1. A linear subspace L of \mathbb{P}^{n} of dimension r, also called an r-plane, is an $(r+1)$ dimensional vector subspace $\tilde{L} \subseteq \mathbb{A}^{n+1}$ modulo the equivalence $p \sim \lambda p$ for every $p \in \tilde{L}$ and nonzero $\lambda \in k$. Given two linear subspaces L and M of \mathbb{P}^{n}, define their span to be the linear subspace determined by $\tilde{L}+\tilde{M}$ in \mathbb{A}^{n+1}. In other words, a point of $\operatorname{Span}\{L, M\} \subseteq \mathbb{P}^{n}$ is any nonzero $p+q$ with $p \in \tilde{L}$ and $q \in \tilde{M}$, modulo scaling. The intersection of linear spaces in \mathbb{P}^{n} is a linear space, possibly empty (corresponding to the linear subspace $\left.\{0\} \subset \mathbb{A}^{n+1}\right)$. Note that $\operatorname{dim} L=\operatorname{dim} \tilde{L}-1$.
(a) Show that

$$
\operatorname{dim} \operatorname{Span}\{L, M\}=\operatorname{dim} L+\operatorname{dim} M-\operatorname{dim}(L \cap M)
$$

where the dimension of the empty set is taken to be 0 . (Please use a nice short exact sequence to prove this.)
(b) Show that $\operatorname{dim}(L \cap M) \geq \operatorname{dim} L+\operatorname{dim} M-n$. In particular, $L \cap M \neq \emptyset$ if $\operatorname{dim} L+\operatorname{dim} M \geq n$.
(c) Thus, two planes, i.e., two 2-planes, in \mathbb{P}^{4} must meet in a linear space of dimension at least 0 , i.e., at least in a point. Give explicit examples showing that two planes in \mathbb{P}^{4} can meet in a point, a line, or a plane. (There is more room in 4 -space than in 3 -space, where two planes must meet in at least a line.)
2. For each flag of linear spaces

$$
A_{0} \subsetneq \cdots \subsetneq A_{r}
$$

we defined the Schubert variety

$$
\mathfrak{S}\left(A_{0}, \ldots, A_{r}\right)=\left\{L \in \mathbb{G}_{r} \mathbb{P}^{n}: \operatorname{dim}\left(L \cap A_{i}\right) \geq i \text { for all } i\right\}
$$

and the corresponding Schubert class $\left(a_{0}, \ldots, a_{r}\right) \in A^{*}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)$ where $a_{i}=\operatorname{dim} A_{i}$. (Working modulo rational equivalence of cycles, only the dimensions of the A_{i} matter.) Each Schubert class represents r-planes in $\mathbb{G}_{r} \mathbb{P}^{n}$ satisfying certain conditions. For instance, in $A^{*}\left(\mathbb{G}_{1} \mathbb{P}^{3}\right)$, the class $(0,2)$ is the class of a Schubert variety $\mathfrak{S}\left(A_{0}, A_{1}\right)$ where A_{0} is a point and A_{1} is a plane. This Schubert variety consists of lines L passing through the point A_{0} and lying in the plane A_{1} (in order to satisfy the conditions $\left.\operatorname{dim}\left(L \cap A_{i}\right) \geq i\right)$.
(a) Let $n=3$. For $r=0,1,2,3$, describe all possible Schubert classes $\left(a_{0}, \ldots, a_{r}\right)$ and state the corresponding condition placed on r-planes in \mathbb{P}^{3}. (Note that $0 \leq a_{0}<$ $\cdots<a_{r} \leq 3$.)
(b) The class $\left(a_{0}, \ldots, a_{r}\right)$ is an element of $A^{\ell}\left(\mathbb{G}_{r} \mathbb{P}^{n}\right)$ where the codimension ℓ is given by

$$
\ell=(r+1)(n-r)-\sum_{i=0}^{r}\left(a_{i}-i\right)
$$

Calculate the codimension for each of the classes in part (a).
3. The set of lines in \mathbb{P}^{3} meeting a given line L is a hyperplane section of $\mathbb{G}_{1} \mathbb{P}^{3} \subset \mathbb{P}^{5}$, where as usual we consider the Grassmannian embedded via the Plücker embedding. In other words, there is a hyperplane $H_{L} \subset \mathbb{P}^{5}$ such that the lines meeting L are given by $\mathbb{G}_{1} \mathbb{P}^{3} \cap H_{L}$. The collection of lines meeting 4 given lines L_{1}, \ldots, L_{4} is then

$$
\cap_{i}\left(\mathbb{G}_{1} \mathbb{P}^{3} \cap H_{L_{i}}\right)=\mathbb{G}_{1} \mathbb{P}^{3} \cap\left(\cap_{i} H_{L_{i}}\right) .
$$

