Def. A semi-Riemannian manifold is a manifold M with a scalar product \langle , \rangle_p on $T_p M \forall p \in M$, varying smoothly with p. If the scalar product has index 0, then M is Riemannian.

We saw that a scalar product on a vector space V corresponds with an element of the symmetric product $S^2 V^*$. Thus, we can define a semi-Riemannian manifold as a manifold with a section of the vector bundle $S^2 T^* M$ such that the corresponding bilinear form on $T_p M$ is nondegenerate $\forall p$. Consider the entries in the matrix defining \langle , \rangle locally.
Let M be an oriented semi-Riemannian n-manifold. For each $p \in M$, we get a volume form $\omega_p \in \Omega^n M$ and a \ast-operator $\ast : \Lambda^k T^*_p M \to \Lambda^{n-k} T^*_p M$ varying smoothly with p. These glue together to give a volume form $\omega \in \Omega^n M$ and a \ast-operator $\ast : \Omega^k M \to \Omega^{n-k} M$.

We get an induced coderivative mapping:

\[
\begin{align*}
\Omega^k M & \xrightarrow{\delta} \Omega^{k+1} M \\
\ast & \downarrow \quad \downarrow \ast \\
\Omega^{n-k} M & \xrightarrow{(-1)^k \delta} \Omega^{n-k-1} M
\end{align*}
\]

Lemma $\ast \ast = (-1)^{n(n-k)+1} \text{Id}$. Hence, \ast is an isomorphism.

Pf/ HW. \square
Def. The codifferential $\delta_k : \Omega^k M \rightarrow \Omega^{k-1} M$ is defined by

$$\delta_k = (-1)^k \circ d \circ \ast^{-1}$$

Goal. We would like to use \ast to get an isomorphism $H^k M \rightarrow H^{n-k} M$ for closed Riemannian manifolds.

Recall $H^k M = \ker (\delta^k : \Omega^k M \rightarrow \Omega^{k+1} M) / \text{im}(\delta^{k-1} M \rightarrow \delta^k M)$.

Let $\eta \in \Omega^k M$ with $d \eta = 0$, i.e., η is a cocycle.

Q. Is $\ast \eta$ a cocycle?

There is kind of commutation of \ast and d:

- $\delta \ast \eta = \pm \ast \delta \ast \eta = \pm \ast \delta \ast \eta = \pm \ast \delta \ast \eta$

There is kind of commutation of \ast and d:

- $d \ast \eta = \pm \ast \delta \ast \eta = \pm \ast \delta \ast \eta = \pm \ast \delta \ast \eta$

Therefore $\eta = \pm \ast \delta \ast \eta$.
So, \(d \ast \eta = \pm \delta \eta \) and, similarly, \(\delta \ast \eta = \pm \ast d \eta \).

Thus, we are led to consider:

Def. The **harmonic** \(k \)-**forms** on \(M \) are

\[
\mathcal{H}ar(M) = \{ \eta \in \Omega^k M : d \eta = 0 \text{ and } \delta \eta = 0 \}.
\]

Thm. If \(M \) is a closed Riemannian manifold

\[
\mathcal{H}ar^k M \rightarrow H^k M
\]

\[
\eta \mapsto [\eta]
\]

is an isomorphism.

Pf/ Punt. \(\Box \)
Prop. \(\ast : \operatorname{Har}^k M \to \operatorname{Har}^{n-k} M \) exists and is an isomorphism.

Pf/ \(\ast H \in \operatorname{Har}^k M \). So \(dH = 0 \) and \(\delta H = 0 \). Then \(d \ast H = \pm \delta dH = 0 \) and \(\delta \ast H = \pm \ast dH = 0 \).

Hence, \(\ast H \) is harmonic. Hence, \(\ast : \operatorname{Har}^k M \to \operatorname{Har}^{n-k} M \) makes sense. It is an isomorphism since \(\ast \ast = \pm \operatorname{id}. \square \)

Thm. (Poincaré duality) If \(M \) is a closed Riemannian manifold, then
\[
\ast : H^k M \to H^{n-k} M.
\]

Example: \(H^0 S^n = \mathbb{R} \Rightarrow H^n S^n = \mathbb{R} \) (spanned by the volume form).

\textbf{Note:} Every manifold can be given a Riemannian metric by using the charts and a partition of unity. So Poincaré duality holds for oriented closed manifolds.
Cor. If \(M \) is a closed, connected, oriented \(n \)-manifold, then

\[
\int_{\partial M} \omega = \int M
\]

is an isomorphism.

Pf/ \(H^n M = H^0 M = \mathbb{R} \Rightarrow H^n M = \mathbb{R} [w_M] \), where \(w_M \) is the volume form. Note that locally \(\int_M w_M = \int dx_1 \wedge \ldots \wedge dx_n = \int_A 1 = \text{vol}(A) \). So \(\int_M w_M \) really does give the volume. In particular, \(\int_M w_M \neq 0 \). \(\square \)