Math 342: Topology

January 23, 2023

Today

- ▶ Definition of a topological space.
- ▶ Basis for a topology.

Definition. Let X be a set. A *topology* on X is a collection \mathcal{T} of subsets of X satisfying:

1. \emptyset and X are in \mathcal{T} .

- 1. \emptyset and X are in \mathcal{T} .
- 2. \mathcal{T} is closed under arbitrary unions:

- 1. \emptyset and X are in \mathcal{T} .
- 2. \mathcal{T} is closed under arbitrary unions: if $\{U_{\alpha}\}_{{\alpha}\in I}$ is a collection of elements of \mathcal{T} , then $\cup_{{\alpha}\in I}U_{\alpha}$ is in \mathcal{T} .

- 1. \emptyset and X are in \mathcal{T} .
- 2. \mathcal{T} is closed under arbitrary unions: if $\{U_{\alpha}\}_{{\alpha}\in I}$ is a collection of elements of \mathcal{T} , then $\cup_{{\alpha}\in I}U_{\alpha}$ is in \mathcal{T} .
- 3. \mathcal{T} is closed under finite intersections:

- 1. \emptyset and X are in \mathcal{T} .
- 2. \mathcal{T} is closed under arbitrary unions: if $\{U_{\alpha}\}_{{\alpha}\in I}$ is a collection of elements of \mathcal{T} , then $\bigcup_{{\alpha}\in I}U_{\alpha}$ is in \mathcal{T} .
- 3. \mathcal{T} is closed under finite intersections: if $\{U_1, \ldots, U_n\}$ is a finite collection of elements of \mathcal{T} , then $\bigcap_{i=1}^n U_i$ is in \mathcal{T} .

Definition. Let X be a set. A *topology* on X is a collection \mathcal{T} of subsets of X satisfying:

- 1. \emptyset and X are in \mathcal{T} .
- 2. \mathcal{T} is closed under arbitrary unions: if $\{U_{\alpha}\}_{{\alpha}\in I}$ is a collection of elements of \mathcal{T} , then $\bigcup_{{\alpha}\in I}U_{\alpha}$ is in \mathcal{T} .
- 3. \mathcal{T} is closed under finite intersections: if $\{U_1, \ldots, U_n\}$ is a finite collection of elements of \mathcal{T} , then $\bigcap_{i=1}^n U_i$ is in \mathcal{T} .

The pair (X, \mathcal{T}) is called a *topological space*.

Definition. Let X be a set. A *topology* on X is a collection \mathcal{T} of subsets of X satisfying:

- 1. \emptyset and X are in \mathcal{T} .
- 2. \mathcal{T} is closed under arbitrary unions: if $\{U_{\alpha}\}_{{\alpha}\in I}$ is a collection of elements of \mathcal{T} , then $\bigcup_{{\alpha}\in I}U_{\alpha}$ is in \mathcal{T} .
- 3. \mathcal{T} is closed under finite intersections: if $\{U_1, \ldots, U_n\}$ is a finite collection of elements of \mathcal{T} , then $\bigcap_{i=1}^n U_i$ is in \mathcal{T} .

The pair (X, \mathcal{T}) is called a *topological space*.

A subset $U \subseteq X$ is open if $U \in \mathcal{T}$.

Definition. Let X be a set. A *topology* on X is a collection \mathcal{T} of subsets of X satisfying:

- 1. \emptyset and X are in \mathcal{T} .
- 2. \mathcal{T} is closed under arbitrary unions: if $\{U_{\alpha}\}_{{\alpha}\in I}$ is a collection of elements of \mathcal{T} , then $\bigcup_{{\alpha}\in I}U_{\alpha}$ is in \mathcal{T} .
- 3. \mathcal{T} is closed under finite intersections: if $\{U_1, \ldots, U_n\}$ is a finite collection of elements of \mathcal{T} , then $\bigcap_{i=1}^n U_i$ is in \mathcal{T} .

The pair (X, \mathcal{T}) is called a *topological space*.

A subset $U \subseteq X$ is open if $U \in \mathcal{T}$.

A subset $C \subseteq X$ is *closed* if $X \setminus C$ (complement) is open.

