lemma 4.3. Let X be a Lebesgue measurable subset of Rn with m(X) > 0. Then X �X
contains an open ball about the origin.

Proof. First choose a measurable subset of X with finite positive measure. To see this is
possible, define Xk = X∩B(0; k). Then each Xk is measurable and 0 < m(X) ≤

∑
km(Xk)

implies some Xk has positive measure. Now choose a compact subset of this set having
positive measure (using the approximation theorem) and apply Lemma 4.2. �

Construction of a non-measurable set (Vitali).

If x, y ∈ Rn, say x ∼ y if x − y ∈ Qn. Then ∼ is an equivalence relation on Rn. Choose
one element from each equivalence class to form the set V. Let q1, q2, . . . be a list of the
elements of Qn, and define Vqi = qi + V.

Lemma 4.4. Rn = t∞i=1Vqi (disjoint union).

Proof. Given x ∈ Rn, choose y ∈ V such that x ∼ y. Then x − y = qj for some j.
Therefore, x = qj + y ∈ Vqj . So Rn ⊆

⋃
i Vqi . Now suppose there exists x ∈ Vqi

⋂
Vqj .

Then x = qi + v = qj + v′ for some v, v′ ∈ V. Therefore, v − v′ = qj − qi ∈ Qn and v ∼ v′.
It follows that v = v′, thus qi = qj . �

Theorem 4.5. V is not measurable.

Proof. Suppose V is measurable. If m(V) = 0, then m(Vqi) = m(qi + V) = m(V) = 0. It
follows from Lemma 4.4 that m(Rn) =

∑
m(Vqi) = 0, which is a contradiction. If m(V) > 0,

then Lemma 4.3 says V � V contains an open ball about the origin. Therefore, there exists
a point q ∈ Qn\{0} in V � V. So q = v − v′ for some v, v′ ∈ V, which implies v ∼ v′ with
v 6= v′, a contradiction. �

Theorem 4.6. If X ⊆ Rn and m∗(X) > 0, then X contains a non-measurable set.

Proof. Define Xi = X
⋂
Vqi for each i. If all Xi are measurable, then since X = t∞i=1Xi

by Lemma 4.4, we have 0 < m∗(X) = m(X) =
∑

im(Xi). So m(Xi) > 0 for some i. By
Lemma 4.3, Xi � Xi contains a open ball about the origin, hence a nonzero q ∈ Qn. It
follows that q ∈ Xi �Xi ⊆ Vqi � Vqi = V � V. We get a contradiction, just as in the proof
of Theorem 4.5. �
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5. Weird Sets II

Theorem 5.1. There are Lebesgue measurable sets that are not Borel sets.

Proof. Let C be the Cantor set. Each x ∈ C has a base-3 expansion of the form x =
0.x1x2x3 . . . where xi ∈ {0, 2} for all i. Recall the function φ : C → I = [0, 1] where φ(x) is
defined by (0.x1x2x3 . . . )3 7→ (0.x1

2
x2
2
x3
2 . . . )2. Then φ is a surjection but not an injection.

It sends the endpoints of any removed middle third to the same point in I. For example,
φ((0.002̄)3) = (0.001̄)2 = (0.01)2 = φ((0.02)3). Otherwise, it is injective. Extend φ to all of
I by setting its value on any removed middle third to be the value of φ at either endpoint.
In this way we get a monotonically nondecreasing surjective function φ : I → I. Hence, φ
is continuous.

Since m(C) = 0 (from the homework) we have m(I \ C) = 1 and φ is differentiable on
I \C with derivative 0. So, φ′ = 0 “almost everywhere” but φ is not constant. Now, define
ψ : I → [0, 2] by ψ(x) = x + φ(x). Then ψ is strictly increasing, continuous and bijective,
and therefore ψ is a homeomorphism (it is a continuous bijection of compact Hausdorff
spaces). It follows that if B is a Borel set in R then both ψ(B) and ψ−1(B) are Borel sets
since both ψ and ψ−1 preserve open sets, complements, and unions.

Since φ is constant on the middle thirds, we have m(ψ(I\C)) = m(I\C) = 1. Therefore,

2 = m(ψ(I)) = m(ψ(C)) ∪ ψ(I \ C) = m(ψ(C)) +m(ψ(I \ C)) = m(ψ(C)) + 1.

So m(ψ(C)) = 1.
By last time, since m(ψ(C)) > 0 there exists a nonmeasurable set W ⊆ ψ(C). Now,

define W̃ = ψ−1(W ) ⊆ C. Since m(C) = 0, we have that m(W̃ ) = 0, hence, W̃ ∈ L.
The set W̃ is not a Borel set because otherwise ψ(W̃ ) = W would be a Borel set, hence
measurable, which it is not. �

Note that we have also shown that homeomorphisms don’t preserve Lebesgue measur-
ability, though they preserve Borel sets.





Chapter 5

Integration

1. Measurable Functions

Let (X,Σ, µ) be a measure space: X is a set, Σ is a σ-algebra on X, and µ : Σ→ R ∪ {∞}
is a (countably additive) measure.

Definition 1.1. A function f : X → R is measurable if for all α ∈ R,

f−1((α,∞)) = {x ∈ X | f(x) > α} ∈ Σ.

Example 1.2.

(1) Every constant function is measurable.

(2) Let E ∈ Σ (so E is a measurable set), and let χE : X → R be the characteristic
function of E, i.e.

χE(x) =
{

1 if x ∈ E
0 if x /∈ E

Then χE is measurable.

(3) If X = Rn, Σ = L, and f : Rn → R is continuous, then f is measurable.

Proposition 1.3. The following are equivalent for f : X → R:

(1) Aα = {x ∈ X | f(x) > α} is measurable for all α ∈ R.

(2) Bα = {x ∈ X | f(x) ≤ α} is measurable for all α ∈ R.

(3) Cα = {x ∈ X | f(x) ≥ α} is measurable for all α ∈ R.

(4) Dα = {x ∈ X | f(x) < α} is measurable for all α ∈ R.

Proof. (1⇔ 2) and (3⇔ 4) by complementation.
(1⇒ 3) since Cα = ∩∞n=1Aα− 1

n
.

(3⇒ 1) since Aα = ∪∞n=1Cα+ 1
n

. �

Proposition 1.4. f : X → R is measurable if and only if f−1(B) is measurable for all
Borel sets B ⊆ R.

Proof. (⇒) If f is measurable, then f−1(I) is measurable for all open intervals I by the
proceeding proposition and the fact that Σ is closed under intersections. For instance, if

37
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I = (α, β), then f−1(I) = Aβ ∩ Dα, using the notation of the preceding proposition. It
follows that the inverse image of every open set is measurable and that the inverse image of
every Borel set is measurable. (This is because every open set is a countable union of open
intervals, f−1 preserves set operations.)

(⇐) Every ray, (α,∞), is a Borel set. �

Proposition 1.5. Suppose f , g : X → R are measurable. Then cf is measurable for all
c ∈ R and f2, f + g, fg, |f | are all measurable.

Proof. The proof is an exercise. Here are some hints: The result for cf is easy (consider
the case c = 0 separately).

{f2(x) > α} =
{
x if α < 0
{f(x) >

√
α} ∪ {f(x) < −

√
α} if α ≥ 0

{(f + g)(x) > α} =
⋃
r∈Q

[{f(u) > r} ∩ {g(x) > α− r}]

fg =
[(f + g)2 − (f − g)2]

4
.

�

Definition 1.6. Given f : X → R, define the positive part of f by f+(x) = max{f(x), 0}
and the negative part by f−(x) = −min{f(x), 0}.

Since f = f+ − f− and |f | = f+ + f−, it follows that f+ = (|f |+f)
2 and f− = (|f |−f)

2 .
Thus, the previous proposition implies

Proposition 1.7. If f is measurable, so are f+ and f−.

For convenience, we’ll also consider functions f : X → R∪{±∞}. In this case, we’ll say
f is measurable for all α ∈ R, just as before. Note:

{x ∈ X|f(x) =∞} =
⋂
n≥1

{x ∈ X | f(x) > n} ∈ Σ if f is measurable.

{x ∈ X|f(x) = −∞} =
⋂
n≥1

{x ∈ X | f(x) < −n} ∈ Σ if f is measurable.

The previous propositions apply as long as the operations make sense.

Notation. The set of measurable functions f : X → R ∪ {±∞} is denoted M(X).

Proposition 1.8. Let {fn} be a sequence in M(X). Then infn fn, supn fn, lim inf fn and
lim sup fn are all measurable.

Proof. Note that

• {x ∈ X | infn fn(x) ≥ α} = ∩n{x ∈ X | fn(x) ≥ α}.
• {x ∈ X | supn fn(x) > α} = ∪n{x ∈ X | fn(x) > α}.
• lim infn fn(x) = supn{infm≥n fm(x)}.
• lim supn fn(x) = infn{supm≥n fm(x)}.
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�

Note: Suppose {fn} is a sequence of measurable functions on X, and that there is a
function f on X such that fn → f pointwise, i.e., fn(x) → f(x) for all x ∈ X. Then
f(x) = limn fn(x) = lim infn fn(x) is measurable. In other words, M(X) is closed under
this limit operation.

2. Integration I

Proposition 2.1. Suppose f ∈ M(X) and f(x) ≥ 0 for all x ∈ X. Then there exists a
sequence of measurable functions {ϕn} on X with:

(1) 0 ≤ ϕn(x) ≤ ϕn+1(x) ≤ f(x) for all x ∈ X.
(2) f(x) = limϕn(x) for all x ∈ X.
(3) ϕn has only a finite number of values.

