1. Let T be a triangle with vertices $\{0, 1, 2\}$ but with the edge from 1 to 2 having weight 3. Take 0 as the sink.

- (a) Find all the recurrents and all the superstables on T.
- (b) For each recurrent c, find $\sigma \geq 0$ such that $c \widetilde{\Delta}_T \sigma$ is superstable. Can each of these σ s be realized as a sequence of legal vertex firings?
- 2. Let S be a square with vertices $\{0, 1, 2, 3\}$ bit with the edge from 1 to 2 having weight 2. Take 0 as the sink. Repeat the above exercise.
- 3. State and proof a necessary and sufficient condition that the recurrents and superstables on a sandpile graph $(\Gamma, 0)$ are the same.
- 4. Consider the following graph

- (a) List all the superstables by degree.
- (b) List all the non-special divisors, \mathcal{N} , in standard form (0-reduced).

- (c) For each non-special divisor ν , write $K \nu$ in standard form to see a permutation of \mathcal{N} .
- (d) Find a representative for each minimal alive divisor modulo \mathcal{L} .
- 5. Parking spaces $\{0, 1, \ldots, n-1\}$ are available consecutively. There are n cars, C_0, \ldots, C_{n-1} , and car C_i prefers space p_i . This means that car C_i will pass spaces p_0, \ldots, p_{i-1} , then take space p_i if it is available. If space p_i is unavailable, car C_i will take then next available space, if possible. A parking function is a function $p: \{0, \ldots, n-1\} \rightarrow \{0, \ldots, n-1\}$ (which we present as a list $p_0 \cdots p_{n-1}$), that allows every car to park. For instance, the parking functions in the case n = 2 are 00, 10, and 01. In the case n = 3, the parking functions are 000, 001, 010, 100, 002, 020, 200, 011, 101, 110, 012, 021, 102, 120, 201, and 210.
 - (a) Given any function $p: \{0, \ldots, n-1\} \to \{0, \ldots, n-1\}$, let

$$a_0 \le a_2 \le \dots \le a_{n-1}$$

be the non-decreasing rearrangement of p_0, \ldots, p_{n-1} . Show that p is a parking function iff $a_i \leq i$ for $i = 0, \ldots, n-1$. It then trivially follows that the composition of any permutation of $\{0, \ldots, n-1\}$ with a parking function is again a parking function.

(b) Show that the parking functions are exactly the superstables for the complete graph K_{n+1} (and hence, the number of labeled trees with n nodes).