HW 9, due Friday, April 12

- 1. Let V be an oriented vector space with scalar product \langle , \rangle of index s. Let e_1, \ldots, e_n be an orthonormal basis for V with $\langle e_i, e_i \rangle = \varepsilon_i \in \{-1, 1\}$ for each i, and let ω_V be the volume form for V. For each k, let $*: \Lambda^k V^* \to \Lambda^{n-k} V^*$ be the *-operator.
 - (a) Compute *1 and $*\omega_V$.
 - (b) Show $** = (-1)^{k(n-k)+s} \operatorname{Id}_{\Lambda^k V^*}$. (Recall that if e_1, \ldots, e_n is a positively oriented orthonormal basis for V, then we have an orthonormal basis $\{e_{\mu}^*\}$ for $\Lambda^k V^*$ with $\langle e_{\mu}^*, e_{\gamma}^* \rangle = \delta_{\mu\gamma} \varepsilon_{\mu}$ where $\varepsilon_{\mu} = \prod_i \varepsilon_{\mu_i}$. We also have $\operatorname{sgn}(\tau_{\mu})$ defined by

$$e^*_{\mu} \wedge e^*_{\tilde{\mu}} = \operatorname{sgn}(\tau_{\mu}) \, \omega_V = \operatorname{sgn}(\tau_{\mu}) \, e^*_1 \wedge \cdots \wedge e^*_n$$

where $\tilde{\mu}$ is the complement of μ in $\{1, \ldots, n\}$. Then $*e_{\mu}^* = \varepsilon_{\mu} \operatorname{sgn}(\tau_{\mu}) e_{\tilde{\mu}}^*$.)

- (c) Show $\langle *\eta, *\zeta \rangle = (-1)^s \langle \eta, \zeta \rangle$ for all $\eta, \zeta \in \Lambda^k V^*$. (Try to do this without appealing to the description of the *-operator in terms of a basis. Use defining properties of the *-operator, instead.)
- (d) For $\eta, \zeta \in \Lambda^k V^*$, find the relationship between (i) $*(\eta \wedge *\zeta)$, (ii) $*(*\eta \wedge \zeta)$, (iii) $*(\zeta \wedge *\eta)$, and (iv) $*(*\zeta \wedge \eta)$ by relating them all to $\langle \eta, \zeta \rangle$.
- 2. Let $V = \mathbb{R}^4$ with standard oriented basis e_1, \ldots, e_4 and with the Lorentzian scalar product:

$$\langle e_i, e_j \rangle = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j \text{ and } i \neq 4, \\ -1 & \text{if } i = j = 4. \end{cases}$$

For each k = 0, 1, 2, 3, 4, describe the *-operator by showing what it does to the standard basis for $\Lambda^k V^*$. (For instance,

$$e_1^* \wedge e_2^* \wedge e_3^*, \quad e_1^* \wedge e_2^* \wedge e_4^*, \quad e_1^* \wedge e_3^* \wedge e_4^*, \quad e_2^* \wedge e_3^* \wedge e_4^*$$

is the standard basis for $\Lambda^3 V^*$. Order the indices lexicographically, as above.)

- 3. Now let $V = \mathbb{R}^3$ with the standard inner product and orientation. What is the precise relation between the *-operator and the usual cross product (with proof)?
- 4. What are the cohomology groups of a solid donut?
- 5. What are the cohomology groups of (the surface of) a donut with g holes? (Recall that in the last homework, you computed the cohomology of a punctured single-holed donut.) You may use the fact that if M is a compact, connected, orientable n-manifold with $n \ge 2$, and $p \in M$, then $H^n(M \setminus \{p\}) = 0$.

- 6. Consider the cone, σ , in \mathbb{R}^2 generated by the vectors (0,1) and (3,-1). Describe the (affine) toric variety, U_{σ} .
- 7. Each of the quadrants of \mathbb{R}^2 forms a cone. Consider the fan, Δ , consisting of these four cones. Describe the toric variety $X(\Delta)$ by identifying the affine toric varieties corresponding to each cone and describing the gluing instructions. Extra: Can you identify $X(\Delta)$ as a well-known manifold?