Problems for Chapter 1

1.1. Generalize the argument in Example 1.17 to show that if $D = 2v_1 + v_2 - 2v_3$ on the triangle graph C_3 , then

$$[D] = \{ (1+3k+m) v_1 - (3k+2m) v_2 + m v_3 : k, m \in \mathbb{Z} \}.$$

1.2. Let C_n denote the cycle graph with vertices v_0, \ldots, v_{n-1} arranged counter-clockwise in a circle. Define divisors $D_0 = 0$ and $D_i = v_i - v_0$ for $i = 1, \ldots, n-1$.

- (a) Directly from set-lendings, show by induction that $k[D_1] = [D_k]$ for k = 0, 1, ..., n 1 and that $n[D_1] = 0$. Thus, if we take indices modulo n, we have $k[D_1] = [D_k]$ for all $k \in \mathbb{Z}$.
- (b) Consider the homomorphism $\psi \colon \mathbb{Z}_n \to \operatorname{Jac}(C_n)$ given by $k \mapsto k [D_1]$ (which is well-defined by part (a). Show that $\operatorname{Jac}(C_n)$ is isomorphic to \mathbb{Z}_n by exhibiting the inverse.
- (c) Find, without proof, the complete linear system of the divisor $D = -2v_0 + v_1 + 2v_2 + v_3$ on C_4 .

1.3. Let P_n be the *path graph* on *n* vertices consisting of n-1 edges connected to form a line as in Figure 5.

Figure 5. The path graph of length n.

- (a) Given a divisor $D = \sum_{i=1}^{n} a_i v_i \in \text{Pic}(P_n)$, describe a sequence of set-lendings (and borrowings) which show $D \sim \deg(D) v_n$.
- (b) Prove $\operatorname{Pic}(P_n) \simeq \mathbb{Z}$.
- (c) For more of challenge, show that the Picard group of every tree is isomorphic to \mathbb{Z} .

1.4. Prove Proposition 1.19.