
HW 4, due Friday, March 1 Math 411

1. Computations.

(a)

f : R2 → R4

(x, y) 7→ (x2, 2x+ y, y4, xy)

i. Let ω = y1dy1 ∧ dy2 + (y1y3)dy3 ∧ dy4 ∈ Ω2R4. Compute f ∗ω and express
your answer in terms of the standard basis for Ω2R2.

ii. Consider the vector field v = y ∂
∂x

+ x ∂
∂y

on TR2. Compute f∗,(1,1)v, i.e.,

df(1,1)(v), in terms of the standard basis for TR4.

(b) Consider the polar coordinates map

f : I := (0, 1)× (0, 2π)→ R2

(r, θ) 7→ (r cos θ, r sin θ)

and the “volume form”, ω := dx ∧ dy ∈ Ω2R2. Compute f ∗ω ∈ Ω2I.

2. Suppose that ω is a 1-form on P1. Let (Ux, φx) and (Uy, φy) denote the two standard
charts for P1. So φx : Ux

∼→ R1 and similarly for φy. Say f(a) da is ω in (Ux, φx)
coordinates and g(b) db is ω in (Uy, φy) coordinates. On the overlap, Ux ∩Uy this gives
representations for ω, so it make sense to compare them.

(a) What is f(a) da in terms of g(b) db? In other words, compute the pullback (φy ◦
φ−1x )∗(g(b) db).

(b) In light of your answer to part (a), construct a nonzero (globally defined) 1-form
on P1.

3. Consider the 2-sphere with its usual embedding in space, ι : S2 → R3. Let ω =
x dx+ y dy + z dz ∈ T ∗R3. What is ι∗ω ∈ T ∗S2?

(a) Compute the pullback with respect to the charts for S2 given in the last homework
assignment.

(b) Explain why your answer to (a) makes sense (i.e., could have been surmised
without calculation).

4. Another characterization of tangent space. Let M be an n-dimensional manifold.
For each p ∈M , let ξp be the R-algebra of germs of functions at p. Let mp ⊂ ξp denote
the ideal of germs vanishing at p. (Recall that the value of f ∈ ξp at p is well-defined;
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so in particular, the notion of a germ being zero at p is well-defined). The purpose of
this exercise is to show (

mp/m
2
p

)∗ ≈ TpM,

where m2
p is the square of the ideal mp.

(a) Think of TpM as the space of derivations of germs and define

α : (mp/m
2
p)
∗ → TpM

φ 7→ α(φ)

where

α(φ) : ξp → R
f 7→ φ(f − f(p)).

Linearity of both α and α(φ) is straightforward (check it on your own). Prove
that α(φ) is a derivation. Hint:

fg − f(p)g(p) = (f − f(p))(g − g(p)) + f(p)(g − g(p)) + g(p)(f − f(p)).

(b) Now define

β : TpM → (mp/m
2
p)
∗

v 7→ β(v)

where

β(v) : mp/m
2
p → R
f → v(f).

i. Show that β(v) is well-defined.

ii. Show that α and β are inverses.

5. Let R(ω) :=
⊕∞

i=1R, the collection of all sequences of real numbers with only a finite
number of nonzero terms. Let Rω :=

∏∞
i=1R, the collection of all sequences of real

numbers.

(a) Show that R(ω) and Rω are a categorical coproduct and product, respectively, in
the category of vector spaces. For instance, first consider R(ω). For i = 1, 2 . . . ,
there are canonical injections `i : R→ R(ω) sending x ∈ R to the sequence whose
i-th term is x and whose other terms are zeroes. Suppose X is a real vector space
and you are given (linear) mappings fi : R→ X for each i. Show there is a unique
mapping g so that the following diagram commutes for each i:
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X R(ω)

R

∃!g

fi
`i

The mapping g is usually denoted ⊕ifi : R(ω) → X. To show that Rω is the
product, you need to show the “dual” result, turning all the arrows around. There
are canonical projections πi : Rω → R sending a sequence to its i-th term. Show
that given mappings fi : X → R for each i, there exists a unique mapping g so
that the following diagram commutes for each i:

X Rω

R

∃!g

fi
πi

(b) Show that (R(ω))∗ ≈ Rω. So here is an example of a vector space V for which
V ∗ is not isomorphic to its dual. [It is impossible to have a linear isomorphism
between R(ω) and Rω since only one has countable dimension.] Recall that V ∗ ≈ V
whenever V is finite-dimensional.
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