HW 7, due Friday, March 29

For this assignment, please refer to section 4 of our handout on topology, available from our website.

- 1. Explain why the components and the path components of a manifold are the same. (Quote the right result from the handout, and argue that it applies.)
- 2. Let X be a topological space.
 - (a) Suppose X is not connected. Show that there exist nonempty, disjoint subsets A and B of X such that both A and B are open and $X = A \cup B$.
 - (b) Let $Y \subset X$ with the subspace topology. Suppose X is not connected, and write $X = A \cup B$, as in the previous exercise. If Y is connected, show that Y is contained in either A or B.
- 3. Let X and Y be topological spaces, and let $f: X \to Y$ be any mapping (of sets). We say f is *locally constant* if for each $x \in X$ there exists an open neighborhood U of x such that f restricted to U is constant.
 - (a) Prove that if f is locally constant, it is continuous.
 - (b) Prove that if f is locally constant, then it is constant on each connected component of X.
 - (c) Let M be a manifold. Prove that $H^0M \approx \mathbb{R}^c$ where c is the number of connected components of M.
- 4. Let $f: M \to N$ be a mapping of manifolds.
 - (a) Prove that for each $k \ge 0$, the pullback $f^* \colon \Omega^k N \to \Omega^k M$ induces a well-defined mapping $f^* \colon H^k N \to H^k M$.
 - (b) Prove that if f is constant, then $f^* \colon H^k N \to H^k M$ is the zero map if k > 0.
 - (c) Prove that if f is constant and both M and N are connected, then $f^* \colon H^0 N \to H^0 M$ is an isomorphism. (Note: $H^0 M \approx H^0 N \approx \mathbb{R}$ in this case.)
- 5. Suppose M is a contractible manifold and h is a homotopy between the identity mapping on M and a constant mapping. Let $\omega \in \Omega^k M$ be a cocycle, i.e., $d\omega = 0$. We saw in class that if $k \ge 1$, then $\omega = dP(h^*\omega)$ where P is the prism operator.

Let F be vector field on \mathbb{R}^3 with $\operatorname{curl} F = 0$. Calculate $\phi \colon \mathbb{R}^3 \to \mathbb{R}$ such that $\operatorname{grad} \phi = F$ by calculating $P(h^*\omega)$ where ω is a suitably defined 1-form on \mathbb{R}^3 and h(x, y, z) =

(tx, ty, tz) for $t \in [0, 1]$ is a homotopy of the zero-mapping and the identity on \mathbb{R}^3 . Show that for each $p \in \mathbb{R}^3$,

$$\phi(p) = \int_{\gamma} F \cdot d\vec{t},$$

the flow of F along γ where $\gamma(t) := tp$ for $t \in [0, 1]$.

6. A *Lie group* is a manifold G with a group structure so that both the multiplication and inverse mappings:

$$\begin{array}{c} G\times G\to G\\ (g,h)\mapsto gh\\\\ G\to G\\ g\mapsto g^{-1} \end{array}$$

are smooth. Let G be a connected Lie group, and let U be an open neighborhood of the identity. Show that U generates G. (Define $U^n = \{g_1 \cdots g_n : g_1, \ldots, g_n \in U\}$. You must show that $\bigcup_{n \ge 1} U^n = G$.)