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Introduction

This compilation collects SAGE commands that are useful for a student in an introductory course
in group theory. It is not intended to teach SAGE or to teach group theory. (Pointers to other
resources here.) Rather, by presenting commands roughly in the order a student would learn
the corresponding mathematics they might be encouraged to experiment and learn more about
mathematics and learn more about SAGE. The “E” in SAGE once stood for “Experimentation.”

Basic Properties of the Integers

Integer Division

a % b will return the remainder upon division of a by b. In other words, the value is the unique
integer r such that (1) 0 < r < b, and (2) a = bq + r for some integer ¢ (the quotient). Then
(a —7)/b will equal q. For example,

14 % 3
(14 - r)/3

r
q

will set r to 2, and set q to 4.
(Add caution about division on integers.)

gcd(a,b)

Returns the greatest common divisor of @ and b, where in our first uses, a and b are integers. Later,
a and b can be other objects with a notion of divisibility and “greatness,” such as polynomials. For
example, gcd(2776,2452) will return 4.

xgcd(a,b)

“Extended gcd.” Returns a triple where the first element is the greatest common divisor of a and
b (as with the ged command above), but the next two elements are the values of r and s such that
ra + sb = ged(a, b). For example, xged(633,331) returns (1, 194, -371). Portions of the triple
can be extracted using [ ] to access the entries of the triple, starting with the first as number 0.
For example, the following should return the result True (even if you change the values of a and b).
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a = 633

b = 331
extended = xgcd(a, b)
g = extended[0]
r = extended[1]
s = extended[2]
g == r*a + s*b
Divisibility
A remainder of zero indicates divisibility. So (a % b) == 0 will return True if b divides a, and will

otherwise return False. For example, (9 % 3) == 0 is True, but (9 % 4) == 0 is False.

factor(a)

As promised by the Fundamental Theorem of Arithmetic, factor(a) will return an expression
for a as a product of powers of primes. It will print in a nicely-readable form, but can also be
manipulated with Python as a list of pairs (p;, €;) containing primes as bases, and their associated
exponents. For example, factor (2600) returns 23 * 52 * 13. We can strip off pieces of the prime
decomposition using two levels of [ ]. This is a good example to study in order tolearn about how
to drill down into Python lists.

n = 2600

decomposition = factor(n)

print n, " decomposes as ", decomposition

secondterm = decomposition[1]

print "Base and exponent (pair) for second prime: ", secondterm
base = secondterm[0]

exponent = secondterm[1]

print "Base is ", base

print "Exponent is ", exponent

thirdbase = decomposition[2] [0]

thirdexponent = decomposition[2] [1]

print "Base of third term is ", thirdbase, " with exponent ", thirdexponent

Multiplicative Inverse, Modular Arithmetic

inverse_mod(a, n) yields the multiplicative inverse of @ mod n (or an error if it doesn’t exist). For
example, inverse mod (352, 917) yields 508. (Check that 352*508 = m*917+1 for some integer
m.)

Powers, Modular Arithmetic

power mod(a, m, n) yields a”™ mod n. For example, power mod(15, 831, 23) yields 10. If
m = —1, then this duplicates the function of inverse mod().



Euler ¢-function

euler phi(n) will return the number of positive integers less than n, and relatively prime to n
(i.e. having greatest common divisor with n equal to 1). For example, euler phi(345) should
return 176. Try the following experiment:

m = random_prime (10000)
n = random_prime(10000)
print(m, n, euler_phi(m*n) == euler_phi(m)*euler_phi(n))

Feel a conjecture coming on? Can you generalize this result?

Primes

is_ prime(a) returns True or False depending on if a is prime or not. For example, is prime(117371)
returns True, while is_prime(14547073) returns False (14547073 = 1597 % 9109).

random prime(a,True) will return a random prime between 2 and a.
Experiment with random prime(1021,True). (Replacing True by False will speed up the search,
but there will be a very small probability the result will not be prime.)

prime range(a,b) returns the list of all the primes from a to b — 1, inclusive. For example,
prime range(500,550) returns [603, 509, 521, 523, 541, 547].

next prime(a) and previous prime(a) are other ways to get a single prime number of a desired
size.



