1. Manifolds M and N are homotopy equivalent if there are maps $f: M \rightarrow N$ and $g: N \rightarrow$ M such that $g \circ f \sim \mathrm{id}_{M}$ and $f \circ g \sim \mathrm{id}_{N}$ (where \sim denote homotopy equivalence of maps). Show that if M and N are homotopy equivalent then $H^{k} M \approx H^{k} N$ for $k \geq 0$.
2. Let X be a topological space, and let $A \subseteq X$ be a subspace. A retraction is a continuous mapping

$$
r: X \rightarrow A
$$

such that $r(a)=a$ for all $a \in A$. A deformation retraction is a homotopy between the identity and a retraction, that is, a continuous mapping

$$
h:[0,1] \times X \rightarrow X
$$

such that $h_{0}(x):=h(0, x)=x$ for all $x \in X$, while $h_{1}(x):=h(1, x) \in A$, and $h_{1}(a)=a$ for all $x \in X$ and for all $a \in A$. (So, more accurately, h is a homotopy between (1) the identity, and (2) a retraction composed with the inclusion of A into X.) In this case, A is called a deformation retract of X.

In the category of manifolds, we have the same definitions, but all mappings are required to be smooth.
(a) Show that if N is a deformation retract of the manifold M, then $H^{k}(M) \approx H^{k}(N)$ for $k \geq 0$.
(b) Show that S^{n} is a deformation retract of the punctured plane, $\mathbb{R}^{n+1} \backslash\{\overrightarrow{0}\}$. (Hence, these two manifolds have the same cohomology.)
3. In class, we showed that if M is a closed orientable n-manifold without boundary, then $H^{n} M \neq 0$. Show that the result does not hold without the compactness assumption. Where is compactness used in the proof we gave in class?
4. Use Mayer-Vietoris to compute the cohomology of the following manifolds:
(a) The punctured plane, $\mathbb{R}^{2} \backslash\{(0,0)\}$. Here, take $U=\mathbb{R}^{2} \backslash(x$-axis) and take $V=$ $\mathbb{R}^{2} \backslash$ (y-axis).
(b) The twice punctured plane, $\mathbb{R}^{2} \backslash\{(-1,0),(1,0)\}$.
(c) The 2 -torus, $T=S^{1} \times S^{1}$. The only way I could think of doing this was as follows: Let $p \in T$, let U be a small open disk on T containing p, and let $V=T \backslash\{p\}$. It turns out that V is diffeomorphic to a sort of figure-eight band (most easily seen by drawing the torus as a square with sides identified in the usual way, and letting p be the center of the square). I then used Mayer-Vietoris to compute the cohomology of V, and plugged in the result for the Mayer-Vietoris sequence for T. The sequence is still ambiguous, but problem 3, above, fixes that.
5. Two technical results used in class:
(a) Let e_{1}, \ldots, e_{n} and v_{1}, \ldots, v_{n} be two ordered bases for a vector space V, and let $e_{1}^{*}, \ldots, e_{n}^{*}$ and $v_{1}^{*}, \ldots, v_{n}^{*}$. Say $v_{j}=\sum_{i} a_{i j} e_{i}$ and $v_{j}^{*}=\sum_{i} b_{i j} e_{i}^{*}$. Define matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$. Prove that $B=\left(A^{t}\right)^{-1}$.
(b) Let V be as above, and suppose \langle,$\rangle is a bilinear form on V$. Define the matrices $G=\left(\left\langle e_{i}, e_{j}\right\rangle\right)$ and $H=\left(\left\langle v_{i}, v_{j}\right\rangle\right)$, and let A be the matrix defined above. Show that

$$
H=A^{t} G A
$$