Proof. Define:

ϕ1 =


0 if 0 ≤ f(x) < 1

2
1
2 if 1

2 ≤ f(x) < 1
1 if 1 ≤ f(x)

ϕ2 =



0 if 0 ≤ f(x) < 1
4

1
4 if 1

4 ≤ f(x) <≤ 1
2

...
7
4 if 7

4 ≤ f(x) < 2
2 if 2 ≤ f(x),

and so on. In general, define

ϕn =
{

k
2n if k

2n ≤ f(x) < k+1
2n for k = 0, 1, . . . , n2n − 1

n if n ≤ f(x).

To see that each ϕn is measurable, note that for all α ∈ R, {x ∈ X | ϕn(x) ≥ α} = {x ∈
X | f(x) ≥ α̃} where α̃ = k+1

2n if k
2n ≤ α <

k+1
2n or α̃ = n if α ≥ n.

The proofs of parts (1) and (3) are obvious. For part (2), choose x ∈ X. If f(x) =∞,
then φn(x) = n for all n, and the result follows. Otherwise, let ε > 0. Take N so that
1

2N
< ε and N > f(x). For n ≥ N , we have ϕn(x) = k

2n ≤ f(x) < k+1
2n and thus

|f(x)− ϕn(x)| < 1
2N

< ε. �

Definition 2.2. A simple function is a function f : X → R with a finite number of values.

Note that a simple function never takes the values ±∞.

Definition 2.3. Let f be a simple function whose distinct values are a1, . . . , ak. Defining
Ei = f−1(ai) for i = 1, . . . k, we write f in standard form as f =

∑k
i=1 aiχEi .

Note: If f is written in standard form as above, then Ei ∩ Ej = ∅ if i 6= j and ∪Ei = X.

Definition 2.4. If f =
∑
aiχEi is a measurable simple function in standard form with

each ai ≥ 0, then the (Lebesgue) integral of f is defined to be∫
f dµ =

∑
aiµ(Ei).
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For the purposes of this definition, we adopt the convention that

a · ∞ =
{

0 if a = 0
∞ if a > 0.

Examples

(1) Let X = {X1, . . . , Xn},
∑

= 2X , µ(E) = |E|
n , and f(Xi) = i. Then∫

f =
∫ n∑

i=1

i χ{Xi} =
n∑
i=1

i µ({Xi}) =
n∑
i=1

i

n
=
n+ 1

2
.

(2) Let X = R,
∑

= L, µ = m (Lebesgue measure), and f = χ[0,2] + 2χ[1,4]. Then,
in standard form, f = χ[0,1) + 3χ[1,2] + 2χ(2,4]. So

∫
f = m([0, 1)) + 3m([1, 2]) +

2m((2, 4]) = 8.

3. Integration II

Notation: LetM+(X) denote the measurable functions f : X → R̄ = R∪{±∞} such that
f(x) ≥ 0 for all x ∈ X.

Lemma 3.1. Let φ, ψ be simple functions in M+(X), and let c ≥ 0. Then

(1)
∫
c φ = c

∫
φ.

(2)
∫

(φ+ ψ) =
∫
φ+

∫
ψ.

(3) Define λ : Σ→ R̄ by λ(E) =
∫
φχE. Then λ is a measure.

Proof. (1) Say φ =
∑

i aiχEi in standard form. If c = 0, no problem. Otherwise, the
standard form for c φ is

∑
i c aiχEi . In that case,∫

c φ =
∑
i

c ai µ(Ei) = c
∑
i

ai µ(Ei) = c

∫
φ.

(2) Say φ =
∑s

i=1 ai χEi and ψ =
∑t

i=1 bi χFi in standard form. Then

φ+ ψ =
∑
i,j

(ai + bj)χEi∩Fj ,

but this might not be in standard form. Let c1, . . . , cp be the distinct values of ai + bj as i
and j vary, and define

Gk =
⋃

i,j:ai+bj=ck

(Ei ∩ Fj).

Then the standard form for φ+ ψ is

φ+ ψ =
p∑

k=1

ck χGk .
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Therefore,∫
(φ+ ψ) =

p∑
k=1

ck µ(Gk) =
p∑

k=1

ck µ

 ⋃
i,j:ai+bj=ck

(Ei ∩ Fj)


=

∑
k

∑
i,j:ai+bj=ck

µ(Ei ∩ Fj) =
∑

1≤i≤s, 1≤j≤t
(ai + bj)µ(Ei ∩ Fj)

=
∑
i,j

ai µ(Ei ∩ Fj) +
∑
i=j

bj µ(Ei ∩ Fj)

=
∑
i

ai µ(Ei) +
∑
j

bj µ(Fj)

=
∫
φ+

∫
ψ.

(3) Exercise. �

Definition 3.2. Let f ∈M+(X). Define∫
f = sup

∫
φ,

where the sup is over all simple measurable functions φ such that 0 ≤ φ(x) ≤ f(x) for all
x ∈ X.
If E ∈ Σ, define ∫

E
f =

∫
f χE .

Thus, for instance,
∫
E 1 =

∫
χE = µ(E).

Lemma 3.3.

(1) If f, g ∈M+(X) and f(x) ≤ g(x) for all x ∈ X, then
∫
f ≤

∫
g.

(2) If E,F ∈ Σ with E ⊆ F and f ∈M+(X), then
∫
E f ≤

∫
F f .

Proof. (1) If φ is a simple measurable function such that 0 ≤ φ(x) ≤ f(x) for all x, then
0 ≤ φ(x) ≤ g(x) for all x.
(2) Since f(x) ≥ 0 for all x, and E ⊆ F , we have (f χE)(x) ≤ (f χF )(x) for all x. Apply
(1). �

4. Monotone Convergence Theorem

Theorem 4.1 (Monotone Convergence Theorem). Let fn be a sequence of functions in
M+(X). Suppose fn(x) ≤ fn+1(x) for all n and for all x ∈ X, and limn fn(x) = f(x) for
all x ∈ X. Then

lim
n

∫
fn =

∫
f.

Proof. Since fn(x) ≤ f(x) for all n and x, it follows that
∫
fn ≤

∫
f for all n; hence

limn

∫
fn ≤

∫
f .

To see the reverse inequality let φ be any simple measurable function such that 0 ≤ φ(x) ≤
f(x) for all x ∈ X. Pick any α ∈ (0, 1) and define

An = {x ∈ X | fn(x) ≥ αφ(x)}.
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Then An ⊆ An+1 for all n, and ∪nAn = X since αφ(x) ≤ f(x) for all x. Also note that An
is measurable since fn − αφ is a measurable function.

Now ∫
An

αφ ≤
∫
An

fn ≤
∫
fn. (2)

Since αφχAn(x) ≤ fnχAn(x) for all x; so limn

∫
An
αφ ≤ limn

∫
fn.

Claim:

lim
n

∫
An

φ =
∫
φ.

If we can show this we are done since it follows by taking the limit in equation (2) that
α
∫
φ ≤ limn

∫
fn. Since α is arbitrary in (0, 1) we get

∫
φ ≤ limn

∫
fn, and hence

∫
f =

supφ
∫
φ ≤ limn

∫
fn.

To see the claim, write φ =
∑
aiχEi in standard form. Then∫

An

αφ =
∫
αφχAn =

∫ ∑
i

αai χEi∩An =
∑
i

αai µ(Ei ∩An).

Since {Ei ∩An} ⊆ {Ei ∩An+1} for all n and ∪n(Ei ∩An) = Ei, a homework problem says
limn µ(Ei ∩An) = µ(Ei). Therefore limn

∫
αφ = α

∑
aiµ(Ei) =

∫
αφ. �

Example 4.2.

(1) Recall the sequence φn constructed earlier with φn ↗ f . By the monotone conver-
gence theorem, limn

∫
φn =

∫
f .

(2) Let fn : R → R be defined by fn = 1
nχ[n,∞) for n = 1, 2, . . . We get fn ↘ 0 and∫

fn = 1
nµ([n,∞)) = ∞; so limn

∫
fn = ∞ 6=

∫
limn fn = 0. Thus, the monotone

convergence theorem does not work for monotone decreasing functions.

Corollary 4.3. Suppose f, g ∈M+(X) and c ≥ 0. Then cf and f + g are in M+(X) and

(1)
∫
cf = c

∫
f .

(2)
∫

(f + g) =
∫
f +

∫
g.

Proof. We have already seen that cf and f + g are inM+(X). Choose simple measurable
φn, ψn in M+(X) with φn ↗ f and ψn ↗ g. Then c φn ↗ c f and φn + ψn ↗ f + g; so the
monotone convergence theorem says∫

c f = lim
n

∫
c φn = lim

n
c

∫
φn = c lim

n

∫
φn = c

∫
f

and ∫
(f + g) = lim

n

∫
(φn + ψn) = lim

n

(∫
φn +

∫
ψn

)
= lim

n

∫
φn + lim

n

∫
ψn =

∫
f +

∫
g.

�

Corollary 4.4. If gn ∈M+(X) for n = 1, 2, . . . , then
∫ ∑∞

n=1 gn =
∑∞

n=1

∫
gn.
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Proof. Define sk =
∑k

n=1 gn. Then sk ↗
∑∞

k=1 gn. Therefore, the monotone convergence
theorem implies∫ ∞∑

n=1

gn = lim
k

∫
sk = lim

k

∫ k∑
n=1

gn = lim
k

k∑
n=1

∫
gn =

∞∑
n=1

∫
gn.

�

Corollary 4.5. For f ∈ M+(X), define λ : Σ → R̄ by λ(E) =
∫
E fdµ. Then λ is a

measure on (X,Σ).

