1. Show that the composition

$$
T_{p}^{\text {phys }} M \rightarrow T_{p}^{\text {geom }} M \rightarrow T_{p}^{\text {alg }} M \rightarrow T_{p}^{\text {phys }} M
$$

is the identity.
2. Consider the projective plane \mathbb{P}^{2} with homogeneous coordinates (x, y, z), and let $p=$ $(1,1,1) \in \mathbb{P}^{2}$. Define

$$
f(x, y, z)=\frac{x}{y}
$$

(a) Show that f is a well-defined function in a neighborhood of the point p.
(b) Consider the curve in $\alpha(t)=\left(1+t, 1+t^{2}, 1+t^{3}\right) \in \mathbb{P}^{2}$ for t in a small open interval about 0 . The curve α determines a derivation, v_{α}, of germs at p. What is $v_{\alpha}(f)$?
(c) Consider the standard chart $\left(U_{x}, \phi_{x}\right)$ at p, i.e., $U_{x}=\left\{(x, y, z) \in \mathbb{P}^{2} \mid x \neq 0\right\}$ with $\phi_{x}(x, y, z)=(y / x, z / x)$. Let (u, v) denote the coordinates on \mathbb{R}^{2} here. Fixing this chart gives a basis for $T_{p} \mathbb{P}^{2}$ of the form

$$
\left(\frac{\partial}{\partial u}\right)_{p},\left(\frac{\partial}{\partial v}\right)_{p} .
$$

What is the tangent vector determined by α in terms of these coordinates?
(d) Repeat the previous exercise, (2c), with respect to the chart $\left(U_{y}, \phi_{y}\right)$.
(e) Show that your solution to (2c) is sent to your solution to (2d) by the derivative of the change of basis mapping $\phi_{y} \circ \phi_{x}^{-1}$.
3. [See exercise 2.3 in our text.] Consider the manifold $M=(0, \infty) \subset \mathbb{R}$. Let $f: M \rightarrow \mathbb{R}$ be a differentiable mapping, and let $p \in M$. Let $\mathcal{D}_{p}(M)$ be the collection of charts at p. The gradient relative to each chart gives a mapping

$$
\begin{aligned}
\mathcal{D}_{p}(M) & \rightarrow \mathbb{R} \\
(U, h) & \mapsto \nabla\left(f \circ h^{-1}\right)(h(p))=\frac{d}{d x}\left(f \circ h^{-1}\right)(h(p)) .
\end{aligned}
$$

Show that this mapping does not, in general, give a tangent vector in $T_{p}^{\text {phys }} M$. [Explicitly choose a point p, two charts at p, and a function f to illustrate your point.]
4. Is the cross-product mapping

$$
\begin{aligned}
\omega: \mathbb{R}^{3} \times \mathbb{R}^{3} & \rightarrow \mathbb{R}^{3} \\
(u, v) & \mapsto u \times v
\end{aligned}
$$

multilinear and alternating? Explain.

