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Today

I Definition of a topological space.
I Basis for a topology.



Definition of a topological space

Definition. Let X be a set. A topology on X is a collection T of
subsets of X satisfying:

1. ∅ and X are in T .
2. T is closed under arbitrary unions: if {Uα}α∈I is a collection

of elements of T , then ∪α∈IUα is in T .
3. T is closed under finite intersections: if {U1, . . . ,Un} is a

finite collection of elements of T , then ∩n
i=1Ui is in T .

The pair (X , T ) is called a topological space.

A subset U ⊆ X is open if U ∈ T .

A subset C ⊆ X is closed if X \ C (complement) is open.



Definition of a topological space

Definition. Let X be a set. A topology on X is a collection T of
subsets of X satisfying:

1. ∅ and X are in T .

2. T is closed under arbitrary unions: if {Uα}α∈I is a collection
of elements of T , then ∪α∈IUα is in T .

3. T is closed under finite intersections: if {U1, . . . ,Un} is a
finite collection of elements of T , then ∩n

i=1Ui is in T .

The pair (X , T ) is called a topological space.

A subset U ⊆ X is open if U ∈ T .

A subset C ⊆ X is closed if X \ C (complement) is open.



Definition of a topological space

Definition. Let X be a set. A topology on X is a collection T of
subsets of X satisfying:

1. ∅ and X are in T .
2. T is closed under arbitrary unions:

if {Uα}α∈I is a collection
of elements of T , then ∪α∈IUα is in T .

3. T is closed under finite intersections: if {U1, . . . ,Un} is a
finite collection of elements of T , then ∩n

i=1Ui is in T .

The pair (X , T ) is called a topological space.

A subset U ⊆ X is open if U ∈ T .

A subset C ⊆ X is closed if X \ C (complement) is open.



Definition of a topological space

Definition. Let X be a set. A topology on X is a collection T of
subsets of X satisfying:

1. ∅ and X are in T .
2. T is closed under arbitrary unions: if {Uα}α∈I is a collection

of elements of T , then ∪α∈IUα is in T .

3. T is closed under finite intersections: if {U1, . . . ,Un} is a
finite collection of elements of T , then ∩n

i=1Ui is in T .

The pair (X , T ) is called a topological space.

A subset U ⊆ X is open if U ∈ T .

A subset C ⊆ X is closed if X \ C (complement) is open.



Definition of a topological space

Definition. Let X be a set. A topology on X is a collection T of
subsets of X satisfying:

1. ∅ and X are in T .
2. T is closed under arbitrary unions: if {Uα}α∈I is a collection

of elements of T , then ∪α∈IUα is in T .
3. T is closed under finite intersections:

if {U1, . . . ,Un} is a
finite collection of elements of T , then ∩n

i=1Ui is in T .

The pair (X , T ) is called a topological space.

A subset U ⊆ X is open if U ∈ T .

A subset C ⊆ X is closed if X \ C (complement) is open.



Definition of a topological space

Definition. Let X be a set. A topology on X is a collection T of
subsets of X satisfying:

1. ∅ and X are in T .
2. T is closed under arbitrary unions: if {Uα}α∈I is a collection

of elements of T , then ∪α∈IUα is in T .
3. T is closed under finite intersections: if {U1, . . . ,Un} is a

finite collection of elements of T , then ∩n
i=1Ui is in T .

The pair (X , T ) is called a topological space.

A subset U ⊆ X is open if U ∈ T .

A subset C ⊆ X is closed if X \ C (complement) is open.



Definition of a topological space

Definition. Let X be a set. A topology on X is a collection T of
subsets of X satisfying:

1. ∅ and X are in T .
2. T is closed under arbitrary unions: if {Uα}α∈I is a collection

of elements of T , then ∪α∈IUα is in T .
3. T is closed under finite intersections: if {U1, . . . ,Un} is a

finite collection of elements of T , then ∩n
i=1Ui is in T .

The pair (X , T ) is called a topological space.

A subset U ⊆ X is open if U ∈ T .

A subset C ⊆ X is closed if X \ C (complement) is open.



Definition of a topological space

Definition. Let X be a set. A topology on X is a collection T of
subsets of X satisfying:

1. ∅ and X are in T .
2. T is closed under arbitrary unions: if {Uα}α∈I is a collection

of elements of T , then ∪α∈IUα is in T .
3. T is closed under finite intersections: if {U1, . . . ,Un} is a

finite collection of elements of T , then ∩n
i=1Ui is in T .

The pair (X , T ) is called a topological space.

A subset U ⊆ X is open if U ∈ T .

A subset C ⊆ X is closed if X \ C (complement) is open.



