1. Let P be the hexagon in the plane with vertices $(0,0),(1,0),(0,1),(2,1),(1,2)$, and $(2,2)$.
(a) Draw the fan, Δ, for the corresponding toric variety, X, labeling the first lattice points along its 1-dimensional cones.
(b) Choose two adjacent 2-dimensional cones in Δ, construct the two corresponding affine toric varieties, and show the gluing instructions.
(c) Show that X smooth.
(d) Calculate the Chow ring, $A^{\bullet}(X)$.
(e) Calculate the cohomology $H^{k} X$ for all k.
(f) Give the mapping of X into \mathbb{P}^{6} determined by the 7 lattice points of P (there is one interior point) in homogeneous coordinates.
(g) Pick two components of your mapping, and show that they have the same degree.
(h) Describe X as a quotient, $\left(\mathbb{C}^{\Delta(1)} \backslash Z\right) /(x \sim \ell \cdot x)$ according to Cox's theorem.
2. We have seen that the toric variety Y determined by the single cone, $\sigma=\mathbb{R}_{>0}(2,-1)+$ $\mathbb{R}_{>0}(0,1)$, has semigroup algebra

$$
\mathbb{C}\left[x, x y, x y^{2}\right] \approx \mathbb{C}[u, v, w] /\left(u w-v^{2}\right)
$$

Thus, $Y=\left\{(u, v, w) \in \mathbb{C}^{3}: u w=v^{2}\right\}$, a cone. The fact that Y has a singularity can be inferred from the cone since

$$
\operatorname{det}\left(\begin{array}{rr}
-2 & 1 \\
0 & 1
\end{array}\right)=-2 \neq \pm 1
$$

To desingularize Y we "blow-up" the singular point by splitting σ into two "nonsingular" cones. Let Δ be the fan with maximal cones

$$
\begin{aligned}
\sigma_{1} & =\mathbb{R}_{>0}(2,-1)+\mathbb{R}_{>0}(1,0) \\
\sigma_{2} & =\mathbb{R}_{>0}(1,0)+\mathbb{R}_{>0}(0,1)
\end{aligned}
$$

and let $X=X(\Delta)$ be the corresponding toric variety.
(a) Describe how X is obtained from gluing two copies of \mathbb{C}^{2}.
(b) Describe a mapping $\pi: X \rightarrow Y$ such that $\pi^{-1}(p)$ consists of a single point for all $p \in Y \backslash\{(0,0,0)\}$ and such that $\pi^{-1}(0,0,0)$ is a "line". (Letting x and y be the indeterminates corresponding to the lattice points $(1,0)$ and $(0,1)$, respectively, and writing all coordinate functions in terms of x and y should guide the way. Show how the mapping is defined on the two copies of \mathbb{C}^{2} that are glued to form X.)
3. (a) Suppose $L: V \rightarrow W$ and $M: V^{\prime} \rightarrow W^{\prime}$ are linear mappings of finite-dimensional vector spaces. There is an induced mapping

$$
\begin{aligned}
L \otimes M: V \otimes V^{\prime} & \rightarrow W \otimes W^{\prime} \\
v \otimes v^{\prime} & \mapsto L(v) \otimes M\left(v^{\prime}\right)
\end{aligned}
$$

Choosing bases v_{1}, \ldots, v_{n} for $V ; w_{1}, \ldots, w_{m}$ for $W ; v_{1}^{\prime}, \ldots, v_{t}^{\prime}$ for V^{\prime}; and $w_{1}^{\prime}, \ldots, w_{s}^{\prime}$ for W^{\prime}, we identify L and M with matrices. Choosing the corresponding bases

$$
v_{1} \otimes v_{1}^{\prime}, v_{1} \otimes v_{2}^{\prime}, \ldots, v_{1} \otimes v_{t}^{\prime}, v_{2} \otimes v_{1}^{\prime}, \ldots, \ldots, v_{n} \otimes v_{t}^{\prime}
$$

for $V \otimes V^{\prime}$ and

$$
w_{1} \otimes w_{1}^{\prime}, w_{1} \otimes w_{2}^{\prime}, \ldots, w_{1} \otimes w_{s}^{\prime}, w_{2} \otimes w_{1}^{\prime}, \ldots, \ldots, w_{m} \otimes w_{s}^{\prime}
$$

for $W \otimes W^{\prime}$ (in the given orders) describe $L \otimes M$ as a matrix.
(b) With the above conventions, what is $L \otimes M$ for

$$
L=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right), \quad M=\left(\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right) .
$$

4. Consider an exact sequence of finite-dimensional vectors spaces:

$$
0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow \cdots \rightarrow V_{k} \rightarrow 0
$$

Prove that $\sum_{i=1}^{k}(-1)^{i} \operatorname{dim} V_{i}=0$.