Proof. Clearly, λ(E) ≥ 0, and λ(φ) = 0 Let {Ei} be a sequence of pairwise disjoint sets
in Σ. Define fn =

∑n
i=1 f χEi for n = 1, 2, . . . Then fn ↗ fχE where E = ∪Ei. Apply

the monotone convergence theorem to get
∫
E f =

∫
fχE = limn

∫
fn =

∑∞
i=1

∫
fn χEi =∑∞

i=1 λ(Ei). �

5. Fatou’s Lemma

Lemma 5.1 (Fatou’s Lemma). Suppose fn is a sequence in M+(X) . Then∫
lim inf fn ≤ lim inf

∫
fn.

Proof. For each n, define gn = infm≥n fm. These gn ↗ lim inf fn. By the monotone
convergence theorem, lim

∫
gn =

∫
lim inf fn. Note gn(x) ≤ fm(x) for all m ≥ n. So∫

gn ≤
∫
fm for all m ≥ n. Hence,∫

gn ≤ inf
m≥n

∫
fm ≤ sup

n
{ inf
m≥n

∫
fn} = lim inf

m

∫
fm.

Therefore, limn

∫
gn ≤ lim infn

∫
fn. �

Corollary 5.2. Let f ∈ M+(X). Then f = 0 almost everywhere, i.e. except on a set of
measure zero, if and only if

∫
f = 0.

Proof. (⇒) Let E = {x ∈ X | f(x) > 0} and define fn = nχE for n = 1, 2, . . . Then

lim inf fn(x) =
{
∞ if x ∈ E
0 if x /∈ E

and f ≤ lim inf fn. It follows that
∫
f ≤

∫
lim inf fn ≤ lim inf

∫
fn = 0.

(⇐) Suppose
∫
f = 0. Define, for each n,

En = {x ∈ X | f(x) ≥ 1
n
}.

Then f ≥ 1
n χEn , so 0 =

∫
f ≥

∫
1
n χEn = 1

n µ(En). Thus µ(En) = 0 for all n. But

E = {x ∈ X | f(x) > 0} = ∪nEn.

So µ(E) ≤
∑

n µ(En) = 0. �

Corollary 5.3. f ∈M+(X), E ∈ Σ, µ(E) = 0⇒
∫
E f = 0.

Proof.
∫
E f =

∫
f · χE and f · χE = 0 almost everywhere. �

Corollary 5.4. f, g ∈M+, f = g almost everywhere ⇒
∫
f =

∫
g.



44 5. Integration

Proof. Let E = {x ∈ X | f(x) 6= g(x)}. Then∫
f =

∫
f(χE + χEc) =

∫
E
f +

∫
Ec
f =

∫
Ec
f =

∫
Ec
g =

∫
g.

�

Corollary 5.5. Suppose {fn} is a sequence in M+(X), f ∈ M+(X), and fn ↗ f almost
everywhere. Then

lim
∫
fn =

∫
f.

Proof. Let E be the set of points where {fn} is not monotonically increasing or where fn
does not converge to f . Define

f̃n(x) =
{
fn(x) if x /∈ E
0 otherwise

and define g = sup f̃n. Then f̃n ↗ g everywhere, so the monotone convergence theorem
and Corollary 5.4 imply

lim
∫
fn = lim

∫
f̃n =

∫
g =

∫
f.

�

6. Integrable Functions

Definition 6.1. Let I = I(X,Σ, µ) denote all measurable functions f : X → R̄ such that∫
f+ and

∫
f− are finite. For f ∈ I, define the Lebesgue integral of f to be∫

f =
∫
f+ −

∫
f−.

If E ∈ Σ, define
∫
E f =

∫
fχE . The elements of I are called integrable functions.

Properties:

(1) If f ∈M+(X), then f ∈ I if and only if
∫
f <∞.

(2) If f ∈ I and {Ei}i≥1 are pairwise disjoint measurable subsets, then
∫
∪Ei f =∑

i

∫
Ei
f since this relation holds for f+ and f− separately.∫

∪Ei
f =

∫
∪Ei

f+ −
∫
∪Ei

f− =
∑
i

∫
Ei

f+ −
∑
i

∫
Ei

f− =
∑
i

∫
Ei

f.

(3) Suppose f is measurable. Then f ∈ I if and only if |f | ∈ I. We have already seen
that if f is measurable, then so is |f |. The result follows since |f | = f+ + f− and∫
f+ + f− <∞ if and only if

∫
f+ <∞ and

∫
f− <∞.

(4) Suppose f is measurable, g is integrable, and |f | ≤ |g|. Then f is integrable and∫
|f | ≤

∫
|g|.

Proof. Since f is measurable, so is |f |. Since |f | and |g| are non-negative mea-
surable functions, we have already seen that

∫
|f | ≤

∫
|g|. Since g ∈ I, we have

|g| ∈ I, so
∫
|g| < ∞, which implies that

∫
|f | < ∞. Therefore, |f | ∈ I, whence

f ∈ I by Property 3. �
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(5) Suppose f, g ∈ I and α ∈ R. Then αf and f + g are integrable, and
∫
αf = α

∫
f ,

and
∫

(f + g) =
∫
f +

∫
g.

Proof. If α ≥ 0, then (αf)+ = α(f+) and (αf)− = α(f−). Therefore,∫
(αf)+ =

∫
α(f+) = α

∫
f+ <∞

and ∫
(αf)− =

∫
α(f−) = α

∫
f− <∞.

So αf ∈ I and∫
αf =

∫
(αf)+ −

∫
(αf)− = α

∫
f+ − α

∫
f−

= α(
∫
f+ −

∫
f−) = α

∫
f.

If α < 0, then (αf)+ = −α(f−) and (αf)− = −α(f+). Therefore,∫
(αf)+ =

∫
−α(f−) = −α

∫
f− <∞

and ∫
(αf)− =

∫
−α(f+) = −α

∫
f+ <∞.

So αf ∈ I and∫
αf =

∫
(αf)+ −

∫
(αf)− = −α

∫
f− + α

∫
f+

= α(
∫
f+ −

∫
f−) = α

∫
f.

Now consider f + g. Since f, g are measurable, so is f + g. We have |f + g| ≤
|f |+ |g| and |f | and |g| are integrable. Hence, so is f + g by Property 4. To show∫

(f + g) =
∫
f +

∫
g define sets as follows:

A = {x ∈ X | f(x) ≥ 0 and g(x) ≥ 0}
B = {x ∈ X | f(x) ≥ 0 and g(x) < 0}
C = {x ∈ X | f(x) < 0 and g(x) ≥ 0}
D = {x ∈ X | f(x) < 0 and g(x) < 0}.

These sets are measurable and pairwise disjoint. By Property 2,
∫

(f + g) =∫
A(f + g) + · · · +

∫
D(f + g). It suffices to show that sums are preserved for each

integral on the right hand side. To see this for the integral over B, for instance,
note that B is the disjoint union of the sets

B1 = {x ∈ X | (f + g)(x) ≥ 0} and B2 = {x ∈ X | (f + g)(x) < 0}.

On B1 we have f + g ≥ 0 and −g > 0. Therefore, by results for M+(X),∫
B1

f =
∫
B1

((f + g)− g) =
∫
B1

(f + g)−
∫
B1

g.

Hence,
∫
B1

(f+g) =
∫
B1
f+
∫
B1
g. Similarly:

∫
B2

(f+g) =
∫
B2
f+
∫
B2
g. Therefore,

by Property 2,
∫
B(f + g) =

∫
B f +

∫
B g. The arguments for the integrals over A,

C, and D are similar. �
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7. Dominated Convergence

Theorem 7.1 (Lebesgue Dominated Convergence Theorem).
Let fn be a sequence of integrable functions converging to a real (finite-valued) function f .
If there exists an integrable function g such that |fn| ≤ g for all n, then f is integrable and

lim
∫
fn =

∫
f.

Proof. The function f is measurable since it is the limit of a sequence of measurable
functions. Then note that |fn| ≤ g ≤ |g| ⇒ |f | ≤ |g| ⇒ f is integrable by a previous result.
Since g + fn, g − fn are both non-negative, Fatou’s Lemma applies:∫

g +
∫
f =

∫
lim(g + fn) =

∫
lim inf(g + fn)

≤ lim inf
∫

(g + fn) =
∫
g + lim inf

∫
fn

and similarly, ∫
g −

∫
f =

∫
lim inf(g − fn) ≤ lim inf(

∫
g −

∫
fn)

=
∫
g + lim inf(−

∫
f) =

∫
g − lim sup

∫
fn.

Hence, lim sup
∫
fn ≤

∫
f ≤ lim inf

∫
fn ⇒ lim sup

∫
fn = lim inf

∫
fn =

∫
f . �

Applications: Suppose f : X × [a, b] → R and that f(x, t) is measurable as a function of
x at each t ∈ [a, b].

(1) If limt→t0 f(x, t) = f(x, t0) for each x ∈ X and there exists an integrable function
g on X such that |f(x, t)| ≤ g(x) for all x, then

lim
t→t0

∫
f(x, t) dx =

∫
f(x, t0) dx.

Proof. Let tn → t0. Define fn(x) = f(x, tn). Since |fn(x)| ≤ g(x), it follows
by property (4) of Section 6 that each fn is integrable, and it follows from the
dominated convergence theorem that limn

∫
fn dx =

∫
limn fn dx =

∫
f(x, t0) dx.

�

(2) Suppose that x 7→ f(x, t0) is integrable for some t0, that ∂f
∂t exists for all x ∈ X

and t ∈ [a, b], and that there exists an integrable function g on X such that
|∂f∂t (x, t)| ≤ g(x) for all x and t. For each t, the function x 7→ f(x, t) is integrable.
Define F (t) =

∫
f(x, t) dx. Then F is differentiable and

dF

dt
=
∫
∂f

∂t
dx.

Proof. Step 1. ∂f
∂t is measurable as a function of x for all t ∈ [a, b]. To see this,

fix t, choose a sequence tn → t with no tn equal to t, and define

fn(x) =
f(x, t)− f(x, tn)

t− tn
.

