Math 411

Last time \(f : M \to \mathbb{R} \Rightarrow df_p : T_p M \to \mathbb{R} \), i.e. \(df \in T^*_p M \).

In local coords,

\[
(*) \quad df_p = \sum_{i=1}^{n} \frac{\partial f}{\partial x^i}(p) \, dx^i \bigl(p \bigr).
\]

really \(\frac{\partial (f \circ h)}{\partial x_i}(p) \)

For general \(f : M \to N \) we get \(f_p^* : df_p : T_p M \to T_{f(p)} N \)

and, thus, \(f_p^* : df_p^* : T^*_{f(p)} N \to T^*_p M \) and

\(f_p^* : \Lambda^k T^*_{f(p)} N \to \Lambda^k T^*_p M \). In coords. \((U, h)\) at \(p \), \((V, h)\) at \(f(p) \) with \(U \subseteq \Phi^{-1}(V) \)!
Thus, \(df^*_p (dy_i) = \) the column of \(\left(\frac{df_i}{dx_j} (p) \right)^\text{tr} \)

\[\begin{align*}
= & \quad \text{the row of} \quad \left(\frac{df_i}{dx_j} (p) \right) = \nabla f_i (p) \\
= & \quad \sum_j \frac{df_i}{dx_j} (p) dx_j = df_i, p \\
\end{align*} \]

\[df^*_p (dy_i) = df_i, p \]

Thus, \(f^*_p : \bigwedge^k T^*N \rightarrow \bigwedge^k T^*_p M \) is given locally by

\[f^*_p \left(\sum \omega^k (f(p)) \, dy_{i_1} \wedge \cdots \wedge dy_{i_k} \right) = \sum \omega^k (f(p)) \, df_{i_1} \wedge \cdots \wedge df_{i_k} . \]
Bundle

\[f: M \to N \] induces mappings of bundles

\[f_*: TM \to TN \quad f^*: \Omega^k N \to \Omega^k M \]

For instance, in local coords \((U, h), (V, k)\), as usual,

\[
\begin{align*}
\pi^*_m (U) & \xrightarrow{f_*} \pi^*_N (V) \\
\left(h(U) \times \mathbb{R}^m \right) & \xrightarrow{f} \left(k(V) \times \mathbb{R}^n \right) \\
\left(h(p), v \right) & \mapsto \left(k(f(p)), f^* p (v) \right)
\end{align*}
\]

Point: The mappings are defined locally (at each point \(p \), above) glue together
to give (smooth) mappings of bundles.
Example \(M = \mathbb{R}^2 \), \(N = \mathbb{R}^3 \)

\[
f : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \\
(u, v) \mapsto (u^2 - v, u + 2v, v^2)
\]

\[
w_{xy}(x, y, z) \quad w_{yz}(x, y, z)
\]

\[
w = x^2 \, dx \land dy + (x + z) \, dy \land dz
\]

\[
\in \int_C \mathbb{R}^3 = \text{sections of } \wedge^2 \mathbf{T} \mathbb{R}^3
\]

\[
f^\star (w) = (u^2 - v) \, d(u^2 - v) \land d(u + 2v) + (u^2 - v + v^2) \, d(u + 2v) \land dv^2
\]

\[
= (u^2 - v) (2u \, du - dv) \land (du + 2dv) + (u^2 - v + v^2) (du + 2dv) \land (2vdv)
\]

by (\star), page 1

\[
= [(u^2 - v)(4u + 1) + 2(u^2 - v + v^2)v] \, du \land dv = \text{(etc)} \, du \land dv.
\]
Def. Let V be a real vector space. Two ordered bases (v_1, \ldots, v_n) and (w_1, \ldots, w_n) have the same orientation if the mapping $V \to V$ where $v_i \mapsto w_i$ has positive determinant.

The property of having the same orientation defines an equivalence relation on the set of ordered bases for V with two equivalence classes. Each equivalence class is called an orientation on V. Having chosen an orientation Θ, we get an oriented vector space, (V, Θ).
If an ordered basis \((w_1, \ldots, w_n)\) is in \(\Theta\), we say \((w_1, \ldots, w_n)\) is positively oriented; otherwise it's negatively oriented.

Example. \(V = \mathbb{R}^3\)

\[(e_1, e_2, e_3) \sim (e_2, e_3, e_1) \sim (e_3, e_1, e_2)\]

\[(e_2, e_1, e_3) \sim (e_1, e_3, e_2) \sim (e_3, e_2, e_1)\]

Also, for example, \((e_1 + e_2, e_2, e_3) \sim (e_1, e_2, e_3)\) since

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[\mathbb{R}^3 \xrightarrow{\sim} \mathbb{R}^3\]

has positive determinant.