1. Let G = (V, E, s) be an Eulerian sandpile graph. Prove that

$$\sum_{c \in \mathcal{S}(G)} \beta_v(c) = \#\mathcal{S}(G)$$

for each $v \in V$. Hence, the average burst size at v over all recurrents is 1.

- 2. Let G be the house graph, and consider the closed Markov chain on G.
 - (a) Compute the Tutte polynomial of G.
 - (b) Compute $\lim_{\deg(D_0)\to-\infty} \mathbb{P}_{D_0}(\deg D_{\tau}=n).$
 - (c) Use Sage to simulate the closed Markov chain on G starting at $D_0 = \vec{0}$.
 - i. Run the simulation 1000 times and report the degrees of the threshold divisors.
 - ii. Do your results agree with your answer to part (b) of this problem?
 - iii. Try your simulation again starting with a D_0 with negative degree. What happens?
- 3. Table 1 lists the sorted stable states and sorted minimal threshold states for the closed Markov chain on K_4 . For a state D, let $\lambda(D)$ be the number of paths in the chain from 0000 to D. For instance $\lambda(0001) = 1$.

degree	divisor			thresh	old state
0	0000				
1	0001				
2	0011 00	002			
3	0111 00)12			
4	1111 01	12 (0022		
5	1112 01	.22			
6	1122 02	222		0123	
7	1222			1123	0223
8	2222			1223	
9				2223	

Table 1: Sorted stable and minimal threshold states for K_4 by degree.

For each D in the table, if $\deg(D) = d \ge 1$, then $\lambda(D)$ may be expressed as an integer linear combination of $\lambda(D')$ s for *stable* states D' in the table with degree d - 1. For instance, $\lambda(0011) = 2 \cdot \lambda(0001)$ and $\lambda(0002) =$ $1 \cdot \lambda(0001)$. We also have

$$\lambda(0111) = 3 \cdot \lambda(0011) + 1 \cdot \lambda(0002)$$

since 0111 may be obtained from 0011, 0101, 0110, and 2000 by adding a grain of sand and stabilizing. In class, we showed $\lambda(0112) = \lambda(0111) + 3 \cdot \lambda(0012)$. Ultimately, we would like to compute λ for each of the threshold states, from which we may compute the threshold density $\zeta_{\vec{0}}(K_4)$.

Crowd sourcing: please compute $\lambda(D)$ as a linear combination of *stable* $\lambda(D')$ s with $\deg(D') = \deg(D) - 1$ for the states D appearing next to your initials, below:

MB: 1111, 0112, 2222

RT: 0022, 1112, 0223
NT: 0122, 1122, 1123
AS: 0222, 0123, 2223
AL: 1112, 1123, 0122
EM: 0223, 2222, 1122
DM: 1223, 2223, 0123
DT: 0112, 0022, 0222