The standard topology on $\mathbb R$

The standard topology on $\mathbb R$ is given by declaring a subset U of $\mathbb R$ to be open if for all $x \in U$, there exists $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq U$.

The standard topology on $\mathbb R$

The standard topology on $\mathbb R$ is given by declaring a subset U of $\mathbb R$ to be open if for all $x \in U$, there exists $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq U$.

Equivalently (exercise), we can declare a subset open if it is a union of open intervals.

Let $X = \{1, 2, 3\}.$

Let
$$X = \{1, 2, 3\}$$
.

Are the following are topologies on X?

Let
$$X = \{1, 2, 3\}$$
.

Are the following are topologies on X?

 $\blacktriangleright \ \mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{1, 2, 3\}\}.$

Let
$$X = \{1, 2, 3\}$$
.

Are the following are topologies on X?

 $\blacktriangleright \ \mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{1, 2, 3\}\}.$

Solution. No. For instance, $\{1\}$ and $\{2\}$ are in \mathcal{T} , but $\{1\} \cup \{2\} = \{1,2\}$ is not. So this \mathcal{T} is not closed under unions.

Let $X = \{1, 2, 3\}$.

Are the following are topologies on X?

- $\blacktriangleright \ \mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{1, 2, 3\}\}.$
 - Solution. No. For instance, $\{1\}$ and $\{2\}$ are in \mathcal{T} , but $\{1\} \cup \{2\} = \{1,2\}$ is not. So this \mathcal{T} is not closed under unions.

Let
$$X = \{1, 2, 3\}$$
.

Are the following are topologies on X?

- $\blacktriangleright \ \mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{1, 2, 3\}\}.$
 - Solution. No. For instance, $\{1\}$ and $\{2\}$ are in \mathcal{T} , but $\{1\} \cup \{2\} = \{1,2\}$ is not. So this \mathcal{T} is not closed under unions.
- $\mathcal{T} = \{\emptyset, \{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}.$ Solution. Yes. (Check the axioms.)

Definition. Let X be a set.

Definition. Let X be a set.

The discrete topology on X is $\mathcal{T} = 2^X$, the set of all subsets of X. (It is the finest topology).

Definition. Let *X* be a set.

The discrete topology on X is $\mathcal{T}=2^X$, the set of all subsets of X. (It is the finest topology).

The *trivial* topology on X is $\mathcal{T} = \{\emptyset, X\}$. (It is the *coarsest topology*.)

Definition. Let *X* be a set.

The discrete topology on X is $\mathcal{T} = 2^X$, the set of all subsets of X. (It is the finest topology).

The *trivial* topology on X is $\mathcal{T} = \{\emptyset, X\}$. (It is the *coarsest topology*.)

Remark. A given set can have several different topologies.

Let (X, \mathcal{T}) be a topological space.

Let (X, \mathcal{T}) be a topological space.

True of False:

1. A subset of X may be both open and closed.

Let (X, \mathcal{T}) be a topological space.

True of False:

1. A subset of X may be both open and closed.

Solution. True. For instance, \emptyset and X are each both open and closed.

Let (X, \mathcal{T}) be a topological space.

True of False:

1. A subset of X may be both open and closed.

Solution. True. For instance, \emptyset and X are each both open and closed. For another instance, every subset is both open and closed in the discrete topology on X.

Let (X, \mathcal{T}) be a topological space.

True of False:

- 1. A subset of X may be both open and closed.
 - Solution. True. For instance, \emptyset and X are each both open and closed. For another instance, every subset is both open and closed in the discrete topology on X.
- 2. If a subset of X is not open, then it's closed.

Let (X, \mathcal{T}) be a topological space.

True of False:

- 1. A subset of X may be both open and closed.
 - Solution. True. For instance, \emptyset and X are each both open and closed. For another instance, every subset is both open and closed in the discrete topology on X.
- 2. If a subset of X is not open, then it's closed.
 - *Solution.* False. For instance, the interval [0,1) is neither open nor closed in the standard topology for \mathbb{R} .

