Math 372 Homework 2

Note: Exercise numbers refer to the 2013 edition of our text.

Chapter 3, exercise 6. Show that if u and v are two vertices of a connected graph G, then we need not have H(u, v) = H(v, u), where H denotes access (hitting) time. What if G is also assumed to be regular?

Chapter 3, exercise 7. Let u and v be distinct vertices of the complete graph K_n . Show that H(u, v) = n - 1.

Chapter 4, exercise 1. Draw Hasse diagrams of the 16 nonisomorphic fourelement posets. For a more interesting challenge, draw also the 63 five-element posets. Those with lots of time to kill, draw the 318 six-element posets, 2045 seven-element posets, the 16999 eight-element posets, up to 4483130665195087 sixteen-element posets.

Chapter 4, exercise 2a. Let P be a finite poset and $f: P \to P$ an orderpreserving bijection. I.e., f is a bijection (one-to-one and onto), and if $x \leq y$ in P then $f(x) \leq f(y)$. Show that f is an automorphism of P, i.e., f^{-1} is orderpreserving. (Try to use simple algebraic reasoning, though it's not necessary to do so.)

Chapter 4, exercise 4abc. Let q be a prime power, and let F_q denote the finite field with q elements. Let $V := V_n(q) := F_q^n$, the *n*-dimensional vector space over F_q of *n*-tuples of elements of F_q . Let $B_n(q)$ denote the poset of all subspaces of V, ordered by inclusion. It's easy to see that $B_n(q)$ is graded of rank n, the rank of a subspace of V being its dimension.

- (a) Draw the Hasse diagram of $B_3(2)$. (It has 16 elements.)
- (b) Show that the number of elements of $B_n(q)$ of rank k is given by the q-binomial coefficient

$$\binom{\mathbf{n}}{\mathbf{k}} = \frac{(q^n - 1)(q^{n-1} - 1)\cdots(q^{n-k+1} - 1)}{(q^k - 1)(q^{k-1} - 1)\cdots(q - 1)}.$$

(c) Show that $B_n(q)$ is rank-symmetric.