
HW 8, due Friday, April 5 Math 411

1. Manifolds M and N are homotopy equivalent if there are maps f : M → N and g : N →
M such that g ◦ f ∼ idM and f ◦ g ∼ idN (where ∼ denote homotopy equivalence of
maps). Show that if M and N are homotopy equivalent then HkM ≈ HkN for k ≥ 0.

2. Let X be a topological space, and let A ⊆ X be a subspace. A retraction is a continuous
mapping

r : X → A

such that r(a) = a for all a ∈ A. A deformation retraction is a homotopy between the
identity and a retraction, that is, a continuous mapping

h : [0, 1]×X → X

such that h0(x) := h(0, x) = x for all x ∈ X, while h1(x) := h(1, x) ∈ A, and h1(a) = a
for all x ∈ X and for all a ∈ A. (So, more accurately, h is a homotopy between (1) the
identity, and (2) a retraction composed with the inclusion of A into X.) In this case,
A is called a deformation retract of X.

In the category of manifolds, we have the same definitions, but all mappings are re-
quired to be smooth.

(a) Show that if N is a deformation retract of the manifold M , then Hk(M) ≈ Hk(N)
for k ≥ 0.

(b) Show that Sn is a deformation retract of the punctured plane, Rn+1\{~0}. (Hence,
these two manifolds have the same cohomology.)

3. In class, we showed that if M is a closed orientable n-manifold without boundary, then
HnM 6= 0. Show that the result does not hold without the compactness assumption.
Where is compactness used in the proof we gave in class?

4. Use Mayer-Vietoris to compute the cohomology of the following manifolds:

(a) The punctured plane, R2 \ {(0, 0)}. Here, take U = R2 \ (x-axis) and take V =
R2 \ (y-axis).

(b) The twice punctured plane, R2 \ {(−1, 0), (1, 0)}.
(c) The 2-torus, T = S1×S1. The only way I could think of doing this was as follows:

Let p ∈ T , let U be a small open disk on T containing p, and let V = T \ {p}.
It turns out that V is diffeomorphic to a sort of figure-eight band (most easily
seen by drawing the torus as a square with sides identified in the usual way, and
letting p be the center of the square). I then used Mayer-Vietoris to compute
the cohomology of V , and plugged in the result for the Mayer-Vietoris sequence
for T . The sequence is still ambiguous, but problem 3, above, fixes that.



5. Two technical results used in class:

(a) Let e1, . . . , en and v1, . . . , vn be two ordered bases for a vector space V , and let
e∗1, . . . , e

∗
n and v∗1, . . . , v

∗
n. Say vj =

∑
i aijei and v∗j =

∑
i bije

∗
i . Define matrices

A = (aij) and B = (bij). Prove that B = (At)−1.

(b) Let V be as above, and suppose 〈 , 〉 is a bilinear form on V . Define the matrices
G = (〈ei, ej〉) and H = (〈vi, vj〉), and let A be the matrix defined above. Show
that

H = AtGA.