Definition. A *basis* for a topology on a set X is a collection $\mathcal B$ of subsets of X satisfying

Definition. A *basis* for a topology on a set X is a collection $\mathcal B$ of subsets of X satisfying

1. For each $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$,

Definition. A *basis* for a topology on a set X is a collection $\mathcal B$ of subsets of X satisfying

1. For each $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$, i.e., the basis elements *cover* X:

$$\cup_{B\in\mathcal{B}}B=X.$$

Definition. A basis for a topology on a set X is a collection $\mathcal B$ of subsets of X satisfying

1. For each $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$, i.e., the basis elements *cover* X:

$$\cup_{B\in\mathcal{B}}B=X.$$

2. If $x \in B_1 \cap B_2$ for $B_1, B_2 \in \mathcal{B}$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

The topology generated by a basis $\mathcal B$ is

$$\mathcal{T} = \{U \subseteq X : \text{for all } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \subseteq U\}.$$

The topology generated by a basis ${\cal B}$ is

$$\mathcal{T} = \{U \subseteq X : \text{for all } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \subseteq U\}.$$

$$\mathcal{T}' = \{ U \subseteq X : U \text{ is a union of elements of } \mathcal{B} \},$$

i.e.,
$$\mathcal{T} = \mathcal{T}'$$
.

The topology generated by a basis ${\cal B}$ is

$$\mathcal{T} = \{U \subseteq X : \text{for all } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \subseteq U\}.$$

Claim. The topology generated by $\ensuremath{\mathcal{B}}$ may be described equivalently by

$$\mathcal{T}' = \{ U \subseteq X : U \text{ is a union of elements of } \mathcal{B} \},$$

i.e.,
$$\mathcal{T} = \mathcal{T}'$$
.

Proof. Let $U \in \mathcal{T}$.

The topology generated by a basis ${\cal B}$ is

$$\mathcal{T} = \{ U \subseteq X : \text{for all } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \subseteq U \}.$$

Claim. The topology generated by $\ensuremath{\mathcal{B}}$ may be described equivalently by

$$\mathcal{T}' = \{ U \subseteq X : U \text{ is a union of elements of } \mathcal{B} \},$$

i.e.,
$$\mathcal{T} = \mathcal{T}'$$
.

Proof. Let $U \in \mathcal{T}$. For each $x \in U$, let $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq U$.

The topology generated by a basis ${\cal B}$ is

$$\mathcal{T} = \{U \subseteq X : \text{for all } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \subseteq U\}.$$

Claim. The topology generated by ${\mathcal B}$ may be described equivalently by

$$\mathcal{T}' = \{ U \subseteq X : U \text{ is a union of elements of } \mathcal{B} \},$$

i.e.,
$$\mathcal{T} = \mathcal{T}'$$
.

Proof. Let $U \in \mathcal{T}$. For each $x \in U$, let $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq U$. Then $U = \bigcup_{x \in U} B_x \in \mathcal{T}'$.

The topology generated by a basis ${\cal B}$ is

$$\mathcal{T} = \{ U \subseteq X : \text{for all } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \subseteq U \}.$$

Claim. The topology generated by $\ensuremath{\mathcal{B}}$ may be described equivalently by

$$\mathcal{T}' = \{ U \subseteq X : U \text{ is a union of elements of } \mathcal{B} \},$$

i.e.,
$$\mathcal{T} = \mathcal{T}'$$
.

Proof. Let $U \in \mathcal{T}$. For each $x \in U$, let $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq U$. Then $U = \bigcup_{x \in U} B_x \in \mathcal{T}'$. So $\mathcal{T} \subseteq \mathcal{T}'$.

The topology generated by a basis ${\cal B}$ is

$$\mathcal{T} = \{U \subseteq X : \text{for all } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \subseteq U\}.$$

Claim. The topology generated by ${\mathcal B}$ may be described equivalently by

$$\mathcal{T}' = \{ U \subseteq X : U \text{ is a union of elements of } \mathcal{B} \},$$

i.e., $\mathcal{T} = \mathcal{T}'$.

Proof. Let $U \in \mathcal{T}$. For each $x \in U$, let $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq U$. Then $U = \bigcup_{x \in U} B_x \in \mathcal{T}'$. So $\mathcal{T} \subseteq \mathcal{T}'$. Conversely, suppose that $U \in \mathcal{T}'$.

