HW 3, due Friday, February 22

- 1. (a) Let X and Y be sets. What are $X \times Y$ and $X \oplus Y$? Show they satisfy the appropriate universal properties.
 - (b) Let X and Y be objects in any category. If A and B are both products of X and Y, use the universal property of products to show that A and B are isomorphic.
- 2. Let V be a vector space over a field K, and let v_1, \ldots, v_n be a basis for V. For $i = 1, \ldots, n$, define mappings $v_i^* \colon V \to K$ by requiring $v_i^*(v_j) = \delta(i, j)$ and extending linearly. Show that v_1^*, \ldots, v_n^* is a basis for $V^* = \hom(V, K)$.
- 3. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear function. The function L is represented by the matrix A whose *j*-th column is $L(e_j)$, the image of the *j*-th standard basis vector. Choosing the basis dual to the standard basis, show that the matrix representing $L^*: (\mathbb{R}^m)^* \to (\mathbb{R}^n)^*$ is A^t , the transpose of A.
- 4. The *n*-sphere is the set $S^n = \{x \in \mathbb{R}^{n+1} \mid |x| = 1\}$. It has a topology induced by \mathbb{R}^{n+1} , i.e., a set is open in S^n iff it is the intersection of an open set of \mathbb{R}^{n+1} with S^n . Each point in S^n has some non-zero coordinate. For $i = 1, \ldots, n+1$, define $U_i^+ = \{x \in S^n : x_i > 0\}$ and $U_i^- = \{x \in S^n : x_i < 0\}$. Define $\pi_i(x_1, \ldots, x_{n+1}) = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1})$. Then the collection of charts (U_i^+, π_i) and (U_i^-, π_i) for $i = 1, \ldots, n+1$ serves as an atlas for S^n .
 - (a) Show that the charts constructed in this way are differentially compatible.
 - (b) Consider the function $f(x) = \sum_{i=1}^{n+1} x_i^4$ defined on S^n . Let $p \in S^n$ with $p_1 > 0$. With respect to the chart (U_1^+, π_1) , take the local coordinates to be x_2, \ldots, x_{n+1} , as seems natural in this case. Let

$$v := a \left(\frac{\partial}{\partial x_2}\right)_p + b \left(\frac{\partial}{\partial x_3}\right)_p$$

be a tangent vector at p. Calculate v(f). In other words, think of v as a derivation and apply it to f.

5. Let $V = W = \mathbb{R}^3$ and let $L: V \to W$ be a linear mapping with matrix $A = (a_{ij})$ relative to the standard bases bases v_1, v_2, v_3 for V and w_1, w_2, w_3 for W. Of course, $v_i = w_i = e_i$ for all i, but it is useful to have separate notation. Let

$$\omega = w_1^* \wedge w_3^* \in \Lambda^2 W^*$$

(a) Corresponding to ω is a bilinear, alternating form $\tilde{\omega} \in \text{Alt}^2 W$:

$$\tilde{\omega} \colon W \times W \to \mathbb{R}.$$

Describe $\tilde{\omega}$ by calculating the images of (w_i, w_j) for $1 \le i < j \le 3$.

- (b) Find α, β, γ as functions of the entries of A so that $L^*\omega = \alpha v_1^* \wedge v_2^* + \beta v_1^* \wedge v_3^* + \gamma v_2^* \wedge v_3^*$. Do this by computing $(L^*\omega)(v_i \wedge v_j)$ for each i < j.
- (c) The mapping L is given by

$$L(x, y, z) = (a_{11}x + a_{12}y + a_{13}z, a_{21}x + a_{22}y + a_{23}z, a_{31}x + a_{32}y + a_{33}z).$$

Calculate

$$(a_{11}v_1^* + a_{12}v_2^* + a_{13}v_3^*) \wedge (a_{31}v_1^* + a_{32}v_2^* + a_{33}v_3^*)$$

and compare with your answer to the previous problem.