Math 342: Topology

January 25, 2023

Today

- ▶ Bases
- **▶** Examples
- ▶ Subbases

Bases

Recall definitions:

A basis for a topology on a set X is a collection $\mathcal B$ of subsets of X satisfying

1. For each $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$, i.e., the basis elements *cover* X:

$$\cup_{B\in\mathcal{B}}B=X.$$

2. If $x \in B_1 \cap B_2$ for $B_1, B_2 \in \mathcal{B}$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

The topology generated by a basis ${\cal B}$ is

 $\mathcal{T} = \{ U \subseteq X : \text{for all } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \subseteq U \}$ $= \{ U \subseteq X : U \text{ is a union of elements of } B \},$

Bases

Lemma. Suppose that X is a topological space and \mathcal{C} is a collection of open sets in X. Suppose that for each open set U in X and for each $x \in U$, there exists $C \in \mathcal{C}$ such that $x \in C \subseteq U$. Then \mathcal{C} is a basis for the topology on X.

Proof. We need to prove that C is basis and that the topology it generates is the given topology on X. We first check the two properties in the definition of a basis.

- ▶ Why does C cover X?
- ▶ Next, suppose $x \in C_1 \cap C_2$ for some $C_1, C_2 \in C$. Why does there exists $C_3 \in C$ such that $x \in C_3 \subseteq C_1 \cap C_2$.

Now let \mathcal{T} be the original topology on X, and let \mathcal{T}' be the topology generated by \mathcal{C} . How do we show $\mathcal{T} = \mathcal{T}'$?

Fineness and coarseness

Definition. Let \mathcal{T} and \mathcal{T}' be topologies on a set X. If $\mathcal{T}'\supseteq\mathcal{T}$, then \mathcal{T}' is *finer* than \mathcal{T} and \mathcal{T} is *coarser* than \mathcal{T}' .

Lemma. Let \mathcal{B} and \mathcal{B}' be bases for the topologies \mathcal{T} and \mathcal{T}' , respectively, on X. The following are equivalent:

- 1. \mathcal{T}' is finer than \mathcal{T} .
- 2. For each $x \in X$ and each $B \in \mathcal{B}$ with $x \in B$, there exists $B' \in \mathcal{B}'$ with $x \in B' \subseteq B$.

Proof. To appear after some examples.

Bases for standard topology on \mathbb{R}^n

Bases for topologies on \mathbb{R}^n :

 \triangleright $\mathcal{B} =$ collection of open balls:

$$B(r,x) = \{ y \in \mathbb{R}^n : |x-y| < r \}.$$

 \triangleright $\mathcal{B}' =$ collection of open rectangles:

$$(a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n).$$

Exercise: check these are bases.

Claim: the topologies generated by these bases are the same. Check by using the Lemma.

Lower limit topologies

Let $\mathcal B$ the collection of intervals of $\mathbb R$ of the form [a,b) where a < b.

Claim: \mathcal{B} is a basis.

Definition. The topology generated by \mathcal{B} is called the *lower limit topology* on \mathbb{R} .

Claim: The lower limit topology is strictly finer than the standard topology on \mathbb{R} . Check using the lemma.

For instance, why is (0,1) open in the lower limit topology?

Answer: $(0,1) = \bigcup_{a>0} [a,1)$, and $\bigcup_{a>0} [a,1)$ is a union of basis elements for the lower limit topology.

Fineness and coarseness

Lemma. Let \mathcal{B} and \mathcal{B}' be bases for the topologies \mathcal{T} and \mathcal{T}' , respectively, on X. The following are equivalent:

- 1. \mathcal{T}' is finer than \mathcal{T} (i.e., $\mathcal{T}' \supseteq \mathcal{T}$).
- 2. For each $x \in X$ and each $B \in \mathcal{B}$ with $x \in B$, there exists $B' \in \mathcal{B}'$ with $x \in B' \subseteq B$.

Proof. $(1 \Rightarrow 2)$ Let $x \in B \in \mathcal{B}$. Then $B \in \mathcal{T} \subseteq \mathcal{T}'$. Since $x \in B \in \mathcal{T}'$, by definition of \mathcal{T}' , there exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

 $(2 \Rightarrow 1)$ Let $U \in \mathcal{T}$. By definition of \mathcal{T} , for each $x \in U$, there exists $B_x \in \mathcal{B}$ such that $x \in B_x \in \mathcal{B}$. By 2, there exists $B_x' \in \mathcal{B}'$ such that $x \in B_x' \subseteq B_x$. Then $U = \bigcup_{x \in U} B_x' \in \mathcal{T}'$.

Subbases

Definition. A subbasis S for a topology on a set X is a collection of subsets of X that cover X. The topology generated by S is the set of arbitrary unions of finite intersections of elements of S.

Claim: The topology generated by a subbasis $\mathcal S$ is a topology.

Proof. Let $\mathcal{B} = \{ \text{all finite intersections of elements of } \mathcal{S} \}$. To prove the claim, it suffices to show that \mathcal{B} is a basis. Why does it cover X? Next, given $x \in B_1 \cap B_2$ with $B_1, B_2 \in \mathcal{B}$, why does there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$. (Answer: let $B_3 = B_1 \cap B_2$. Then $B_3 \in \mathcal{B}$?)