1. On \mathbb{P}^{1}, we have the orienting atlas $\mathfrak{A}=\left\{\left(U_{x}, h\right),\left(U_{y}, k\right)\right\}$ where

$$
\begin{aligned}
h: U_{x}:=\left\{(x, y) \in \mathbb{P}^{1}: x \neq 0\right\} & \rightarrow \mathbb{R} \\
(x, y) & \mapsto y / x \\
k: U_{y}:=\left\{(x, y) \in \mathbb{P}^{1}: y \neq 0\right\} & \rightarrow \mathbb{R} \\
(x, y) & \mapsto-x / y .
\end{aligned}
$$

Define $\omega \in \Omega^{1} \mathbb{P}^{1}$ whose local description with respect to h is

$$
\left.\omega\right|_{U_{x}}(a)=\frac{1}{a^{2}+1} d a
$$

In HW 4 , we saw that this completely determines ω on \mathbb{P}^{1}.
(a) Let $A_{1}=h^{-1}([-1,1])$ and $A_{2}=k^{-1}([-1,1])$. Show that $A_{1} \cup A_{2}=\mathbb{P}^{1}$ with intersection of measure 0 .
(b) Compute $\int_{\mathbb{P}^{1}} \omega$ using A_{1} and A_{2} (following the definition of the integral given in class).
2. Let S^{1} be the unit circle in \mathbb{R}^{2} centered at the origin. Define $p(t)=(\cos (t), \sin (t))$ and $q(t)=p(t+\pi)$ for $t \in(-\pi, \pi)$. Use p^{-1} and q^{-1} as local coordinates on S^{1}.
(a) Compute the transition function $q^{-1} \circ p$.
(b) In the local coordinate t provided by p, consider $d t_{(1,0)} \in T_{(1,0)}^{*} S^{1}$. For each angle α there is a mapping $m_{\alpha}: S^{1} \rightarrow S^{1}$ sending a point with angle β to the point with angle $\alpha+\beta$. Define

$$
\omega(\alpha)=m_{\alpha}^{*}\left(d t_{(1,0)}\right)
$$

What is the 1 -form ω in the local coordinate provided by p ?
(c) What is $\int_{S^{1}} \omega$?
3. Read the handout on the homology of simplicial complexes. Turn in problems 1, 2, 3, and 5.

