HW 3, due Friday, September 17

1. Let Γ be the following digraph:

(a) Let $\widetilde{\Delta}$ be the reduced Laplacian of Γ with respect to its global sink. By hand, find 3×3 integer matrices, U, V, invertible over the integers, such that $U \widetilde{\Delta} V=D$ where D is in Smith normal form, thus identifying the sandpile group as

$$
\mathbb{Z} / d_{1} \mathbb{Z} \times \mathbb{Z} / d_{2} \mathbb{Z} \times \mathbb{Z} / d_{3} \mathbb{Z}
$$

with $d_{1}\left|d_{2}\right| d_{3}$.
(b) Find all the spanning trees directed into the sink (checking agreement with the matrix-tree theorem).
2. (a) Show that

$$
\operatorname{det}\left(\begin{array}{ccccc}
x & y & y & \ldots & y \\
y & x & y & \ldots & y \\
\vdots & & \ddots & & \vdots \\
y & y & y & \ldots & x
\end{array}\right)=(x-y)^{n-1}(x+(n-1) y)
$$

(b) Use the matrix-tree theorem to prove Cayley's theorem: the number of trees on n labeled vertices is n^{n-2}. (Note that "tree" in this case means a spanning tree of the complete graph on n vertices. The labels are mentioned to distinguish between isomorphic trees, i.e., trees isomorphic as graphs.)
3. Consider the following graph Γ with $\operatorname{sink} s$:

(There is an edge connecting 2 to 3 and an edge connecting 3 to 2 .)
(a) Find all recurrent configurations on Γ, indicating the identity configuration.
(b) Use the matrix-tree theorem to determine the number of directed spanning trees directed into the sink.
(c) Rotor-routers. Let the sandpile group of Γ operate on the following tree in order to generate all directed spanning trees of Γ :

4. Reversing edges. Let (Γ, s) be a sandpile graph with reduced Laplacian $\widetilde{\Delta}$. It is sometimes the case that the transpose, $\widetilde{\Delta}^{t}$, is the reduced Laplacian of a sandpile graph $\left(\Gamma^{\prime}, s^{\prime}\right)$. Suppose this is the case.
(a) Let U, V be invertible integer matrices such that $U \widetilde{\Delta} V=D$ where D is the Smith normal from of $\widetilde{\Delta}$. Use U and V to describe an isomorphism of sandpile groups $\mathcal{S}(\Gamma) \rightarrow \mathcal{S}\left(\Gamma^{\prime}\right)$. (Is there a simpler description of this isomorphism? For instance, in the case of an undirected graph, $\widetilde{\Delta}=\widetilde{\Delta}^{t}$, and the isomorphism is simply the identity mapping.)
(b) Find an example for which Γ and Γ^{\prime} are not isomorphic graphs, and explicitly compute this isomorphism.