Definition of a topological space

Definition. Let X be a set. A topology on X is a collection T of
subsets of X satisfying:

1. ∅ and X are in T .
2. T is closed under arbitrary unions: if {Uα}α∈I is a collection

of elements of T , then ∪α∈IUα is in T .
3. T is closed under finite intersections: if {U1, . . . ,Un} is a

finite collection of elements of T , then ∩n
i=1Ui is in T .

The pair (X , T ) is called a topological space.

A subset U ⊆ X is open if U ∈ T .

A subset C ⊆ X is closed if X \ C (complement) is open.



The standard topology on R

The standard topology on R is given by declaring a subset U of R
to be open if for all x ∈ U, there exists ε > 0 such that
(x − ε, x + ε) ⊆ U.

Equivalently (exercise), we can declare a subset open if it is a
union of open intervals.
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Examples

Let X = {1, 2, 3}.

Are the following are topologies on X?

I T = {∅, {1}, {2}, {1, 2, 3}}.

Solution. No. For instance, {1} and {2} are in T , but
{1} ∪ {2} = {1, 2} is not. So this T is not closed under
unions.

I T = {∅, {1}, {1, 2}, {1, 3}, {1, 2, 3}}.

Solution. Yes. (Check the axioms.)
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The discrete and the trivial topologies

Definition. Let X be a set.

The discrete topology on X is T = 2X , the set of all subsets of X .
(It is the finest topology).

The trivial topology on X is T = {∅,X}. (It is the coarsest
topology.)

Remark. A given set can have several different topologies.
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Examples

Let (X , T ) be a topological space.

True of False:
1. A subset of X may be both open and closed.

Solution. True. For instance, ∅ and X are each both open and
closed. For another instance, every subset is both open and
closed in the discrete topology on X .

2. If a subset of X is not open, then it’s closed.

Solution. False. For instance, the interval [0, 1) is neither
open nor closed in the standard topology for R.
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Bases

Definition. A basis for a topology on a set X is a collection B of
subsets of X satisfying

1. For each x ∈ X , there exists B ∈ B such that x ∈ B, i.e., the
basis elements cover X :

∪B∈BB = X .

2. If x ∈ B1 ∩ B2 for B1,B2 ∈ B, then there exists B3 ∈ B such
that x ∈ B3 ⊆ B1 ∩ B2.
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Bases

The topology generated by a basis B is

T = {U ⊆ X : for all x ∈ U, there exists B ∈ B such that x ∈ B ⊆ U}.

Claim. The topology generated by B may be described
equivalently by

T ′ = {U ⊆ X : U is a union of elements of B},

i.e., T = T ′.
Proof. Let U ∈ T . For each x ∈ U, let Bx ∈ B such that
x ∈ Bx ⊆ U. Then U = ∪x∈UBx ∈ T ′. So T ⊆ T ′.
Conversely, suppose that U ∈ T ′. So U = ∪α∈IBα with each
Bα ∈ B. If x ∈ U, then there exist α ∈ I such that x ∈ Bα. Thus,
U ∈ T . So T ′ ⊆ T . �
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Bases

Example: R. A basis for the standard topology on R is given by

the collection of open intervals.

Example: Rn. The collection of open balls in Rn is a basis for the
usual topology on Rn. We will see that collection of open cubes is
also a basis for the same topology.
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Bases

Proposition. Let B be a basis for the topology on a set X , and
let T be the topology generated by B. Then T is a topology on X .



Bases

Recall definitions:

A basis for a topology on a set X is a collection B of subsets of X
satisfying

1. For each x ∈ X , there exists B ∈ B such that x ∈ B, i.e., the
basis elements cover X :

∪B∈BB = X .

2. If x ∈ B1 ∩ B2 for B1,B2 ∈ B, then there exists B3 ∈ B such
that x ∈ B3 ⊆ B1 ∩ B2.

The topology generated by a basis B is

T = {U ⊆ X : for all x ∈ U, there exists B ∈ B such that x ∈ B ⊆ U}
= {U ⊆ X : U is a union of elements of B},
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Proof of the Proposition.
1. ∅ ∈ T is satisfied vacuously.

2. X ∈ T follows from property 1.

3. That T is closed under unions is easily seen from our second
characterization of T as the collection of subsets that are
unions of elements of B.

4. By induction, to show that T is closed under finite unions, it
suffices to show that if U1 and U2 are in T , then so is
U1 ∩ U2. To prove this, we use the first characterization of T .
Suppose U1,U2 ∈ T , and let x ∈ U1 ∩ U2. Then there
exist B1 and B2 in T such that x ∈ B1 ⊆ U1 and
x ∈ B2 ⊆ U2. So x ∈ B1 ∩ B2. Using property 2 of the
definition of a basis, there exists B3 ∈ B such that
x ∈ B3 ⊆ B1 ∩ B2 ⊆ U1 ∩ U2. Thus, U1 ∩ U2 ∈ T .
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