1. Prove the first clause of Prop. 1.7 in the topology handout.
2. Prove Prop. 1.9 in the topology handout.
3. Give the simplest example of a topological space that is not Hausdorff.
4. Let X and Y be disjoint copies of \mathbb{R} with the usual topology. For $x \in X$ and $y \in Y$, say $x \sim y$ if $x=y \neq 0$ as real numbers. Define $L=(X \cup Y) / \sim$ as a topological space with the quotient topology. In other words, if

$$
\begin{aligned}
\pi: X \cup Y & \rightarrow L \\
a & \mapsto[a],
\end{aligned}
$$

where $[a]=\{b \in X \cup Y: a \sim b\}$, then a subset $U \subseteq L$ is open if and only if $\pi^{-1}(U)$ is open in $X \cup Y$ (which means $\pi^{-1}(U) \cap X$ and $\pi^{-1}(U) \cap Y$ are open a subsets of the real numbers). Thus, L is essentially the real number line with two origins, 0_{X} from X and 0_{Y} from Y. Show that L is locally Euclidean but not Hausdorff.
5. Recall that \mathbb{P}^{2} is the set of one-dimensional vector subspaces of \mathbb{R}^{3} and a line in \mathbb{P}^{2} is a two-dimensional subspace. Prove that two points in \mathbb{P}^{2} determine a unique line and conversely, two lines determine a unique point.
6. Consider \mathbb{P}^{n} with its standard atlas. Calculate the transition function from U_{0} to U_{1}, i.e., $\phi_{1} \circ \phi_{0}^{-1}$.
7. Suppose M is a manifold, let $f: M \rightarrow \mathbb{R}$, and let (U, h) and (V, k) be two charts about $p \in M$. Show that if f is differentiable at p relative to a chart (U, h), then f is differentiable at p relative to (V, k).
8. Let V be an n-dimensional vector space over \mathbb{R}. A choice of ordered basis \mathbb{B}, for V gives a linear isomorphism

$$
h_{\mathbb{B}}: V \rightarrow \mathbb{R}^{n} .
$$

Give V a topology by declaring a set open in V iff its image under $h_{\mathbb{B}}$ is open in \mathbb{R}^{n}. Then $\left(V, h_{\mathbb{B}}\right)$ is a chart at each point in V, hence, $\mathfrak{A}:=\left\{\left(V, h_{\mathbb{B}}\right)\right\}$ is an atlas. The maximal atlas containing \mathfrak{A} determines a differentiable structure on V and makes V a manifold. Show that the choice of a different ordered basis determines the same differentiable structure. In this sense, V has a canonical manifold structure.
9. Is $(-1,1) \subset \mathbb{R}$ diffeomorphic to \mathbb{R} ? Is the open disc of radius 1 in \mathbb{R}^{2} diffeomorphic to \mathbb{R}^{2} ? You may use the internet to help answer this question if you cannot figure it out on your own.

