Let R be a commutative ring with identity, 1 . An R-module is a commutative group M together scalar multiplication, i.e., an mapping $\cdot: R \times M \rightarrow R$ satisfying:

1. $(r+s) m=r m+s m$ for all $r, s \in R$ and $m \in M$
2. $r(m+n)=r m+r n$ for all $r \in R$ and $m, n \in M$
3. (rs) $m=r(s m)$ for all $r, s \in R$ and $m \in M$
4. $1 m=m$ for all $m \in M$.

A subgroup N of an R-module M is a submodule if $r n \in N$ for all $r \in R$ and $n \in N$. In that case, we can form the quotient module M / N consisting of the group of cosets $m+N$ for $m \in M$, with the obvious R-module structure, $r(m+N)=r m+N$. A homomorphism of R-modules M and N is a group homomorphism $f: M \rightarrow N$ satisfying $f(r m)=r f(m)$ for all $r \in R$ and $m \in M$. Two R-modules M, N are isomorphic if there are R-module homomorphisms $f: M \rightarrow N$ and $g: N \rightarrow M$ that are inverses of each other.

Examples

1. A \mathbb{Z}-module is just an abelian group.

2 . If R is a field, an R-module is exactly a vector space over R.
3. For any ring R, every ideal of R is an R-submodule.
4. If $f: M \rightarrow N$ is a homomorphism of R-modules, then
(a) the kernel of f is the R-submodule of $M, \operatorname{ker}(f):=f^{-1}(0)$
(b) the image of f is the R-submodule of $N, \operatorname{im}(f):=f(M)$
(c) the cokernel of f is the R-module $N / \operatorname{im}(f)$.
(d) the mapping f is injective iff $\operatorname{ker}(f)=0$ and is surjective iff $\operatorname{coker}(f)=0$; it is an isomorphism iff it is injective and surjective.

A sequence of R-module homomorphisms

$$
M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime}
$$

is exact (or exact at M) if $\operatorname{im}(f)=\operatorname{ker}(g)$. A short exact sequence of R-modules is a sequence of R-module homomorphisms

$$
0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \rightarrow 0
$$

exact at M^{\prime}, M, and $M^{\prime \prime}$.

Exercise 1 For a short exact sequence of R-modules as above

1. f is injective
2. g is surjective
3. $M^{\prime \prime}$ is isomorphic to coker (f).
4. If R is a field, so that M^{\prime}, M, and $M^{\prime \prime}$ are vector spaces, then

$$
\operatorname{dim} M=\operatorname{dim} M^{\prime}+\operatorname{dim} M^{\prime \prime}
$$

In general, as sequence of R-module mappings

$$
\cdots \rightarrow M_{i} \rightarrow M_{i+1} \rightarrow \ldots
$$

is exact if it is exact at each M_{i} (except the first and last, if they exist).
Consider a commutative diagram of R-modules with exact rows

The snake lemma says there is an exact sequence

$$
\operatorname{ker} \phi^{\prime} \rightarrow \operatorname{ker} \phi \rightarrow \operatorname{ker} \phi^{\prime \prime} \rightarrow \operatorname{coker} \phi^{\prime} \rightarrow \operatorname{coker} \phi \rightarrow \operatorname{coker} \phi^{\prime \prime}
$$

If f is injective, then so is $\operatorname{ker} \phi^{\prime} \rightarrow \operatorname{ker} \phi$, and if k is surjective, so is coker $\phi \rightarrow$ coker $\phi^{\prime \prime}$.
Exercise 2 Prove the snake lemma.

