1. Let V and W be vector spaces over an arbitrary field K, and suppose that V has finite dimension n.
(a) Show that

$$
\operatorname{hom}(V, W) \approx W^{n}=\underbrace{W \times \cdots \times W}_{n \text { factors }} .
$$

(b) There is a mapping of vector spaces

$$
\left.\begin{array}{rl}
V^{*} \otimes W & \rightarrow \\
\operatorname{hom}(V, W) \\
\phi \otimes w & \mapsto
\end{array}\right][v \mapsto \phi(v) w] .
$$

It's induced by the corresponding bilinear mapping from $V^{*} \times W$ via the universal property for tensor products. Show that this mapping is an isomorphism. [We use finite-dimensionality here. It is useful to pick a basis for V and its corresponding dual basis.]
(c) The cross product

$$
\begin{aligned}
\mathbb{R}^{3} \times \mathbb{R}^{3} & \rightarrow \mathbb{R}^{3} \\
(u, v) & \mapsto u \times v
\end{aligned}
$$

is an alternating, multilinear mapping. Hence, it factors through a unique mapping $\Lambda^{2} \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, i.e., to an element of $\operatorname{hom}\left(\Lambda^{2} \mathbb{R}^{3}, \mathbb{R}^{3}\right)$. By the previous exercise, we can identify this element with an element of $\left(\Lambda^{2} \mathbb{R}^{3}\right)^{*} \otimes \mathbb{R}^{3}$, and hence with an element of $\Lambda^{2}\left(\left(\mathbb{R}^{3}\right)^{*}\right) \otimes \mathbb{R}^{3}$. Letting e_{1}, e_{2}, e_{3} be the standard basis of \mathbb{R}^{3}, the space $\Lambda^{2}\left(\left(\mathbb{R}^{3}\right)^{*}\right) \otimes \mathbb{R}^{3}$ has a basis $\left\{\left(e_{i}^{*} \wedge e_{j}^{*}\right) \otimes e_{k}\right\}$ where $1 \leq i<j \leq 3$ and $1 \leq k \leq 3$. Identify the cross product in terms of this basis.
2. Orientation.
(a) Is the standard atlas for \mathbb{P}^{1} an orienting atlas? If not, can you fix it?
(b) Same question for \mathbb{P}^{3}.
3. Consider the differential form

$$
\eta=x d y \wedge d z-y d x \wedge d z+z d x \wedge d y \in \Omega^{2} \mathbb{R}^{3}
$$

Let $\iota: S^{2} \rightarrow \mathbb{R}^{3}$ be the standard embedding of the 2 -sphere, and let $\omega=\iota^{*} \eta \in \Omega^{2} S^{2}$. Compute $\int_{S^{2}} \omega$ by choosing charts and using the definition of integration. Check your result with Stokes' theorem.
4. Let X be a topological space, and let Y be a subset of X. The subspace topology on Y is given by the collection of sets $\{Y \cap U: U$ open in $X\}$. Thus, a set in Y is open in the subspace topology if and only if it is the intersection of an open subset of X with Y. The term "open set" can be ambiguous in this context; to be clear, you can say "open in Y " or "open in X ".

Let $Y=[-1,1]$ as a subspace of \mathbb{R}. Which of the following are open in Y, and which are open in \mathbb{R} ?
(a) $A=\left\{x: \frac{1}{2}<|x|<1\right\}$.
(b) $B=\left\{x: \frac{1}{2}<|x| \leq 1\right\}$.
(c) $C=\left\{x: \frac{1}{2} \leq|x|<1\right\}$.
(d) $D=\left\{x: \frac{1}{2} \leq|x| \leq 1\right\}$.
(e) $E=\left\{x: 0<|x|<1\right.$ and $\left.\frac{1}{x} \notin \mathbb{Z}_{>0}\right\}$.
5. Let X and Y be topological spaces. The product topology on $X \times Y$ is the topology with basis $U \times V$ where U and V are open sets in X and Y, respectively. Is it true that every open set in the product topology has the form $U \times V$ with U and V open in X and Y, respectively? Proof or counterexample.
6. A function $f: X \rightarrow Y$ between topological spaces is continuous if $f^{-1}(V)$ is open in X for each open set V in Y. The function f is open of $f(U)$ is open in Y for each open set U in X.
(a) Let X and Y be topological spaces, and consider $X \times Y$ with the product topology. Let $\pi: X \times Y \rightarrow X$ be the first projection: $\pi(x, y)=x$.
i. Show that π is continuous.
ii. Show that π is open.
(b) (Note: the following exercises would work just as well if one substituted the word "homeomorphism" for "diffeomorphism" everywhere. However, the result arose in the context of diffeomorphisms in class.) Let $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{m}$ be open sets, and let $f: X \rightarrow Y$ be a local diffeomorphism. This means that for each $x \in X$ there is an open neighborhood $U_{x} \subset X$ of x such that $f\left(U_{x}\right)$ is open and $\left.f\right|_{U_{x}}$ is a diffeomorphism onto $f\left(U_{x}\right)$.
i. Give a simple example of a local diffeomorphism which is not a diffeomorphism.
ii. Show that a local diffeomorphism is an open mapping.
7. Let V and W be vector spaces over a field k, and suppose $L: V \rightarrow W$ is a linear function. We have defined

$$
\begin{aligned}
L^{*}: \Lambda^{\ell} W^{*} & \rightarrow \Lambda^{\ell} V^{*} \\
\phi_{1} & \wedge \cdots \wedge \phi_{\ell}
\end{aligned}>\left(\phi_{1} \circ L\right) \wedge \cdots \wedge\left(\phi_{\ell} \circ L\right)
$$

Show that for all $v_{1}, \ldots, v_{\ell} \in V$,

$$
L^{*}\left(\phi_{1} \wedge \cdots \wedge \phi_{\ell}\right)\left(v_{1}, \ldots, v_{\ell}\right)=\left(\phi_{1} \wedge \ldots \phi_{\ell}\right)\left(L v_{1}, \ldots, L v_{\ell}\right) .
$$

