HW 9, due Friday, April 12

1. Let V be an oriented vector space with scalar product \langle,$\rangle of index s$. Let e_{1}, \ldots, e_{n} be an orthonormal basis for V with $\left\langle e_{i}, e_{i}\right\rangle=\varepsilon_{i} \in\{-1,1\}$ for each i, and let ω_{V} be the volume form for V. For each k, let $*: \Lambda^{k} V^{*} \rightarrow \Lambda^{n-k} V^{*}$ be the $*$-operator.
(a) Compute $* 1$ and $* \omega_{V}$.
(b) Show $*^{*}=(-1)^{k(n-k)+s} \operatorname{Id}_{\Lambda^{k} V^{*}}$. (Recall that if e_{1}, \ldots, e_{n} is a positively oriented orthonormal basis for V, then we have an orthonormal basis $\left\{e_{\mu}^{*}\right\}$ for $\Lambda^{k} V^{*}$ with $\left\langle e_{\mu}^{*}, e_{\gamma}^{*}\right\rangle=\delta_{\mu \gamma} \varepsilon_{\mu}$ where $\varepsilon_{\mu}=\prod_{i} \varepsilon_{\mu_{i}}$. We also have $\operatorname{sgn}\left(\tau_{\mu}\right)$ defined by

$$
e_{\mu}^{*} \wedge e_{\tilde{\mu}}^{*}=\operatorname{sgn}\left(\tau_{\mu}\right) \omega_{V}=\operatorname{sgn}\left(\tau_{\mu}\right) e_{1}^{*} \wedge \cdots \wedge e_{n}^{*},
$$

where $\tilde{\mu}$ is the complement of μ in $\{1, \ldots, n\}$. Then $* e_{\mu}^{*}=\varepsilon_{\mu} \operatorname{sgn}\left(\tau_{\mu}\right) e_{\tilde{\mu}}^{*}$.)
(c) Show $\langle * \eta, * \zeta\rangle=(-1)^{s}\langle\eta, \zeta\rangle$ for all $\eta, \zeta \in \Lambda^{k} V^{*}$. (Try to do this without appealing to the description of the $*$-operator in terms of a basis. Use defining properties of the $*$-operator, instead.)
(d) For $\eta, \zeta \in \Lambda^{k} V^{*}$, find the relationship between (i) $*(\eta \wedge * \zeta)$, (ii) $*(* \eta \wedge \zeta)$, (iii) $*(\zeta \wedge * \eta)$, and (iv) $*(* \zeta \wedge \eta)$ by relating them all to $\langle\eta, \zeta\rangle$.
2. Let $V=\mathbb{R}^{4}$ with standard oriented basis e_{1}, \ldots, e_{4} and with the Lorentzian scalar product:

$$
\left\langle e_{i}, e_{j}\right\rangle=\left\{\begin{aligned}
0 & \text { if } i \neq j \\
1 & \text { if } i=j \text { and } i \neq 4 \\
-1 & \text { if } i=j=4
\end{aligned}\right.
$$

For each $k=0,1,2,3,4$, describe the $*$-operator by showing what it does to the standard basis for $\Lambda^{k} V^{*}$. (For instance,

$$
e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}, \quad e_{1}^{*} \wedge e_{2}^{*} \wedge e_{4}^{*}, \quad e_{1}^{*} \wedge e_{3}^{*} \wedge e_{4}^{*}, \quad e_{2}^{*} \wedge e_{3}^{*} \wedge e_{4}^{*}
$$

is the standard basis for $\Lambda^{3} V^{*}$. Order the indices lexicographically, as above.)
3. Now let $V=\mathbb{R}^{3}$ with the standard inner product and orientation. What is the precise relation between the $*$-operator and the usual cross product (with proof)?
4. What are the cohomology groups of a solid donut?
5. What are the cohomology groups of (the surface of) a donut with g holes? (Recall that in the last homework, you computed the cohomology of a punctured single-holed donut.) You may use the fact that if M is a compact, connected, orientable n-manifold with $n \geq 2$, and $p \in M$, then $H^{n}(M \backslash\{p\})=0$.
6. Consider the cone, σ, in \mathbb{R}^{2} generated by the vectors $(0,1)$ and $(3,-1)$. Describe the (affine) toric variety, U_{σ}.
7. Each of the quadrants of \mathbb{R}^{2} forms a cone. Consider the fan, Δ, consisting of these four cones. Describe the toric variety $X(\Delta)$ by identifying the affine toric varieties corresponding to each cone and describing the gluing instructions. Extra: Can you identify $X(\Delta)$ as a well-known manifold?