Then each fn is measurable, hence so is limn fn(x) = ∂f
∂t (x, t). (In fact, since ∂f

∂t is
bounded by the integrable function g, it follows that x 7→ ∂f

∂t is integrable for each
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t, although this will follow from the dominated convergence theorem later in the
proof.)
Step 2. f(x, t) is integrable as a function of x for all t ∈ [a, b]. To see this, fix t
and note that by the mean value theorem, there exists a t′ between t and t0 such
that

f(x, t)− f(x, t0) =
∂f

∂t
(x, t′)(t− t0).

Thus,

f(x, t) = f(x, t0) +
∂f

∂t
(x, t′)(t− t0)⇒ |f(x, t)| ≤ |f(x, t0)|+ |g(x)|(b− a).

Hence f(x, t) is integrable with respect to x for all t, since it is measurable and
bounded above by the sum of two integrable functions.
Step 3. Fix t, choose tn → t with tn 6= t for all tn, and define fn(x) = f(x,t)−f(x,tn)

t−tn ,
as before. Then fn is integrable (since linear combinations of integrable functions
are integrable) and by the dominated convergence theorem,∫

∂f

∂t
dx =

∫
lim
n
fn dx

= lim
n

∫
fn dx

= lim
n

∫
f(x, t) dx−

∫
f(x, tn) dx

t− tn

= lim
n

F (t)− F (tn)
t− tn

=
dF

dt
.

�

8. The Riemann Integral

A partition of a rectangle [a, b] ⊆ R is a set P = {t0, t1, . . . , tk} ⊂ [a, b] such that a =
t0 < t1 < · · · < tk = b. Each [ti, ti+1] is a called a subrectangle of P . A partition of a
rectangle I = I1 × · · · × In ⊂ Rn is a Cartesian product P = P1 × · · · × Pn where each
Pi is a partition of Ii. The partition P divides I into subrectangles which are products
of the subrectangles of the Pi. Denote these subrectangles by B(P ). Given a bounded
function f : I → R and a partition P of I, define the lower and upper sums for f on
P by L(f, P ) =

∑
J∈B(P )mJ `(J) and U(f, P ) =

∑
J∈B(P )MJ `(J), respectively, where

mJ := infx∈J f(x) and MJ := supx∈J f(x). Clearly L(f, P ) ≤ U(f, P ).
A partition P ′ refines P if P ′ ⊇ P . It is not hard to see that L(f, P ) ≤ L(f, P ′) ≤

U(f, P ′) ≤ U(f, P ). Given two partitions P ′ and P ′′, there exists a common refinement,
P . (Note: It’s not usually P ′ ∪ P ′′.) Instead define the common refinement to be P =
(P ′1 ∪ P ′′1 )× · · · × (P ′n ∪ P ′′n ). We can use the common refinement to show that every lower
sum L(f, P ′) is less than or equal to every upper sum U(f, P ′′). Reason: Let P be the
common refinement. Then

L(f, P ′) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P ′′).

Define the lower and upper integrals of f on I by
∫̄
f = supP {L(f, P )} and

∫̄
f =

infP {U(f, P}, respectively. These always exist. If
∫̄
f =

∫̄
f , we say f is Riemann integrable

and define the Riemann integral to be the common value, denoted
∫
f or

∫
I f .
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If E ⊆ Rn is bounded and f : E → R is a bounded function, define
∫
E f by choosing a

rectangle I ⊃ E and letting

f̃(x) =
{
f(x) x ∈ E
0 x /∈ E.

Define
∫
E f =

∫
I f̃ . It turns out that this definition does not depend on the choice of I.

9. celebrity deathmatch: Riemann vs. Lebesgue

Let I ⊂ Rn be a bounded rectangle, and let R denote the Riemann integrable functions
on I. We will denote the Lebesgue integral by

∫
f , as usual, and temporarily denote the

Riemann integral of a function f by R
∫
f .

Theorem 9.1. Let f : I → R be bounded. Then f ∈ R if and only if f is continuous almost
everywhere. Also, if f ∈ R, then f is Lebesgue integrable, and R

∫
f =

∫
f .

Proof. Choose a sequence of partitions P1 ⊂ P2 ⊂ · · · of I such that for all J ∈ B(Pk),
diam(J) < 1

k , and such that

lim
k
L(f, Pk) =

∫̄
f and lim

k
U(f, Pk) =

∫̄
f.

For each k, define Lk =
∑

J∈B(Pk)mJ χJ , and Uk =
∑

J∈B(Pk)MJ χJ (where mJ =
infx∈J f(x) and MJ = supx∈J f(x), as before). Therefore,

∫
Lk = L(f, Pk) and

∫
Uk =

U(f, Pk).
Note that for each x ∈ I, the sequence Lk(x) is monotonically non-decreasing, the

sequence Uk(x) is monotonically non-increasing, and both sequences are bounded (since f
is bounded). Hence, L := limk Lk and U = limk Uk exist and are finite-valued. Since the
measure of I is finite, we can apply the dominated convergence theorem to get∫

L = lim
k

∫
Lk = lim

k
L(f, Pk) =

∫̄
f,∫

U = lim
k

∫
Uk = lim

k
U(f, Pk) =

∫̄
f.

Thus, f ∈ R if and only if
∫
U =

∫
L, if and only if

∫
(U − L) = 0. But U − L ≥ 0, so

finally,
f ∈ R ⇐⇒ U = L almost everywhere.

We now show that if f is Riemann integrable, then it is Lebesgue integrable. Suppose
f ∈ R. Since L(x) ≤ f(x) ≤ U(x) for almost every x ∈ R (because the boundaries of the
elements of B(Pk) have measure zero), and L = U almost everywhere, we get f = L = U
almost everywhere. Hence, f is Lebesgue integrable and

∫
f =

∫
L =

∫
U = R

∫
f .

It remains to be shown that in general U = L almost everywhere if and only if f is
continuous almost everywhere.

(=⇒) Suppose U = L almost everywhere. Given ε > 0, take x such that L(x) = U(x) and x
is not on a boundary of any J ∈ B(Pk), for any k. Since Lk(x)↗ L(x) and Uk(x)↘ U(x),
there exists k such that Uk(x) − Lk(x) < ε. If x ∈ J ∈ B(Pk), this means MJ −mJ < ε.
That implies |f(x)− f(y)| < ε for all y in the interior of J .

(⇐=) Now suppose f is continuous almost everywhere. Say f is continuous at x, and x is
not in the boundary of any rectangle, as before. Given ε > 0, we may choose k large enough
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so that diam(J) is small enough for all J ∈ B(Pk), so that MJ −mJ < ε for J containing
x. Then,

U(x)− L(x) ≤ Uk(x)− Lk(x) = MJ −mJ < ε.

�

The characteristic function of the rational numbers in [0, 1] is Lebesgue integrable but not
Riemann integrable (exercise); so Lebesgue wins this match.

Limit theorems are handled for Lebesgue integrals conveniently through the monotone
and dominated convergence theorems. Here is a limit theorem for Riemann integrals.

Theorem 9.2. Let fn be a sequence of Riemann integrable functions on a rectangle I, and
suppose fn → f uniformly on I. Then f is Riemann integrable and

∫
f = lim

∫
fn (where∫

denotes the Riemann integral again).

Proof. Let εn = supx∈I |f(x) − fn(x)|. Uniform convergence says εn → 0 as n → ∞. We
have −εn ≤ f(x)− fn(x) ≤ εn, i.e., fn(x)− εn ≤ f(x) ≤ fn(x) + εn for all x ∈ I. We get∫

(fn − εn) =
∫̄

(fn − εn) ≤
∫̄
f ≤

∫̄
f ≤

∫
(fn + εn) =⇒ |

∫̄
f −

∫̄
f | < 2 εn`(I).

Since εn → 0, as n→∞, it follows that
∫̄
f =

∫̄
f , so

∫
f exists. Then, since

∫
(fn − εn) ≤∫

f ≤
∫

(fn + εn), we have |
∫
f −

∫
fn| < 2 εn`(I). Therefore,

∫
f = lim

∫
fn. �





Chapter 6

Hilbert Space

1. Hilbert Space

Definition 1.1. A Hermitian inner product on a complex vector space V is a mapping
〈 , 〉 : V × V → C satisfying, for all u, v, w ∈ V and α ∈ C,

(1) 〈u, v〉 = 〈v, u〉.
(2) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉.
(3) 〈αu, v〉 = α〈u, v〉.
(4) 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0.

Definition 1.2. A Hilbert space is a complex vector space H with a Hermitian inner product
〈 , 〉 such that H is complete with respect to the norm defined by ‖h‖ :=

√
〈h, h〉.

Hilbert spaces are fundamental in the mathematical formulation of quantum mechanics.
The name is due to John von Neumann.

In any Hilbert space, Cauchy-Schwarz holds: |〈f, g〉| ≤ ‖f‖ · ‖g‖ (Proof: Let λ = 〈f,g〉
〈g,g〉

and expand 〈f − λg, f − λg〉 ≥ 0). The triangle inequality follows: ‖f + g‖ ≤ ‖f‖+ ‖g‖.

Definition 1.3. A Hilbert space is infinite-dimensional if it is not spanned by a finite
number of elements, and it is separable if it has a countable dense subset.

Example 1.4. Let ` 2 be the collection of square-summable sequences, i.e., sequences cn in
C such that

∑
|cn|2 < ∞. Define an inner product on ` 2 by 〈{cn}, {dn}〉 =

∑
cnd̄n. This

gives an infinite-dimensional, separable Hilbert space.

