HW 3, due Friday, February 22

1. (a) Let X and Y be sets. What are $X \times Y$ and $X \oplus Y$? Show they satisfy the appropriate universal properties.
(b) Let X and Y be objects in any category. If A and B are both products of X and Y, use the universal property of products to show that A and B are isomorphic.
SOLUTION:

2. Let V be a vector space over a field K, and let v_{1}, \ldots, v_{n} be a basis for V. For $i=1, \ldots, n$, define mappings $v_{i}^{*}: V \rightarrow K$ by requiring $v_{i}^{*}\left(v_{j}\right)=\delta(i, j)$ and extending linearly. Show that $v_{1}^{*}, \ldots, v_{n}^{*}$ is a basis for $V^{*}=\operatorname{hom}(V, K)$.
SOLUTION:
3. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear function. The function L is represented by the matrix A whose j-th column is $L\left(e_{j}\right)$, the image of the j-th standard basis vector. Choosing the basis dual to the standard basis, show that the matrix representing $L^{*}:\left(\mathbb{R}^{m}\right)^{*} \rightarrow\left(\mathbb{R}^{n}\right)^{*}$ is A^{t}, the transpose of A.
SOLUTION:
4. The n-sphere is the set $S^{n}=\left\{x \in \mathbb{R}^{n+1}| | x \mid=1\right\}$. It has a topology induced by \mathbb{R}^{n+1}, i.e., a set is open in S^{n} iff it is the intersection of an open set of \mathbb{R}^{n+1} with S^{n}. Each point in S^{n} has some non-zero coordinate. For $i=1, \ldots, n+1$, define $U_{i}^{+}=\left\{x \in S^{n}: x_{i}>0\right\}$ and $U_{i}^{-}=\left\{x \in S^{n}: x_{i}<0\right\}$. Define $\pi_{i}\left(x_{1}, \ldots, x_{n+1}\right)=$ $\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}\right)$. Then the collection of charts $\left(U_{i}^{+}, \pi_{i}\right)$ and $\left(U_{i}^{-}, \pi_{i}\right)$ for $i=1, \ldots, n+1$ serves as an atlas for S^{n}.
(a) Show that the charts constructed in this way are differentially compatible.
(b) Consider the function $f(x)=\sum_{i=1}^{n+1} x_{i}^{4}$ defined on S^{n}. Let $p \in S^{n}$ with $p_{1}>0$. With respect to the chart $\left(U_{1}^{+}, \pi_{1}\right)$, take the local coordinates to be x_{2}, \ldots, x_{n+1}, as seems natural in this case. Let

$$
v:=a\left(\frac{\partial}{\partial x_{2}}\right)_{p}+b\left(\frac{\partial}{\partial x_{3}}\right)_{p}
$$

be a tangent vector at p. Calculate $v(f)$. In other words, think of v as a derivation and apply it to f.

SOLUTION:

5. Let $V=W=\mathbb{R}^{3}$ and let $L: V \rightarrow W$ be a linear mapping with matrix $A=\left(a_{i j}\right)$ relative to the standard bases bases v_{1}, v_{2}, v_{3} for V and w_{1}, w_{2}, w_{3} for W. Of course, $v_{i}=w_{i}=e_{i}$ for all i, but it is useful to have separate notation. Let

$$
\omega=w_{1}^{*} \wedge w_{3}^{*} \in \Lambda^{2} W^{*}
$$

(a) Corresponding to ω is a bilinear, alternating form $\tilde{\omega} \in \operatorname{Alt}^{2} W$:

$$
\tilde{\omega}: W \times W \rightarrow \mathbb{R}
$$

Describe $\tilde{\omega}$ by calculating the images of $\left(w_{i}, w_{j}\right)$ for $1 \leq i<j \leq 3$.
(b) Find α, β, γ as functions of the entries of A so that $L^{*} \omega=\alpha v_{1}^{*} \wedge v_{2}^{*}+\beta v_{1}^{*} \wedge v_{3}^{*}+$ $\gamma v_{2}^{*} \wedge v_{3}^{*}$. Do this by computing $\left(L^{*} \omega\right)\left(v_{i} \wedge v_{j}\right)$ for each $i<j$.
(c) The mapping L is given by

$$
L(x, y, z)=\left(a_{11} x+a_{12} y+a_{13} z, a_{21} x+a_{22} y+a_{23} z, a_{31} x+a_{32} y+a_{33} z\right)
$$

Calculate

$$
\left(a_{11} v_{1}^{*}+a_{12} v_{2}^{*}+a_{13} v_{3}^{*}\right) \wedge\left(a_{31} v_{1}^{*}+a_{32} v_{2}^{*}+a_{33} v_{3}^{*}\right)
$$

and compare with your answer to the previous problem.

SOLUTION:

