HW 6, due Friday, March 15

1. On \mathbb{P}^1 , we have the orienting atlas $\mathfrak{A} = \{(U_x, h), (U_y, k)\}$ where

$$h: U_x := \{(x, y) \in \mathbb{P}^1 : x \neq 0\} \to \mathbb{R}$$
$$(x, y) \mapsto y/x$$

$$k: U_y := \{ (x, y) \in \mathbb{P}^1 : y \neq 0 \} \rightarrow \mathbb{R}$$
$$(x, y) \mapsto -x/y$$

Define $\omega \in \Omega^1 \mathbb{P}^1$ whose local description with respect to h is

$$\omega|_{U_x}(a) = \frac{1}{a^2 + 1} \, da.$$

In HW 4, we saw that this completely determines ω on \mathbb{P}^1 .

- (a) Let $A_1 = h^{-1}([-1,1])$ and $A_2 = k^{-1}([-1,1])$. Show that $A_1 \cup A_2 = \mathbb{P}^1$ with intersection of measure 0.
- (b) Compute $\int_{\mathbb{P}^1} \omega$ using A_1 and A_2 (following the definition of the integral given in class).
- 2. Let S^1 be the unit circle in \mathbb{R}^2 centered at the origin. Define $p(t) = (\cos(t), \sin(t))$ and $q(t) = p(t + \pi)$ for $t \in (-\pi, \pi)$. Use p^{-1} and q^{-1} as local coordinates on S^1 .
 - (a) Compute the transition function $q^{-1} \circ p$.
 - (b) In the local coordinate t provided by p, consider $dt_{(1,0)} \in T^*_{(1,0)}S^1$. For each angle α there is a mapping $m_{\alpha} \colon S^1 \to S^1$ sending a point with angle β to the point with angle $\alpha + \beta$. Define

$$\omega(\alpha) = m_{\alpha}^*(dt_{(1,0)}).$$

What is the 1-form ω in the local coordinate provided by p?

- (c) What is $\int_{S^1} \omega$?
- 3. Read the handout on the homology of simplicial complexes. Turn in problems 1, 2, 3, and 5.