Definition 1.5. Two Hilbert spaces H1 and H2 are isometric if there exists a linear iso-
morphism ϕ : H1 → H2 preserving the norm, ie. ‖h‖1 = ‖ϕ(h)‖2 for all h ∈ H1.

Theorem 1.6. Every infinite-dimensional, separable Hilbert space H is isometric to `2.

Proof. Let {e′k} be a countable dense subset of H. Using Zorn’s lemma, we can construct
{ek}, a linearly independent subset whose span is dense. By Gramm-Schmidt, we may
assume {ek} is an orthonormal set: 〈ei, ej〉 = δij .

51
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We claim that {ek} is complete, i.e., 〈h, ek〉 = 0 for all k implies h = 0. To see this,
suppose 〈h, ek〉 = 0 for all k. Let ε > 0. Choose a linear combination

∑n
k=1 akek such that

‖h−
∑n

k=1 akek‖2 < ε. It follows that

ε > 〈h−
∑n

k=1 akek, h−
∑n

k=1 akek〉 = ‖h‖2 +
∑n

k=1 |ak|2 ≥ ‖h‖2.

Since ε > 0 is arbitrary, h = 0.
Define a function ϕ : H → ` 2 by ϕ(h) = {ck} where the ck = 〈h, ek〉. The map ϕ is

obviously linear. The fact that it maps into ` 2 comes from Bessel’s Inequality: ‖h‖2 ≥∑
|ck|2. The fact that it is onto is called the Riesz-Fischer theorem. The fact that it is an

isometry is Parseval’s formula: ‖h‖2 =
∑
|ek|2. We prove these three results next, below.

�

Let H be an infinite-dimensional, separable Hilbert space. We have just seen that
there exists a countable, orthonormal (hence, linearly independent) subset {ek} whose span
is dense in H. Such a subset is called a Hilbert basis for H. Given h ∈ H the Fourier
coefficients of h with respect to {ek} are the complex numbers ck = 〈h, ek〉. The Fourier
series for h is then

∑
k ck ek. Above, we defined a linear map ϕ : H → ` 2 sending h to its

sequence of Fourier coefficients with respect to a chosen Hilbert basis: ϕ(h) = {ck}. The
fact that ϕ maps into ` 2 is

Bessel’s inequality. For any h ∈ H, we have ‖h‖2 ≥
∑
|ck|2.

Proof. Define sn =
∑n

k=1 ckek. Then,

0 ≤ ‖h− sn‖2 = 〈h− sn, h− sn〉 = ‖h‖2 −
n∑
k=1

|ck|2.

�

The fact that ϕ is onto is the

Riesz-Fischer theorem. Given {ck} ∈ ` 2 there exists h ∈ H such that ck = 〈h, ek〉 for all
k.

Proof. Define sn =
∑n

k=1 ckek, as before. Since
∑

k≥1 |ck|2 is convergent, its sequence of
partial sums is a Cauchy sequence in R. Hence, for any m < n,

‖sn − sm‖2 =
n∑

k=m+1

|ck|2 −→ 0

as m,n −→ 0. Therefore, {sn} is a Cauchy sequence in H. Since H is complete, we have
sn → h for some h ∈ H. It remains to be shown that ck = 〈h, ek〉. Fix k, then for any
n ≥ k,

〈h, ek〉 = 〈h− sn, ek〉+ 〈sn, ek〉 = 〈h− sn, ek〉+ ck.

By Cauchy-Schwarz, |〈h− sn, ek〉| ≤ ‖h− sn‖. The result follows by letting n→∞. �

Finally, the fact that ϕ is an isometry is

Parseval’s formula. ‖h‖2 =
∑

k≥1 |ck|2.

Proof. ‖h− sn‖2 = ‖h‖2 −
∑n

k=1 |ck|2 → 0 as n→∞. �
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2. L2

Let X = (X,Σ, µ) be a measure space. Every function f : X → C can be written f =
Re(f) + i Im(f) with Re(f), Im(f) : X → R.

Definition 2.1. f : X → C is measurable (respectively, integrable) if Re(f) and Im(f) are
measurable (respectively, integrable). If f is integrable, we define

∫
f =

∫
Re(f)+i

∫
Im(f).

Since |f | =
√

Re(f)2 + Im(f)2, it is easy to check that |f | is measurable if f is measur-
able. The converse does not hold. For instance, let X = [0, 1] and Σ = {∅, X} with measure
given by µ(∅) = 0 and µ(X) = 1. If f(x) = cosx+ i sinx on X, then |f | measurable and f
is not. However, suppose that f is measurable. Then since,

max{|Re(f)|, |Im(f)|} ≤
√

Re(f)2 + Im(f)2 = |f | ≤ |Re(f)|+ |Im(f)|,

the function f is integrable if and only if |f | is integrable.
In general, the theorems we have already established for real-valued integrable functions

still hold whenever they make sense. For instance,

Theorem 2.2. Suppose f : X → C is integrable. Then |
∫
f | ≤

∫
|f |.

Proof. Choose r ≥ 0 and θ so that
∫
f = reiθ. Then |

∫
f | = r = e−iθ

∫
f =

∫
e−iθf =∫

Re(e−iθf) ≤
∫
|Re(e−iθf)| ≤

∫
|e−iθf | =

∫
|f |. �

Definition 2.3. L2 = {f : X → C | f is measurable and
∫
|f |2 < ∞} modulo the equiva-

lence f ∼ g if f = g almost everywhere.

Given real numbers x, y, we have (x− y)2 ≥ 0 which implies xy ≤ 1
2(x2 + y2). Thus, if

f, g ∈ L2, then |fḡ| = |f ||g| ≤ 1
2(|f |2 + |g|2), which implies fḡ is integrable. For f, g ∈ L2,

define

〈f, g〉 =
∫
fḡ.

Properties of 〈 , 〉. For all f, g, h ∈ L2 and α ∈ C,

(1) 〈f, g〉 = 〈g, f〉
(2) 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉
(3) 〈αf, g〉 = α〈f, g〉
(4) 〈f, f〉 ≥ 0 with equality if and only if f = 0 almost everywhere (so f = 0 in L2).

So L2 is a complex vector space with a Hermitian inner product. In fact, it is a Hilbert
space.

Theorem 2.4. L2 is complete with respect to the norm ‖f‖ =
√
〈f, f〉 =

√∫
|f |2.

Proof. Suppose {fn} is a Cauchy sequence in L2. For each k, we can find nk such that
m,n ≥ nk implies ‖fm − fn‖ < 1

2k
. We may assume nk < nk+1 for all k. Define g1 = fn1

and gk = fnk − fnk−1
for k ≥ 2. Thus,

∑k
j=1 gj = fnk , and ‖gk‖ < 1

2k−1 for k ≥ 2. It follows
that

∞∑
j=1

‖gj‖ ≤ ‖g1‖+
∞∑
j=1

1
2j

= ‖g1‖+ 1 =: B.
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Define Gk =
∑k

j=1 |gj | and G =
∑∞

j=1 |gj |. Then ‖Gk‖ ≤
∑k

j=1 ‖gk‖ ≤ B and |Gk| ≤
|Gk+1| for all k. By the monotone convergence theorem, B2 ≥ lim ‖Gk‖2 = lim

∫
|Gk|2 =∫

lim |Gk|2 =
∫

(limGk)2 =
∫
|G|2 = ‖G‖2. Hence, G ∈ L2. In particular, G < ∞ almost

everywhere. It follows that F =
∑∞

k=1 gk = lim fn converges almost everywhere (since
absolutely convergent ⇒ convergent). Define F = 0 where the series does not converge.
We have |F | ≤ G ∈ L2; therefore, F ∈ L2. Also |F − fnk |2 = |F −

∑k
j=1 gj |2 ≤ (|F | +

G)2 ≤ (2G)2. By the dominated convergence theorem, lim ‖F − fnk‖2 = lim
∫
|F − fnk |2 =∫

lim |F − fnk |2 =
∫

0 = 0. Hence fn → F with respect to ‖ ‖. �

3. Stone-Weierstraß

Consider [−π, π] with Lebesgue measure. We know that L2 = L2([−π, π]) is a Hilbert
Space. Our next goal is to show that { einx√

2π
}n∈Z is a Hilbert basis. It is obviously countable,

and orthonormality is easy to check. The tough part is to see the span is dense in L2. The
big idea is the Stone-Weierstraß theorem.

Let C(X,R) and C(X,C) denote continuous functions on a compact topological space
X with values in R and C, respectively. These are metric spaces, using the uniform
metric: d(f, g) = supx∈X{|f(x) − g(x)|}. We’ll denote the uniform norm by ‖f‖u =
supx∈X{|f(x)|} = d(f(x), 0).

A subset A of C(X,R) or C(X,C) separates points if for all x 6= y there exists f ∈ A such
that f(x) 6= f(y). (Exercises: (i) if such an A exists, then X is Hausdorff; (ii) conversely?)
The subset A is an algebra if it is a linear subspace, closed under multiplication, and A is
a lattice if f, g ∈ A implies min(f, g) and max(f, g) are in A.

Theorem 3.1. (Stone-Weierstraß) Let X be a compact space, and let A be a closed subalge-
bra of C(X,R) which separates points. Then A = C(X,R) or A = {f ∈ C(X,R) | f(x0) = 0}
for some x0.

Proof. step 1. Consider the linear space R2 as an algebra, defining multiplication compo-
nentwise. Then the subalgebras of R2 are: R2, Span{(1, 1)}, Span{(1, 0)}, Span{(0, 1)} and
Span{(0, 0)}.

This step is left as an exercise. Note that if x 6= 0, y 6= 0 and x 6= y then (x, y) and
(x2, y2) are linearly independent.

step 2. For all ε > 0, there exists a polynomial P (x) over R such that P (0) = 0 and
||x| − P (x)| < ε for x ∈ [−1, 1].

