HW 10, due Friday, April 19

- 1. Let P be the hexagon in the plane with vertices (0,0), (1,0), (0,1), (2,1), (1,2), and (2,2).
 - (a) Draw the fan, Δ , for the corresponding toric variety, X, labeling the first lattice points along its 1-dimensional cones.
 - (b) Choose two adjacent 2-dimensional cones in Δ , construct the two corresponding affine toric varieties, and show the gluing instructions.
 - (c) Show that X smooth.
 - (d) Calculate the Chow ring, $A^{\bullet}(X)$.
 - (e) Calculate the cohomology $H^k X$ for all k.
 - (f) Give the mapping of X into \mathbb{P}^6 determined by the 7 lattice points of P (there is one interior point) in homogeneous coordinates.
 - (g) Pick two components of your mapping, and show that they have the same degree.
 - (h) Describe X as a quotient, $(\mathbb{C}^{\Delta(1)} \setminus Z)/(x \sim \ell \cdot x)$ according to Cox's theorem.
- 2. We have seen that the toric variety Y determined by the single cone, $\sigma = \mathbb{R}_{>0}(2, -1) + \mathbb{R}_{>0}(0, 1)$, has semigroup algebra

$$\mathbb{C}[x, xy, xy^2] \approx \mathbb{C}[u, v, w]/(uw - v^2).$$

Thus, $Y = \{(u, v, w) \in \mathbb{C}^3 : uw = v^2\}$, a cone. The fact that Y has a singularity can be inferred from the cone since

$$\det \left(\begin{array}{cc} -2 & 1\\ 0 & 1 \end{array} \right) = -2 \neq \pm 1.$$

To desingularize Y we "blow-up" the singular point by splitting σ into two "nonsingular" cones. Let Δ be the fan with maximal cones

$$\begin{aligned} \sigma_1 &= & \mathbb{R}_{>0}(2,-1) + \mathbb{R}_{>0}(1,0) \\ \sigma_2 &= & \mathbb{R}_{>0}(1,0) + \mathbb{R}_{>0}(0,1), \end{aligned}$$

and let $X = X(\Delta)$ be the corresponding toric variety.

- (a) Describe how X is obtained from gluing two copies of \mathbb{C}^2 .
- (b) Describe a mapping $\pi: X \to Y$ such that $\pi^{-1}(p)$ consists of a single point for all $p \in Y \setminus \{(0,0,0)\}$ and such that $\pi^{-1}(0,0,0)$ is a "line". (Letting x and y be the indeterminates corresponding to the lattice points (1,0) and (0,1), respectively, and writing all coordinate functions in terms of x and y should guide the way. Show how the mapping is defined on the two copies of \mathbb{C}^2 that are glued to form X.)

3. (a) Suppose $L: V \to W$ and $M: V' \to W'$ are linear mappings of finite-dimensional vector spaces. There is an induced mapping

$$L \otimes M \colon V \otimes V' \to W \otimes W' v \otimes v' \mapsto L(v) \otimes M(v')$$

Choosing bases v_1, \ldots, v_n for $V; w_1, \ldots, w_m$ for $W; v'_1, \ldots, v'_t$ for V'; and w'_1, \ldots, w'_s for W', we identify L and M with matrices. Choosing the corresponding bases

$$v_1 \otimes v_1', v_1 \otimes v_2', \dots, v_1 \otimes v_t', v_2 \otimes v_1', \dots, \dots, v_n \otimes v_t'$$

for $V \otimes V'$ and

$$w_1 \otimes w_1', w_1 \otimes w_2', \ldots, w_1 \otimes w_s', w_2 \otimes w_1', \ldots, \ldots, w_m \otimes w_s'$$

for $W \otimes W'$ (in the given orders) describe $L \otimes M$ as a matrix.

(b) With the above conventions, what is $L \otimes M$ for

$$L = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right), \qquad M = \left(\begin{array}{rrr} 1 & 2 \\ 3 & 4 \end{array}\right).$$

4. Consider an exact sequence of finite-dimensional vectors spaces:

$$0 \to V_1 \to V_2 \to \cdots \to V_k \to 0.$$

Prove that $\sum_{i=1}^{k} (-1)^{i} \dim V_{i} = 0.$