Permutation Groups

A good portion of SAGE’s support for group theory is based on routines from GAP (Groups,
Algorithms, and Programming). The most concrete way to represent groups is via permutations
(of the integers 1 through n), using function composition as the operation.

Writing Permutations SAGE uses “disjoint cycle notation” for permutations, see Section 4.1
of Judson for more on this. Composition occurs left to right, which is not what you might expect
and is exactly the reverse of what Judson uses. There are two ways to write the permutation

o=(13)(254),
1. As a text string: "(1,3)(2,5,4)"

2. As a Python list of “tuples”: [(1,3), (2,5,4)]

Groups SAGE knows many popular groups as sets of permutations. More are listed below, but
for starters, the full symmetric group can be built with the command SymmetricGroup(n) where
n is the number of symbols.

Permutation Elements Elements of a group can be created, and manipulated, as follows

G = SymmetricGroup(5)
sigma = G("(1,3)(2,5,4)")
rho = G([(1,4), (1,5)])
rho”-1*sigma*rho

Available functions include sigma.order (), which will return 6, the smallest power of £ such that
o" equals the identity element (), and sigma.sign() which will be 1 for an even permutation and
—1 for an odd permutation (here ¢ is an odd permutation).

Groups An annotated list of some small permutation groups known to SAGE.
(More in /sage/devel/sage/sage/groups/perm_gps/permgroup named.py)
SymmetricGroup(n): All permutations on n symbols.

DihedralGroup(n): Symmetries of an n-gon.
CyclicPermutationGroup(n): Rotations of an n-gon (no flips).
AlternatingGroup(n): Alternating group on n symbols, n = 4 is symmetries of tetrahedron.

KleinFourGroup(): The non-cyclic group of order 4.



Group Functions

Define a group, say H = DihedralGroup(6), and then a variety of functions become available:

is_abelian()

The command H.is abelian() will return False.

order()

H.order () will return the order of the group. So H.order () returns 12.

list(), cayley table()

The command H.1list() will return the elements of H in a fixed order, and H.cayley table ()
will construct the Cayley table of H using the elements of the group in the same order as the 1ist ()
command, and denoting them as xN where NV is an integer.

center()

The command H.center () will return a subgroup that is the center of the group H (see Exercise

2.46 in Judson). Try H.center () .1ist () to see which elements of H commute with every element
of H.

Cayley Graph
For fun, try show(H.cayley graph()).



Subgroups

Cyclic Subgroups

If G is a group, and a is an element of the group (try a=G.random element()), then
H=G.subgroup([a])
will create H as the cyclic subgroup of G with generator a.

Consider the following example (note that the indentation of the third line is critical):

C20 = CyclicPermutationGroup(20)
for g in C20:
print (g, g.order())

which will list the elements of a cyclic group of order 20, along with the order of each element. We
can cut/paste an element of order 5 and build a subgroup,

H = C20.subgroup(["(1,17,13,9,5)(2,18,14,10,6) (3,19,15,11,7) (4,20,16,12,8)"])}
H.list()

For a cyclic group, the following command will list all of the subgroups.
C20.conjugacy_classes_subgroups ()

Be careful, this command uses some more advanced ideas, and will not usually list all of the
subgroups of a group — here we are relying on special properties of cyclic groups (but see the next
section).

All Subgroups

If H is a subgroup of G and g € G, then gHg™' = {ghg™' | h € G} will also be a subgroup of
G. If G is a group, then the command G.conjugacy_ classes_subgroups() will return a list of
subgroups of G, but not all of the subgroups. However, every subgroup can be constructed from one
on the list by the gH ¢! construction with a suitable g.



Symmetry Groups

You can give SAGE a short list of elements of a permutation group and SAGE will find the smallest
subgroup that contains those elements. We say the list “generates” the subgroup. We list a few
interesting subgroups you can create this way.