The Taylor series for (1 − t)
1
2 at t = 0 converges absolutely and uniformly on [−1, 1].

Given ε > 0, choose an appropriate partial sum S so that |(1 − t)
1
2 − S(t)| < ε

2 for all
t ∈ [−1, 1]. Define R(x) = S(1 − x2), so ||x| − R(x)| < ε

2 for x ∈ [−1, 1]; then let P (x) =
R(x)−R(0). It follows that

||x| − P (x)| = ||x| −R(x)− (|0| −R(0))| < ε

2
+
ε

2
= ε.

step 3. If f, g ∈ A, then |f |, min(f, g) and max(f, g) are in A.
If f = 0, no problem, otherwise, define h = f/‖f‖u. Then h(x) ∈ [−1, 1] for all

x ∈ X. By step 2, given ε > 0 there exists a polynomial P with P (0) = 0 such that
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||h(x)| − P (h(x))| < ε for all x ∈ [−1, 1], i.e. d(|x|, P ◦ h) < ε in C(X,R). Since P has no
constant term, P ◦ h ∈ A.

Since A is closed and ε > 0 is arbitrary, |h| ∈ A. But then so is |f | = ‖f‖u|h|. Now
note min(f, g) = 1

2(f + g − |f − g|) and max(f, g) = 1
2(f + g + |f − g|).

step 4. Let f ∈ C(X,R), and suppose that for each x, y ∈ X there exists gxy ∈ A such that
gxy(x) = f(x) and gxy(y) = f(y). Then f ∈ A.

Let ε > 0. For each x, y ∈ X define Uxy = {z ∈ X | f(z) < gxy(z) + ε} and Vxy =
{z ∈ X | f(z) > gxy(z) − ε}. The sets Uxy and Vxy are open and non-empty; for instance,
both contain x and y. Fix y. The collection {Uxy}x∈X is an open cover of X. Since X is
compact, there is a finite subcover {Ux1y, . . . , Uxny}. Define gy = max{gx1y, . . . , gxny}. Then
f(z) < gy(z) + ε for all z ∈ X, and f(z) > g(z)− ε on Vy := Vx1y

⋂
· · ·
⋂
Vxny. The set Vy

is open and contains y. The collection {Vy}y∈X is an open cover of X. Let {Vy1 , . . . , Vym}
be a finite subcover and define g = min{gy1 , . . . , gym}. We have f(z) < g(z) + ε and
f(z) > g(z) − ε for all z ∈ X, i.e. supz∈X |f(z)− g(z)| ≤ ε. Since A is closed, g ∈ A, and
ε > 0 was arbitrary, it follows that f ∈ A.

We can now prove the theorem. For each x 6= y in X, define

ϕxy : A → R2

h 7→ (h(x), h(y))

The map of ϕxy is a homomorphism of algebras; so ϕxy(A) is a subalgebra of R2. If
ϕxy(A) = R2 for all x, y, then A = C(X,R) by step 4.

It is not possible for ϕxy(A) to be Span{(1, 1)} or Span{(0, 0)} since A separates points.
By step 1, there is only one other possibility, up to symmetry: there exists x0, y0 with
x0 6= y0 such that ϕx0y0(A) = Span{(0, 1)}. Therefore, h(x0) = 0 for all h ∈ A. Since A
separates points, there is no x1 different from x0 with h(x1) = 0 for all h ∈ A. Therefore,
if x, y ∈ X and x 6= x0 and y 6= y0, then ϕxy(A) = R2. We would like to show that
A = {f(x) ∈ C(X,R) | f(x0) = 0}. Let f be an element of the set on the right hand side.
Given any x, y ∈ X with x 6= y, there are two cases.

case 1. x0 ∈ {x, y}, say x = x0. Then ϕxy(A) = Span {(0, 1)}. Pick any nonzero element
g ∈ A, and scale it so that g(y) = f(y). We automatically have g(x0) = 0 = f(x0). So g
works as the element gxy in step 4.

case 2. x0 /∈ {x, y}. Then ϕxy(A) = A2. Again we can find gxy ∈ A satisfying step 4.

Applying step 4 shows f ∈ A, completing the proof. �

Corollary 3.2. Let B be a subalgebra of C(X,R) separating points. Then either B̄ = C(X,R)
or B̄ = {f(x) ∈ C(X,R) | f(x0) = 0} for some x0.

Proof. Let A = B̄, and apply Stone-Weierstraß. �

Corollary 3.3. (Complex Stone-Weierstraß) Let X be a compact space. Let A be a closed
subalgebra of C(X,C) which separates points and which is closed under complex conjugation.
Then A = C(X,C) or A = {f ∈ C(X,C) | f(x0) = 0} for some x0.

Proof. Let AR = {f ∈ A | f(X) ⊂ R}. If f ∈ A, then so are Re(f) = (f + f̄)/2 and
Im(f) = (f − f̄)/2i since A is closed under conjugation. Therefore, A = AR + iAR. The
result now follows by applying the regular Stone-Weierstraß theorem to AR. �
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Corollary 3.4. (Weierstraß Approximation theorem) Let K denote either R or C. Let
X ⊂ Kn be compact and let P be the collection of polynomials in n variables over K. Then
P̄ = C(X,K).

Proof. P is a subalgebra of C(X,K) that separates points, and 1 ∈ P, so there is no x0 such
that f(x0) = 0 for all f ∈ P. If K = C, we also have that P is closed under conjugation.
The result follows from Stone-Weierstraß. �

4. Fourier Series

Theorem 4.1. E = Span{einx}n∈Z is dense in L2([−π, π]).

Proof. Step 1. Let T = R/2πZ, the real numbers modulo the equivalence x ∼ y if x− y =
2πk for some k ∈ Z. We can think of T as S1 = {z ∈ C | |z| = 1} ⊂ R2, the unit circle,
with the measure inherited from being a subset of R2. There is a one-to-one correspondence
between square integrable functions on T and square integrable functions f on [−π, π] with
f(π) = f(−π). Since in L2 we have f = g if f = g a.e., it follows that L2(T) = L2([−π, π]).
So it suffices to show E is dense in L2(T).

Step 2. Apply the complex Stone-Weierstraß theorem to E to conclude that E is dense in
C(T,C) with respect to the uniform norm, ‖ ‖u. It then follows that E is dense in C(T,C)
with the respect to the L2-norm, ‖ ‖. To see this, let f ∈ C(T,C), and let ε > 0. Take

g ∈ E with ‖g(t)− f(t)‖u < ε/
√

2π. Then ‖f − g‖ =
√∫
|f − g|2 ≤

√∫
ε2/2π = ε.

Step 3. C(T,C) is dense in L2(T) with respect to the L2-norm. To see this, let A ⊆ T be a
closed set, and define

gn(x) =
1

1 + nd(x,A)
for n = 1, 2, . . . Then gn ∈ C(T,C) and lim gn = χA, the characteristic function of A. By
the dominated convergence theorem,

lim ‖gn − χA‖2 = lim
∫
|gn − χA|2 =

∫
lim |gn − χA| =

∫
0 = 0.

Therefore, every characteristic function of a closed set can be approximated in L2(T) by an
element of C(T,C).

Now let B ⊆ T be a measurable subset. By the approximation theorem, given ε > 0,
there exists a closed subsetA ⊆ B withm(B\A) < ε. Choose f ∈ C(T,C) with ‖f−χA‖ < ε.
It follows that

‖f − χB‖ ≤ ‖f − χA‖+ ‖χA − χB‖ < ε+ ‖χB\A‖ ≤ ε+
∫
|χB\A|2 < 2ε.

Since ε > 0 is arbitrary, we see that the characteristic function of any measurable set can
be approximated in L2(T) by continuous functions. Hence, so can simple functions.

Now take f ∈ L2(T), and choose a sequence of simple functions φn → f with |φn| ≤ |f |
for all n. (You can do this by applying our earlier “dyadic” approximations to the positive
and negative parts of the real and imaginary parts of f .) We then have |f − φn| ≤ 2|f |, so
|f − φn|2 is integrable. The dominated convergence theorem says

lim ‖f − φn‖2 = lim
∫
|f − φn|2 =

∫
lim |f − φn|2 =

∫
0 = 0.
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Done. �





Chapter 7

Exercises

Homework 1

(1) Prove that the set of positive real numbers has the same cardinality as R by giving
an explicit bijection.

(2) (a) Let A be a countable set and suppose there is given a function mapping A
onto B. Prove that B is countable.

(b) Prove that the Cartesian product of two countable sets is countable. Gener-
alize to the Cartesian product of a finite number of sets. (Something to think
about: what happens in the case of a countably infinite Cartesian product?)

(c) Prove that the set of all finite subsets of a countable set is countable.

(3) Show that each of the following functions defines a metric on Rn. (You need to
check positive definiteness, symmetry, and the triangle inequality.)

For each x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, let
(a) d1(x, y) =

∑n
k=1 |xk − yk|;

(b) d2(x, y) = max1≤k≤n |xk − yk|.

(4) Let C([a, b]) denote the set of continuous functions on the closed interval [a, b]. For
f, g ∈ C([a, b]), define d(f, g) = maxa≤t≤b |f(t)− g(t)|. Show that d is a metric.

(5) Let X be a subset of a metric space M . Prove that every contact point of X is
either a limit point of X or an isolated point of X.

(6) Let (M,d) be a metric space.
(a) Prove that |d(x, z)− d(y, u)| ≤ d(x, y) + d(z, u) for all x, y, z, u ∈M .
(b) Prove that if xn → x and yn → y, then d(xn, yn) → d(x, y). (Hint: the

previous part of this problem may be useful.)

