HW 4, due Friday, March 1

1. Computations.

(a)

$$
\begin{aligned}
f: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{4} \\
(x, y) & \mapsto\left(x^{2}, 2 x+y, y^{4}, x y\right)
\end{aligned}
$$

i. Let $\omega=y_{1} d y_{1} \wedge d y_{2}+\left(y_{1} y_{3}\right) d y_{3} \wedge d y_{4} \in \Omega^{2} \mathbb{R}^{4}$. Compute $f^{*} \omega$ and express your answer in terms of the standard basis for $\Omega^{2} \mathbb{R}^{2}$.
ii. Consider the vector field $v=y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$ on $T \mathbb{R}^{2}$. Compute $f_{*,(1,1)} v$, i.e., $d f_{(1,1)}(v)$, in terms of the standard basis for $T \mathbb{R}^{4}$.
(b) Consider the polar coordinates map

$$
\begin{aligned}
f: I:=(0,1) \times(0,2 \pi) & \rightarrow \mathbb{R}^{2} \\
(r, \theta) & \mapsto(r \cos \theta, r \sin \theta)
\end{aligned}
$$

and the "volume form", $\omega:=d x \wedge d y \in \Omega^{2} \mathbb{R}^{2}$. Compute $f^{*} \omega \in \Omega^{2} I$.
2. Suppose that ω is a 1 -form on \mathbb{P}^{1}. Let $\left(U_{x}, \phi_{x}\right)$ and $\left(U_{y}, \phi_{y}\right)$ denote the two standard charts for \mathbb{P}^{1}. So $\phi_{x}: U_{x} \xrightarrow{\sim} \mathbb{R}^{1}$ and similarly for ϕ_{y}. Say $f(a) d a$ is ω in $\left(U_{x}, \phi_{x}\right)$ coordinates and $g(b) d b$ is ω in $\left(U_{y}, \phi_{y}\right)$ coordinates. On the overlap, $U_{x} \cap U_{y}$ this gives representations for ω, so it make sense to compare them.
(a) What is $f(a) d a$ in terms of $g(b) d b$? In other words, compute the pullback ($\phi_{y} \circ$ $\left.\phi_{x}^{-1}\right)^{*}(g(b) d b)$.
(b) In light of your answer to part (a), construct a nonzero (globally defined) 1-form on \mathbb{P}^{1}.
3. Consider the 2 -sphere with its usual embedding in space, $\iota: S^{2} \rightarrow \mathbb{R}^{3}$. Let $\omega=$ $x d x+y d y+z d z \in T^{*} \mathbb{R}^{3}$. What is $\iota^{*} \omega \in T^{*} S^{2}$?
(a) Compute the pullback with respect to the charts for S^{2} given in the last homework assignment.
(b) Explain why your answer to (a) makes sense (i.e., could have been surmised without calculation).
4. Another characterization of tangent space. Let M be an n-dimensional manifold. For each $p \in M$, let ξ_{p} be the \mathbb{R}-algebra of germs of functions at p. Let $\mathfrak{m}_{p} \subset \xi_{p}$ denote the ideal of germs vanishing at p. (Recall that the value of $f \in \xi_{p}$ at p is well-defined;
so in particular, the notion of a germ being zero at p is well-defined). The purpose of this exercise is to show

$$
\left(\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}\right)^{*} \approx T_{p} M,
$$

where \mathfrak{m}_{p}^{2} is the square of the ideal \mathfrak{m}_{p}.
(a) Think of $T_{p} M$ as the space of derivations of germs and define

$$
\begin{aligned}
\alpha:\left(\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}\right)^{*} & \rightarrow T_{p} M \\
\phi & \mapsto \alpha(\phi)
\end{aligned}
$$

where

$$
\begin{aligned}
\alpha(\phi): \xi_{p} & \rightarrow \mathbb{R} \\
f & \mapsto \phi(f-f(p)) .
\end{aligned}
$$

Linearity of both α and $\alpha(\phi)$ is straightforward (check it on your own). Prove that $\alpha(\phi)$ is a derivation. Hint:

$$
f g-f(p) g(p)=(f-f(p))(g-g(p))+f(p)(g-g(p))+g(p)(f-f(p))
$$

(b) Now define

$$
\begin{aligned}
\beta: T_{p} M & \rightarrow\left(\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}\right)^{*} \\
v & \mapsto \beta(v)
\end{aligned}
$$

where

$$
\begin{aligned}
\beta(v): \mathfrak{m}_{p} / \mathfrak{m}_{p}^{2} & \rightarrow \mathbb{R} \\
f & \rightarrow v(f) .
\end{aligned}
$$

i. Show that $\beta(v)$ is well-defined.
ii. Show that α and β are inverses.
5. Let $\mathbb{R}^{(\omega)}:=\bigoplus_{i=1}^{\infty} \mathbb{R}$, the collection of all sequences of real numbers with only a finite number of nonzero terms. Let $\mathbb{R}^{\omega}:=\prod_{i=1}^{\infty} \mathbb{R}$, the collection of all sequences of real numbers.
(a) Show that $\mathbb{R}^{(\omega)}$ and \mathbb{R}^{ω} are a categorical coproduct and product, respectively, in the category of vector spaces. For instance, first consider $\mathbb{R}^{(\omega)}$. For $i=1,2 \ldots$, there are canonical injections $\ell_{i}: \mathbb{R} \rightarrow \mathbb{R}^{(\omega)}$ sending $x \in \mathbb{R}$ to the sequence whose i-th term is x and whose other terms are zeroes. Suppose X is a real vector space and you are given (linear) mappings $f_{i}: \mathbb{R} \rightarrow X$ for each i. Show there is a unique mapping g so that the following diagram commutes for each i :

The mapping g is usually denoted $\oplus_{i} f_{i}: \mathbb{R}^{(\omega)} \rightarrow X$. To show that \mathbb{R}^{ω} is the product, you need to show the "dual" result, turning all the arrows around. There are canonical projections $\pi_{i}: \mathbb{R}^{\omega} \rightarrow \mathbb{R}$ sending a sequence to its i-th term. Show that given mappings $f_{i}: X \rightarrow \mathbb{R}$ for each i, there exists a unique mapping g so that the following diagram commutes for each i :

(b) Show that $\left(\mathbb{R}^{(\omega)}\right)^{*} \approx \mathbb{R}^{\omega}$. So here is an example of a vector space V for which V^{*} is not isomorphic to its dual. [It is impossible to have a linear isomorphism between $\mathbb{R}^{(\omega)}$ and \mathbb{R}^{ω} since only one has countable dimension.] Recall that $V^{*} \approx V$ whenever V is finite-dimensional.

