Oriented Manifolds

An oriented manifold is a manifold M with a collection of orientations $\mathcal{O} = \{ \Theta_p \}_{p \in M}$ with Θ_p an orientation on $T_p M$ such that Θ is locally coherent, meaning that for each point at M, there is a chart (U, h) at that point such that for all $p \in U$, the isomorphism induced by the chart:

$$T_p M \rightarrow \mathbb{R}^n$$

$$v \mapsto v(h(U, p))$$

takes Θ_p to the usual positive orientation of \mathbb{R}^n.

A diffeomorphism $f: M \rightarrow N$ is orientation preserving if $df_p: T_p M \rightarrow T_p N$ is orientation preserving for all $p \in M$.

Math 411 Reading / Return HW
A chart \((U, h)\) is orientation preserving if \(\forall p \in U\), the isomorphism
\[
T_p M \rightarrow \mathbb{R}^n
\]
takes \(h_p\) to the positive orientation of \(\mathbb{R}^n\).

An atlas \(\mathcal{U} = \{(U_i, h_i)\}\) is an orienting atlas if all the transition functions are orientation preserving, i.e., their derivatives have positive determinant. In this case, \(\exists!\) orientation of \(M\) such that \(\mathcal{U}\) consists of orientation preserving charts.

Example
- \(S^n\) is orientable
- a Möbius strip is not orientable
- \(\mathbb{P}^n\) is orientable iff \(n\) is odd (See HW.)
Integration on Manifolds

Basic idea: Let M be an n-manifold, $w \in \Omega^n M$ (a section of $\Lambda^n T^* M$). Choosing coordinates (U, h), we get a local expression for w:

$$w(p) = \sum \tilde{a}(p) \, dx_{i_1} \wedge \cdots \wedge dx_{i_n}.$$

1. If $A \subseteq U$, we let $\int_A w = \int_{h(A)} \tilde{a}$, where $a = \tilde{a} \circ h^{-1}$.

2. If $A \subseteq V$ for some other chart (V, k), it turns out that this will get the same value for the integral!

3. To define $\int_M w$, divide M up into nice disjoint pieces like A, above, which fit inside charts.

Note: The existence of an orientation must be relevant.