The topology generated by a basis ${\cal B}$ is

$$\mathcal{T} = \{ U \subseteq X : \text{for all } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \subseteq U \}.$$

Claim. The topology generated by ${\mathcal B}$ may be described equivalently by

$$\mathcal{T}' = \{ U \subseteq X : U \text{ is a union of elements of } \mathcal{B} \},$$

i.e., $\mathcal{T} = \mathcal{T}'$.

Proof. Let $U \in \mathcal{T}$. For each $x \in U$, let $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq U$. Then $U = \bigcup_{x \in U} B_x \in \mathcal{T}'$. So $\mathcal{T} \subseteq \mathcal{T}'$.

Conversely, suppose that $U \in \mathcal{T}'$. So $U = \bigcup_{\alpha \in I} B_{\alpha}$ with each $B_{\alpha} \in \mathcal{B}$.

The topology generated by a basis ${\cal B}$ is

$$\mathcal{T} = \{ U \subseteq X : \text{for all } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \subseteq U \}.$$

Claim. The topology generated by ${\mathcal B}$ may be described equivalently by

$$\mathcal{T}' = \{ U \subseteq X : U \text{ is a union of elements of } \mathcal{B} \},$$

i.e., $\mathcal{T} = \mathcal{T}'$.

Proof. Let $U \in \mathcal{T}$. For each $x \in U$, let $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq U$. Then $U = \bigcup_{x \in U} B_x \in \mathcal{T}'$. So $\mathcal{T} \subseteq \mathcal{T}'$.

Conversely, suppose that $U \in \mathcal{T}'$. So $U = \bigcup_{\alpha \in I} B_{\alpha}$ with each $B_{\alpha} \in \mathcal{B}$. If $x \in U$, then there exist $\alpha \in I$ such that $x \in B_{\alpha}$.

The topology generated by a basis $\mathcal B$ is

$$\mathcal{T} = \{ U \subseteq X : \text{for all } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \subseteq U \}.$$

Claim. The topology generated by ${\mathcal B}$ may be described equivalently by

$$\mathcal{T}' = \{ U \subseteq X : U \text{ is a union of elements of } \mathcal{B} \},$$

i.e., $\mathcal{T} = \mathcal{T}'$.

Proof. Let $U \in \mathcal{T}$. For each $x \in U$, let $B_x \in \mathcal{B}$ such that $x \in B_x \subseteq U$. Then $U = \bigcup_{x \in U} B_x \in \mathcal{T}'$. So $\mathcal{T} \subseteq \mathcal{T}'$.

Conversely, suppose that $U \in \mathcal{T}'$. So $U = \bigcup_{\alpha \in I} B_{\alpha}$ with each $B_{\alpha} \in \mathcal{B}$. If $x \in U$, then there exist $\alpha \in I$ such that $x \in B_{\alpha}$. Thus, $U \in \mathcal{T}$. So $\mathcal{T}' \subseteq \mathcal{T}$.

Example: \mathbb{R} . A basis for the standard topology on \mathbb{R} is given by

Example: \mathbb{R} . A basis for the standard topology on \mathbb{R} is given by the collection of open intervals.

Example: \mathbb{R} . A basis for the standard topology on \mathbb{R} is given by the collection of open intervals.

Example: \mathbb{R}^n .

Example: \mathbb{R} . A basis for the standard topology on \mathbb{R} is given by the collection of open intervals.

Example: \mathbb{R}^n . The collection of open balls in \mathbb{R}^n is a basis for the usual topology on \mathbb{R}^n .

Example: \mathbb{R} . A basis for the standard topology on \mathbb{R} is given by the collection of open intervals.

Example: \mathbb{R}^n . The collection of open balls in \mathbb{R}^n is a basis for the usual topology on \mathbb{R}^n . We will see that collection of open cubes is also a basis for the same topology.

Proposition. Let \mathcal{B} be a basis for the topology on a set X, and let \mathcal{T} be the topology generated by \mathcal{B} . Then \mathcal{T} is a topology on X.

