1. Let T be a triangle with vertices $\{0,1,2\}$ but with the edge from 1 to 2 having weight 3 . Take 0 as the sink.

(a) Find all the recurrents and all the superstables on T.
(b) For each recurrent c, find $\sigma \geq 0$ such that $c-\widetilde{\Delta}_{T} \sigma$ is superstable. Can each of these σ s be realized as a sequence of legal vertex firings?
2. Let S be a square with vertices $\{0,1,2,3\}$ bit with the edge from 1 to 2 having weight 2. Take 0 as the sink. Repeat the above exercise.
3. State and proof a necessary and sufficient condition that the recurrents and superstables on a sandpile graph $(\Gamma, 0)$ are the same.
4. Consider the following graph

(a) List all the superstables by degree.
(b) List all the non-special divisors, \mathcal{N}, in standard form (0-reduced).
(c) For each non-special divisor ν, write $K-\nu$ in standard form to see a permutation of \mathcal{N}.
(d) Find a representative for each minimal alive divisor modulo \mathcal{L}.
5. Parking spaces $\{0,1, \ldots, n-1\}$ are available consecutively. There are n cars, C_{0}, \ldots, C_{n-1}, and car C_{i} prefers space p_{i}. This means that car C_{i} will pass spaces p_{0}, \ldots, p_{i-1}, then take space p_{i} if it is available. If space p_{i} is unavailable, car C_{i} will take then next available space, if possible. A parking function is a function $p:\{0, \ldots, n-1\} \rightarrow\{0, \ldots, n-1\}$ (which we present as a list $p_{0} \cdots p_{n-1}$), that allows every car to park. For instance, the parking functions in the case $n=2$ are 00,10 , and 01. In the case $n=3$, the parking functions are $000,001,010,100$, $002,020,200,011,101,110,012,021,102,120,201$, and 210.
(a) Given any function $p:\{0, \ldots, n-1\} \rightarrow\{0, \ldots, n-1\}$, let

$$
a_{0} \leq a_{2} \leq \cdots \leq a_{n-1}
$$

be the non-decreasing rearrangement of p_{0}, \ldots, p_{n-1}. Show that p is a parking function iff $a_{i} \leq i$ for $i=0, \ldots, n-1$. It then trivially follows that the composition of any permutation of $\{0, \ldots, n-1\}$ with a parking function is again a parking function.
(b) Show that the parking functions are exactly the superstables for the complete graph K_{n+1} (and hence, the number of labeled trees with n nodes).