(7) (a) Prove that in a metric space the complement of a point is open.
(b) Prove that every set in a metric space is an intersection of open sets. (Thus, if

arbitrary intersections of open sets are open for some metric space, then that
metric space is discrete.)

(8) Let x and y be points in a metric space M . Prove there are disjoint open sets U
and V with x ∈ U and y ∈ V .

59
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(9) (“Antimetric spaces”) Let M be a set with function d:M ×M → R satisfying the
axioms for a metric except that the triangle inequality is reversed:

d(x, z) ≥ d(x, y) + d(y, z).

Prove that M has at most one point.
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Homework 2

(1) Let F be the Cantor set.
(a) Prove that 1

4 ∈ F . (Note that it is not the endpoint of one of the intervals
removed when forming the Cantor set.)

(b) Prove that the endpoints of the intervals removed when forming the Cantor
set, 1

3 , 2
3 ,1

9 , 2
9 , 7

9 , 8
9 , etc., are dense in F .

(c) Prove that F + F := {a+ b | a, b ∈ F} = [0, 2].
(2) Let (M,d) be a metric space. Define the distance between a point x ∈ M and a

subset A ⊆M by
d(A, x) = inf

a∈A
d(a, x).

(extending the definition of d). Prove
(a) d(A, x) = 0 if x ∈ A, but not conversely;
(b) d(A, x) is a continuous function of x;
(c) d(A, x) = 0 if and only if x is a contact point of A.
(d) A = {x ∈M | d(A, x) = 0}.
So given a closed subset of M and a point x not in that set, you can now create a
continuous function on M that is 0 on the subset and nonzero at x.

(3) If {xn} is a Cauchy sequence in a metric space and has a subsequence {xni} con-
verging to a point y, then the whole sequence converges to y, i.e., xn → y.

(4) A mapping f :X → Y between metric spaces X and Y is called an open function
if the image of every open set in X under f is an open set of Y . Give an example
of a continuous function which is not open and an example of an open function
which is not continuous.

(5) Let B denote the collection of all bounded infinite real sequences (x1, x2, . . . ) with
metric d(x, y) = supk |xk − yk|. Show that B is complete.
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Homework 3

(1) Suppose {xn} is a sequence in a metric space M and that the sequence does not
converge to the point y ∈ M . Show there exists a neighborhood U of y and a
subsequence {xni} of {xn} that lies outside U .

(2) Let S be a subset of a metric space M . Prove that diam(S) = diam(S̄).
(3) Prove the following:

(a) If S is a closed subset of a complete metric space M , then S is complete.
(b) If S is a complete subspace of a metric space M , then S is closed.
Note that a corollary is that in a complete metric space, a subspace is closed if and
only if it is complete.

(4) Suppose that M is a complete metric space and S1 ⊃ S2 ⊃ . . . is a nested sequence
of nonempty closed subsets of M such that diam(Si)→ 0. Prove that ∩i Si consists
of a single point.

(5) Let f : M →M be a contraction mapping. Prove that f is continuous.
(6) Let f : M → M be a self-mapping of a complete metric space, and assume that

d(f(x), f(y)) < d(x, y) for all x, y ∈ M with x 6= y. Show that it does not
necessarily follow that f has a fixed point.



7. Exercises 63

Homework 4

(1) Solve the differential equation y′ = y with initial condition y(0) = 1 by iterating
the contraction mapping λ from our proof of Picard’s theorem starting with (i)
φ(t) = 1, then starting with (ii) φ(t) = t.

(2) Consider the metric space X = (0, 1) ∪ {2}, a subset of R, with metric d(x, y) =
|x− y|. Prove that {2} open, and prove that (0, 1) is closed.

(3) Show that a topological space X is Hausdorff if and only if the diagonal,

4 = {(x, x) ∈ X ×X | x ∈ X},
is closed. (We are taking the product topology on X ×X.)

(4) Let X be a topological space. Show that a subset U is open if and only if it contains
a neighborhood of each of its points.

(5) Let X = {a, b} with topology τ = {∅, {b}, X}. Is X connected? Explain.
(6) (Finite complement topology) Let X be a set, and let τ be the collection of subsets

of X such that U ∈ τ if and only if either U = ∅ or the complement, U c, has a
finite number of elements.
(a) Show that τ forms a topology on X.
(b) Is this topology T1? Is it Hausdorff?

(7) Let f : [0, 1] → [0, 1] be a continuous function. Does f necessarily have a fixed
point? Explain.

(8) What are the connected subsets of the Cantor set? Explain.
(9) Let X = {0} ∪ {1/n | n = 1, 2, . . . } ⊂ R. Prove that X is compact directly from

the definition of compactness.
(10) A couple basic properties of inf’s and sup’s:

(a) Suppose X is a subset of the real numbers and that supX exists. Given any
ε > 0, show there is an element x ∈ X such that supX ≥ x > supX − ε.
State the analogous result for inf’s (but don’t both to prove it since the proof
is so similar.)

(b) Let X be a nonempty subset of the real numbers which is bounded below. Let
−X := {−x | x ∈ X}. Prove that inf X = − sup(−X).
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Homework 5

(1) (a) Let A be a bounded subset of R, and let s = supA. Show there exists a
sequence {an} in A such that an → s.

(b) In a metric space M , with sequences xn → x and yn → y, show that
d(xn, yn)→ d(x, y).

(c) Let M be a compact metric space. Show that there exist x, y ∈M such that
d(x, y) = diamM ; in particular, diam(M) is finite. (Hints: Argue that there
exists a sequence of distances d(xi, yi) converging to the diameter. Compact-
ness allows us to take convergent subsequences of the xi’s and yi’s.)

(2) Let M be a metric space, let K be a compact subset of M , and let C be a closed
subset of M . Suppose that K ∩ C = ∅.
(a) Show that dist(K,C) = infx∈K,y∈C d(x, y) is a positive number.
(b) What if K is assumed to just be closed, not compact?
(c) Is it always possible to find elements x ∈ K and y ∈ C such that d(x, y) =

dist(K,C) (assuming K compact)?
(3) Let f :X → Y be a continuous mapping of compact Hausdorff spaces. If f is

bijective as a mapping of sets, prove that in fact f is a homeomorphism.
(4) Show that a subset of a metric space is closed if and only if its intersection with

every compact set is closed.
(5) Let {an} be a bounded sequence of real numbers. For each n = 1, 2, . . . , define

An := {an, an+1, an+2, . . . }, then let bn := supAn and cn := inf An (which both
exist since An is bounded). Then define the limit superior, lim sup an := infn bn,
and the limit inferior, lim inf an := supn cn. It turns out that lim an exists if and
only if lim sup an = lim inf an.
(a) For every bounded sequence, {an}, prove that lim sup an and lim inf an exist.
(b) If b = lim sup an and ε > 0, show that there exists N such that an < b+ ε for

all n ≥ N . Also show that for all ε > 0 and for all N , there exists n ≥ N such
that an > b− ε. (It turns out that these facts characterize lim sup an. There
is a similar result for lim inf’s.)

(c) Find lim sup an and lim inf an for each of the following sequences:
(i) an = (−1)n + 1/n (ii) an = (−1)n(2 + 3/n)
(iii) an = 1/n+ (−1)n/n2 (iv) an = [n+ (−1)n(2n+ 1)]/n

(6) Let f :R→ R be defined by f(x) = 1/(1+x2). Prove that f is uniformly continuous.
(Hint: First show that |f(x)− f(y)| ≤ |x− y| for all x, y ∈ R.)
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Homework 6

(1) Let A and B be subsets of the real numbers, and define A + B := {a + b | a ∈
A, b ∈ B}. If A and B are closed, does it follow that A + B is closed? Does this
follow if in addition one of the two sets is bounded?

(2) Prove that every open cover of a compact metric space M has a Lebesgue number.
(Hint: If not, find a covering and a sequence of sets Xi with diam(Xi)→ 0 causing
trouble. Pick xi ∈ Xi for each i. Use compactness to say we may assume the
sequence converges to some point x. Now x has to be in some open set in the
covering. Hmm . . . )

(3) Let f :X → Y be a continuous function from a compact metric space X to a metric
space Y . In class, we proved that f is uniformly continuous. Give another proof,
using the result of the previous problem. (Hint: Given ε > 0, for each x ∈ X, find
δx such that dY (f(x), f(y)) < ε/2 whenever dX(x, y) < δx. Varying x, construct a
cover of X and use its Lebesgue number.)

(4) Given x ∈ Q and p a prime, in class we defined vp(x), the order of x at p, i.e.,
the power to which p appears in the prime factorization of x. We then chose
0 < c < 1 and defined a valuation on Q by |x| = cvp(x). Show that any other choice
of c′ ∈ (0, 1) produces an equivalent valuation.

(5) Prove that the p-adic valuation on Q is non-archimedean directly from the defini-
tions.

(6) On Q, for each prime p, let | |p denote the p-adic valuation (so |p|p = 1/p). Let
| |∞ denote the usual absolute value. Show that for every nonzero x ∈ Q, we have∏
p |x|p = 1 where the product is taken over p in {primes} ∪ {∞}.

(7) Consider Q with the topology given by the 2-adic valuation. Prove that 1 + 2 +
22 + 23 + · · · = −1 using an ε-δ argument.
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(1) For each of the following sets, (i) prove that the set is Lebesgue measurable, and
(ii) that its measure is 0.

(a) {(0, y) | y ∈ R} ⊂ R2 (b) Q ⊂ R (c) the Cantor set
(2) Suppose that X is a Lebesgue measurable subset of Rn and that Y is any subset

of Rn. Prove:
(a) m∗(X ∪ Y ) +m∗(X ∩ Y ) = m(X) +m∗(Y );
(b) if X ∩ Y = ∅, then m∗(X ∪ Y ) = m(X) +m∗(Y );
(c) if m(X) <∞ and X ⊆ Y , then m∗(Y \X) = m∗(Y )−m(X).