Recall definitions:

Recall definitions:

A basis for a topology on a set X is a collection $\mathcal B$ of subsets of X satisfying

Recall definitions:

A basis for a topology on a set X is a collection $\mathcal B$ of subsets of X satisfying

1. For each $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$,

Recall definitions:

A basis for a topology on a set X is a collection $\mathcal B$ of subsets of X satisfying

1. For each $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$, i.e., the basis elements *cover* X:

$$\cup_{B\in\mathcal{B}}B=X.$$

Recall definitions:

A basis for a topology on a set X is a collection $\mathcal B$ of subsets of X satisfying

1. For each $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$, i.e., the basis elements *cover* X:

$$\cup_{B\in\mathcal{B}}B=X.$$

2. If $x \in B_1 \cap B_2$ for $B_1, B_2 \in \mathcal{B}$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Recall definitions:

A basis for a topology on a set X is a collection $\mathcal B$ of subsets of X satisfying

1. For each $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$, i.e., the basis elements *cover* X:

$$\cup_{B\in\mathcal{B}}B=X.$$

2. If $x \in B_1 \cap B_2$ for $B_1, B_2 \in \mathcal{B}$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

The topology generated by a basis ${\cal B}$ is

 $\mathcal{T} = \{ U \subseteq X : \text{for all } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \subseteq U \}$ $= \{ U \subseteq X : U \text{ is a union of elements of } \mathcal{B} \},$

Proof of the Proposition.

1. $\emptyset \in \mathcal{T}$ is satisfied vacuously.

- 1. $\emptyset \in \mathcal{T}$ is satisfied vacuously.
- 2. $X \in \mathcal{T}$ follows from

- 1. $\emptyset \in \mathcal{T}$ is satisfied vacuously.
- 2. $X \in \mathcal{T}$ follows from property 1.

- 1. $\emptyset \in \mathcal{T}$ is satisfied vacuously.
- 2. $X \in \mathcal{T}$ follows from property 1.
- 3. That \mathcal{T} is closed under unions is easily seen from our second characterization of \mathcal{T} as the collection of subsets that are unions of elements of \mathcal{B} .

- 1. $\emptyset \in \mathcal{T}$ is satisfied vacuously.
- 2. $X \in \mathcal{T}$ follows from property 1.
- 3. That \mathcal{T} is closed under unions is easily seen from our second characterization of \mathcal{T} as the collection of subsets that are unions of elements of \mathcal{B} .
- 4. By induction, to show that \mathcal{T} is closed under finite unions, it suffices to show that if U_1 and U_2 are in \mathcal{T} , then so is $U_1 \cap U_2$.

- 1. $\emptyset \in \mathcal{T}$ is satisfied vacuously.
- 2. $X \in \mathcal{T}$ follows from property 1.
- 3. That \mathcal{T} is closed under unions is easily seen from our second characterization of \mathcal{T} as the collection of subsets that are unions of elements of \mathcal{B} .
- 4. By induction, to show that \mathcal{T} is closed under finite unions, it suffices to show that if U_1 and U_2 are in \mathcal{T} , then so is $U_1 \cap U_2$. To prove this, we use the first characterization of \mathcal{T} .

- 1. $\emptyset \in \mathcal{T}$ is satisfied vacuously.
- 2. $X \in \mathcal{T}$ follows from property 1.
- 3. That \mathcal{T} is closed under unions is easily seen from our second characterization of \mathcal{T} as the collection of subsets that are unions of elements of \mathcal{B} .
- 4. By induction, to show that \mathcal{T} is closed under finite unions, it suffices to show that if U_1 and U_2 are in \mathcal{T} , then so is $U_1 \cap U_2$. To prove this, we use the first characterization of \mathcal{T} . Suppose $U_1, U_2 \in \mathcal{T}$, and let $x \in U_1 \cap U_2$.