Symmetries of a Tetrahedron

Label the 4 vertices of a regular tetahedron as 1, 2, 3 and 4. Fix the vertex labeled 4 and roate the
opposite face through 120 degrees. This will create the permutation/symmetry (123). Similarly,
fixing vertex 1, and rotating the opposite face will create the permutation (234). These two
permutations are enough to generate the full group of the twelve symmetries of the tetrahedron.
Another symmetry can be visualized by running an axis through the midpoint of an edge of the
tetrahedron through to the midpoint of the opposite edge, and then rotating by 180 degrees about
this axis. For example, the 1-2 edge is opposite the 3-4 edge, and the symmetry is described by the
permutation (12)(34). This permutationj, along with either of the above permutations will also
generate the group. So here are two ways to create this group,

tetra_one = PermutationGroup(["(1,2,3)", "(2,3,4)"])
tetra_two = PermutationGroup(["(1,2,3)", "(1,2)(3,4)"])

This group has a variety of interesting properties, so it is worth experimenting with. You may
also know it as the “alternating group on 4 sysmbols,” which SAGE will create with the command
AlternatingGroup(4).

Symmetries of a Cube

Label vertices of one face of a cube with 1, 2, 3 and 4, and on the opposite face label the vertices
5, 6, 7 and 8 (5 opposite 1, 6 opposite 2, etc.). Consider three axes that run from the center of a
face to the center of the opposite face, and consider a quarter-turn rotation about each axis. These
three rotations will construct the entire symmetry group. Use

cube = PermutationGroup(["(3,2,6,7)(4,1,5,8)",
"1,2,6,5)4,3,7,8)", "(1,2,3,4)(5,6,7,8)"]1)}

A cube has four distinct diagonals (joining opposite vertices through the center of the cube).
Each symmetry of the cube will cause the diagonals to arrange differently. In this way, we can
view an element of the symmetry group as a permutation of four “symbols” — the diagonals.
It happens that each of the 24 permutations of the diagonals is created by exactly one sym-
metry of the 8 vertices of the cube. So this subgroup of Sg is “the same as” S;. In SAGE,
cube.is_isomorphic(SymmetricGroup(4)) will test to see if the group of symmetries of the cube
are “the same as” Sy.



Normal Subgroups

is_normal()

Begin with the alternating group, As: Ad=AlternatingGroup(4).

Construct the three symmetries of the tetrahedron that are 180 degree rotations about axes through
midpoints of opposite edges:

ri=A4("(1,2)(3,4)"), r2=A4("(1,3)(2,4)"), r3=A4("(1,4)(2,3)")

And construct a subgroup of size 4: H=A4.subgroup([rl,r2,r3])

Now check if the subgroup is normal in A4: H.is normal (A4) returns True.

quotient group()

Extending the previous example, we can create the quotient (factor) group of A4 by H.

A4 . quotient group(H) will return a permutation group generated by (1,2,3). As expected this
is a group of order 3. Notice that we do not get back a group of the actual cosets, but instead we
get a group isomorphic to the factor group.

is_simple()

It is easy to check to see if a group is void of any normal subgroups.
AlternatingGroup(5) .is_simple() is True and AlternatingGroup(4).is simple() is False.

composition_ series()

For any group, it is easy to obtain a composition series. There is an element of randomness in the
algorithm used for this, so you may not always get the same results. (But the list of factor groups
is unique, according to the Jordan-Holder theorem.) Also, the subgroups generated sometimes have
more generators than necessary, so you might want to “study” each subgroup carefully by checking
properties like its order.

An interesting example is: DihedralGroup(105) .composition series()
The output will be a list of 5 subgroups, each a normal subgroup of its predecessor.

Several other series are possible, such as the derived series. Use tab completion to see the possibil-
ities.



Conjugacy

Given a group G, we can define a relation ~ on G by: for a, b € G, a ~ b if and only if there exists
an element g € G such that gag=' = b.