If the L_{i} are general lines, then $\cap_{i} H_{L_{i}}$ will be a line in \mathbb{P}^{5}, which we expect to meet the quadric hypersurface $\mathbb{G}_{1} \mathbb{P}^{3} \subset \mathbb{P}^{5}$ in two points. The point of this exercise is to compute an explicit example.
The first step is to get explicit equations for the hyperplanes described above. A line L in \mathbb{P}^{3} can be parametrized by $L(s, t)=s p+t q$ where $p, q \in \mathbb{P}^{3}$ are any two fixed distinct points on the line and (s, t) varies over \mathbb{P}^{1}. Consider the matrix

$$
C=\left(\begin{array}{cccc}
p_{0} & p_{1} & p_{2} & p_{3} \\
q_{0} & q_{1} & q_{2} & q_{3} \\
x_{0} & x_{1} & x_{2} & x_{3} \\
y_{0} & y_{1} & y_{2} & y_{3}
\end{array}\right)
$$

The first two rows give the homogeneous coordinates of L as an element of the Grassmannian: their span is L. The last two rows span an arbitrary line, M, in \mathbb{P}^{3}. The lines L and M intersect in \mathbb{P}^{3} if and only if their corresponding 2-dimensional subspaces in \mathbb{A}^{4} meet in a subspace of at least affine dimension 1 . In other words, if and only if C has a non-trivial kernel. So the condition that $L \cap M \neq \emptyset$ is equivalent to $\operatorname{det} C=0$. To get the equation of the hyperplane, calculate $\operatorname{det} C$ using a generalized Laplace expansion along the first two rows of C.

Generalized Laplace Expansion. Let D be an $n \times n$ matrix. Let $[n]=\{1, \ldots, n\}$, and fix row indices $I \subset[n]$. The complement is denoted $I^{c}=[n] \backslash I$. For each collection of column indices J having the same number of elements as I, i.e., $|I|=|J|$, we write $D_{I, J}$ for the corresponding submatrix of D. Then

$$
\operatorname{det} D=\sum_{J \subset[n],|J|=|I|}(-1)^{\sum_{i \in I} i+\sum_{j \in J} j} \operatorname{det} D_{I, J} \operatorname{det} D_{I^{c}, J^{c}} .
$$

Expanding $\operatorname{det} C$ along the first two rows gives

$$
\begin{aligned}
\operatorname{det} C=(& \left.p_{0} q_{1}-p_{1} q_{0}\right)\left(x_{2} y_{3}-x_{3} y_{2}\right)-\left(p_{0} q_{2}-p_{2} q_{0}\right)\left(x_{1} y_{3}-x_{3} y_{1}\right) \\
& +\left(p_{0} q_{3}-p_{3} q_{0}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(p_{1} q_{2}-p_{2} q_{1}\right)\left(x_{0} y_{3}-x_{3} y_{0}\right) \\
& -\left(p_{1} q_{3}-p_{3} q_{1}\right)\left(x_{0} y_{2}-x_{2} y_{0}\right)+\left(p_{2} q_{3}-p_{3} q_{2}\right)\left(x_{0} y_{1}-x_{1} y_{0}\right)
\end{aligned}
$$

Note that the Plücker coordinates for the line spanned by x and y are

$$
\left(x_{0} y_{1}-x_{1} y_{0}, x_{0} y_{2}-x_{2} y_{0}, x_{0} y_{3}-x_{3} y_{0}, x_{1} y_{2}-x_{2} y_{1}, x_{1} y_{3}-x_{3} y_{1}, x_{2} y_{3}-x_{3} y_{2}\right)
$$

Let $z_{01}, z_{02}, z_{03}, z_{12}, z_{13}, z_{23}$ be the coordinates on \mathbb{P}^{5}, and let

$$
[i j]=\operatorname{det}\left(\begin{array}{cc}
p_{i} & p_{j} \\
q_{i} & q_{j}
\end{array}\right)
$$

We see that $\operatorname{det} C=0$ defines the intersection of $\mathbb{G}_{i} \mathbb{P}^{3} \subset \mathbb{P}^{5}$ with the hyperplane

$$
H_{L}=[23] z_{01}-[13] z_{02}+[12] z_{03}+[03] z_{12}-[02] z_{13}+[01] z_{23}=0
$$

Let (u, x, y, z) be the coordinates on \mathbb{P}^{3}, and consider the four lines given in homogeneous equations by

$$
\begin{array}{ll}
L_{1}=\{y=z=0\}, & L_{2}=\{x=z, y=u\} \\
L_{3}=\{x=2 z, y=2 u\}, & L_{4}=\{x=y, z=u\}
\end{array}
$$

(a) Compute the four hyperplanes, $H_{L_{i}}$.
(b) Compute a parametric equation for the line $\cap_{i=1}^{4} H_{L_{i}}$.
(c) Find the two points of intersection of that line with the Grassmannian.
(d) Describe these two points as lines in \mathbb{P}^{3}.