- 1. $\emptyset \in \mathcal{T}$ is satisfied vacuously.
- 2. $X \in \mathcal{T}$ follows from property 1.
- 3. That \mathcal{T} is closed under unions is easily seen from our second characterization of \mathcal{T} as the collection of subsets that are unions of elements of \mathcal{B} .
- 4. By induction, to show that \mathcal{T} is closed under finite unions, it suffices to show that if U_1 and U_2 are in \mathcal{T} , then so is $U_1 \cap U_2$. To prove this, we use the first characterization of \mathcal{T} . Suppose $U_1, U_2 \in \mathcal{T}$, and let $x \in U_1 \cap U_2$. Then there exist B_1 and B_2 in \mathcal{T} such that $x \in B_1 \subseteq U_1$ and $x \in B_2 \subseteq U_2$.

- 1. $\emptyset \in \mathcal{T}$ is satisfied vacuously.
- 2. $X \in \mathcal{T}$ follows from property 1.
- 3. That \mathcal{T} is closed under unions is easily seen from our second characterization of \mathcal{T} as the collection of subsets that are unions of elements of \mathcal{B} .
- 4. By induction, to show that \mathcal{T} is closed under finite unions, it suffices to show that if U_1 and U_2 are in \mathcal{T} , then so is $U_1 \cap U_2$. To prove this, we use the first characterization of \mathcal{T} . Suppose $U_1, U_2 \in \mathcal{T}$, and let $x \in U_1 \cap U_2$. Then there exist B_1 and B_2 in \mathcal{T} such that $x \in B_1 \subseteq U_1$ and $x \in B_2 \subseteq U_2$. So $x \in B_1 \cap B_2$.

- 1. $\emptyset \in \mathcal{T}$ is satisfied vacuously.
- 2. $X \in \mathcal{T}$ follows from property 1.
- 3. That \mathcal{T} is closed under unions is easily seen from our second characterization of \mathcal{T} as the collection of subsets that are unions of elements of \mathcal{B} .
- 4. By induction, to show that \mathcal{T} is closed under finite unions, it suffices to show that if U_1 and U_2 are in \mathcal{T} , then so is $U_1 \cap U_2$. To prove this, we use the first characterization of \mathcal{T} . Suppose $U_1, U_2 \in \mathcal{T}$, and let $x \in U_1 \cap U_2$. Then there exist B_1 and B_2 in \mathcal{T} such that $x \in B_1 \subseteq U_1$ and $x \in B_2 \subseteq U_2$. So $x \in B_1 \cap B_2$. Using property 2 of the definition of a basis,

- 1. $\emptyset \in \mathcal{T}$ is satisfied vacuously.
- 2. $X \in \mathcal{T}$ follows from property 1.
- 3. That \mathcal{T} is closed under unions is easily seen from our second characterization of \mathcal{T} as the collection of subsets that are unions of elements of \mathcal{B} .
- 4. By induction, to show that \mathcal{T} is closed under finite unions, it suffices to show that if U_1 and U_2 are in \mathcal{T} , then so is $U_1 \cap U_2$. To prove this, we use the first characterization of \mathcal{T} . Suppose $U_1, U_2 \in \mathcal{T}$, and let $x \in U_1 \cap U_2$. Then there exist B_1 and B_2 in \mathcal{T} such that $x \in B_1 \subseteq U_1$ and $x \in B_2 \subseteq U_2$. So $x \in B_1 \cap B_2$. Using property 2 of the definition of a basis, there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2 \subseteq U_1 \cap U_2$.

- 1. $\emptyset \in \mathcal{T}$ is satisfied vacuously.
- 2. $X \in \mathcal{T}$ follows from property 1.
- 3. That \mathcal{T} is closed under unions is easily seen from our second characterization of \mathcal{T} as the collection of subsets that are unions of elements of \mathcal{B} .
- 4. By induction, to show that \mathcal{T} is closed under finite unions, it suffices to show that if U_1 and U_2 are in \mathcal{T} , then so is $U_1 \cap U_2$. To prove this, we use the first characterization of \mathcal{T} . Suppose $U_1, U_2 \in \mathcal{T}$, and let $x \in U_1 \cap U_2$. Then there exist B_1 and B_2 in \mathcal{T} such that $x \in B_1 \subseteq U_1$ and $x \in B_2 \subseteq U_2$. So $x \in B_1 \cap B_2$. Using property 2 of the definition of a basis, there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2 \subseteq U_1 \cap U_2$. Thus, $U_1 \cap U_2 \in \mathcal{T}$.