(3) Suppose that X1 ⊆ X2 ⊆ . . . is a nested sequence of Lebesgue measurable sets.
Prove that m(∪∞i=1Xi) = limi→∞m(Xi). (You may assume that no m(Xi) = ∞,
in which case both sides equal ∞.) [Note: It turns out that if Y1 ⊇ Y2 ⊇ Y3 ⊇ . . .
are measurable and m(Y1) <∞ then m(∩∞i=1Yi) = limi→∞m(Yi), too.]

(4) Suppose X ⊂ Rn and m∗(X) = 0. Show X ∈ L, and if Y ⊆ X, then m∗(Y ) = 0,
so Y ∈ L, too.

(5) Use the approximation theorem from class to prove the corollary: If X ⊆ Rn is
Lebesgue measurable, then for all ε > 0, there exists a closed set F ⊆ X and an
open set U ⊇ X such that m(F ) ≤ m(X) ≤ m(F ) + ε and m(U) − ε ≤ m(X) ≤
m(U) (suitably interpreted when m(X) =∞).
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(1) Let f :X → Y be a mapping of sets. Show that

(i) f−1(∅) = ∅, (ii) f−1(Y ) = X,

(iii) If Y ′ ⊂ Y , then f−1(Y ′c) = (f−1(Y ′))c;

and if {Yα}α∈I is a collection of subsets of Y , then

(iv) f−1(∪αYα) = ∪αf−1(Yα), (v) f−1(∩αYα) = ∩αf−1(Yα).

(The moral is that taking inverse images preserves the basic set operations. In
particular, if Σ is a σ-algebra on Y , then {f−1(E) | E ∈ Σ} is a σ-algebra on X.
Forward images aren’t nearly as well-behaved.)

(2) Create a subset of [0, 1] with positive Lebesgue measure but which contains no
nonempty open interval.

(3) Give an example of a measure space (X,Σ, µ) and a function f :X → R which is
not measurable but such that |f | is measurable. (In class, we showed that if f is
measurable, then so is |f |.)

(4) Let (X,Σ, µ) be a measure space, let Ei ⊆ X for i = 1, . . . k, and let φ =∑k
i=1 ai χEi be a simple function, not necessarily in standard form. State whether

each of the following statements is true or false, giving justification:
(a) If Ei is measurable for i = 1, . . . , k, then φ is measurable.
(b) If φ is measurable, then Ei is measurable for i = 1, . . . , k.
(c) If φ =

∑k
i=1 ai χEi is in standard form and φ is measurable, then Ei is mea-

surable for i = 1, . . . , k.
(5) Let X = N = {1, 2, . . . } with σ-algebra Σ = 2N and the counting measure: µ(E) =
|E| for any E ⊆ N. Let f be a non-negative function on N. Prove that (i)
f ∈ M+(X,Σ, µ) and (ii)

∫
f dµ =

∑∞
n=1 f(n). (Consider the function fn =∑n

i=1 f(i)χ{i} where χ{i} is the characteristic function of the set {i} for i ∈ N.
Why does the Monotone Convergence Theorem apply, and what does it say?)

(6) Define functions from R to itself by fn = (1/n)χ[0,n] and f = 0. Show that fn → f

uniformly but that
∫
f dλ 6= lim

∫
fn dλ (where λ is Lebesgue measure). Why does

this not contradict the Monotone Convergence Theorem?
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(1) Define fn = nχ[0, 1
n

] for n = 1, 2, . . . Verify Fatou’s lemma in this case by direct
calculation.

(2) (a) Let fn = − 1
nχ[0,n]. Show that (i) fn converges uniformly to the zero function

f = 0 and (ii) show by evaluating the appropriate integrals that Fatou’s
theorem does not hold in this case.

(b) So Fatou’s theorem does not apply to negative functions in general. However,
let (X,Σ, µ) be a measure space, and suppose that {fn} is a sequence of
measurable functions (possibly negative-valued at points). Show that if there
is a non-negative measurable function h on X with

∫
h dµ < ∞, such that

−h(x) ≤ fn(x) for all n and x, then
∫

lim inf fn dµ ≤ lim inf
∫
fn dµ. (You

may assume lim inf fn is integrable (cf. proof of Fatou’s lemma).)
(3) Let (X,Σ, µ) be a measure space and let f be a non-negative measurable function

on X such that
∫
f dµ < ∞. Show that µ({x ∈ X | f(x) = ∞}) = 0. (Hint: the

sets En = {x ∈ X | f(x) ≥ n} for n = 1, 2, . . . are useful here.)
(4) (a) If f is an measurable real-valued function on a measure space (X,Σ, µ) and

f = 0 almost everywhere (i.e., except on a set of measure zero), show that (i)
f is integrable and (ii)

∫
f dµ = 0.

(b) If f is integrable, g is measurable and real-valued, and f = g almost every-
where, then (i) g is integrable and (ii)

∫
f dµ =

∫
g dµ.

(5) Let E ⊂ Rn, and suppose f and g are real-valued functions on E. Show that if
f = g a.e. (Lebesgue measure), and g is Lebesgue integrable, then f is Lebesgue
integrable and

∫
f =

∫
g. (First you need to show that f is measurable.)

(6) In contrast to the preceding problem, show that there exist measurable functions
fn defined on some measure space (X,Σ, µ) such that fn → f µ-a.e. but such that
f is not measurable. Therefore, properties of Lebesgue measure were required in
the preceding problem.
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(1) Suppose {fn} is a sequence of integrable functions on a measure space (X,Σ, µ)
and that

∑∞
i=1

∫
|fn| dµ < ∞. Show that (i) the series

∑
fn converges almost

everywhere to an integrable function f and (ii)
∫
f dµ =

∑∞
i=1

∫
fn dµ.

(2) By appealing to our theorem characterizing the Riemann integral and comparing it
to the Lebesgue integral show that if f is Riemann integrable on a closed rectangle
I ⊂ Rn, then so is |f |, and in that case

∣∣∫ f ∣∣ ≤ ∫ |f |, where
∫

denotes the Riemann
integral.

(3) If f is Lebesgue integrable on (X,Σ, µ) and ε > 0, show there exists a measurable
simple function φ such that

∫
|f − φ| dµ < ε.

(4) If f is Lebesgue integrable on (X,Σ, µ) and g is a bounded measurable function
on X, show that fg is Lebesgue integrable.

(5) Prove that if f is Lebesgue integrable, it does not necessarily follow that f2 is
Lebesgue integrable.

(6) Define

f(x) =
{

0 x irrational
1
n x ∈ Q, x = m

n in lowest terms.
(a) Show that f is continuous at x ∈ R if and only if x /∈ Q.
(b) Is f Riemann integrable on [0, 1]?
(c) Show that the characteristic function of the rationals is nowhere continuous.

(7) Let φ : H1 → H2 be an isometry of Hilbert spaces, i.e., ‖h‖1 = ‖φ(h)‖2 for all h ∈
H1. Does it follow that φ preserves the inner product, i.e., 〈f, g〉1 = 〈φ(f), φ(g)〉2
for all f, g ∈ H1? (Hint: ‖f + g‖2 = ?)

(8) Provide the details supporting the penultimate sentence in the proof of Theo-
rem 9.1, the sentence starting: “Given ε > 0 . . . ”.
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contraction mapping, 11
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dominated convergence theorem, 46
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lattice, 54
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of simple function, 39

vs. Riemann, 48

measure, 32
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Lindemann, 3

Lipschitz condition, 12
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measurable function, 37, 53

measure, 29, 30, 32
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Lebesgue, 32

outer measure, 29

method of successive approximation, 11

metric space, 4
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closed ball in, 4
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discrete, 4
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is a topological space, 15

is Hausdorff, 16
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limit point, 5

open ball in, 4

open set in, 5
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metrizable topological space, 17

monotone convergence theorem, 41

monotone convergence theorem, 41
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non-archimedean, 23
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necessarily in char p, 25

non-measurable subset of Rn, 34

norm

Hilbert space, 51

L2, 53

normal topological space, 17

one-point compactification, 21

open

open ball, 4

set

in a metric space, 5

is Lebesgue measurable, 33

Ostrowski’s theorem, 25

p-adic valuation, 23

Parseval’s formula, 52

partition, 1

Picard’s theorem, 12

prime numbers

infinitely many ala topology, 16

product topology, 16
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rectangle in Rn, 29

refinement of a partition, 47

relation on a set, 1
Riemann integral, 47

characterization of integrability, 48

definition, 47
limit theorem for, 49

vs. Lebesgue, 48

Riesz-Fischer theorem, 52
Russell’s paradox, 4

separable metric space, 20, 51
separates points, 54

square summable sequences, 51
Stone-Weierstraß theorem, 54

complex version, 55

subadditivity
of a measure, 31

of outer measure, 30

subspace topology, 15
supremum, 8
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base for, 16
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definition, 15
discrete, 15, 17

finite complement, 15, 63
indiscrete, 17

normal topological space, 17

product topology, 16
subspace topology, 15

Zariski, 16

totally disconnected, 17
transcendental number, 3

translation invariance, 29, 31

triangle inequality, 4
in Hilbert space, 51

Tychonoff theorem, 22

uniform continuity, 21

and compactness, 21
uniform convergence, 10

and Riemann integrability, 49

uniform metric, 10
upper bound, 8

Urysohn’s metrization theorem, 17

valuation, 23
p-adic, 23

archimedean, 23
completion with respect to, 26

equivalent valuations, 23
non-archimedean, 23
product formula, 26
valuations on Q, 25

Vitali’s nonmeasurable set, 34

volume, see also measure

of a rectangle, 29

Zariski topology, 16
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