Since this is an equivalence relation, there is an associated partition of the elements of G into
equivalence classes. For this very important relation, the classes are known as “conjugacy classes.”.
A representative of each of these equivalence classes can be found as follows. Suppose G is a
permutation group, then G.conjugacy classes representatives() will return a list of elements
of G, one per conjugacy class. Given an element g € G, the “centralizer” of g is the set C'(g) =
{h € G| hgh™! = g}, which is a subgroup of G. A theorem tells us that the size of each conjiugagcy
class is the order of the group divided by the order of the centralizer of an element of the class.
With the following code we can determine the size of the conjugacy classes of the sfull symmetric
group on 5 symbols,

G = SymmetricGroup(5)
group_order = G.order()
reps = G.conjugacy_classes_representatives()
class_sizes = []
for g in reps:
class_sizes.append( group_order/G.centralizer(g).order() )
print class_sizes

This should produce the list [1, 10, 15, 20, 20, 30, 24] which you can check sums to 120, the
order of the group. You might be able to produce this list just by counting elements of the group
with identical cycle structure.



Sylow Subgroups

Sylow’s Theorems assert the existence of certain subgroups. For example, if p is a prime, and p"
divides the order of a group G, then G must have a subgroup of order p”. Such a subgroup could
be found among the output of the conjugacy classes subgroups() command by checking the
orders of the subgroups produced. The map() command is a quick way to do this. The symmetric
group on 8 symbols, Ss, has order 8! = 40, 320 and is divisible by 27 = 128. Let’s find one example
of a subgroup of permutations on 8 symbols with order 128. The next command takes a few minutes
to run, so go get a cup of coffee after you set it in motion.

G = SymmetricGroup(8)
subgroups = G.conjugacy_classes_subgroups ()
map( order, subgroups )

The map (order, subgroups) command will apply the order () method to each of the subgroups
in the list subgroups. The output is thus a large list of the orders of many (296) subgroups. if
you count carefully, you will see that 259" subgroup has order 128. You can retrieve this group for
further study by referencing it as subgroups [258] (remember that counting starts at zero).

If p" is the highest power of p to divide the order of G, then a subgroup of order p” is known
as a “Sylow p-subgroup.” Sylow’s Theorems also say any two Sylow p-subgroups are conjugate,
so the output of conjugacy classes_subgroups() should only contain each Sylow p-subgroup
once. But there is an easier way, sylow subgroup(p) will return one. Notice that the argument
of the command is just the prime p, not the full power p". Failure to use a prime will generate an
informative error message.
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Groups of Small Order as Permutation Groups

We list here constructions of all of the groups of order less than 16, as permutation groups.

Size ‘ Construction ‘ Notes

1 ‘ SymmetricGroup(1) ‘ Trivial

2 ‘ SymmetricGroup(2) ‘ Also CyclicPermutationGroup(2)

3 ‘ CyclicPermutationGroup(3) ‘ Prime order

4 CyclicPermutationGroup (4) Cyclic

4 KleinFourGroup () Abelian, non-cyclic

) ‘ CyclicPermutationGroup(5) ‘ Prime order

6 CyclicPermutationGroup(6) Cyclic

6 SymmetricGroup(3) Non-abelian, also DihedralGroup(3)

7 ‘ CyclicPermutationGroup(7) ‘ Prime order

8 CyclicPermutationGroup(8) Cyclic

8 D1=CyclicPermutationGroup(4) Abelian, non-cyclic
D2=CyclicPermutationGroup(2)
G=direct product permgroups([D1,D2])

8 D1=CyclicPermutationGroup(2) Abelian, non-cyclic
D2=CyclicPermutationGroup(2)
D3=CyclicPermutationGroup(2)
G=direct_product_permgroups([D1,D2,D3])

8 DihedralGroup(4) Non-abelian

8 PermutationGroup(["(1,2,5,6)(3,4,7,8)", | Quaternions

"(1,3,5,7)(2,8,6,4)" 1) The two generators are I and J

9 CyclicPermutationGroup(9) Cyclic

9 D1=CyclicPermutationGroup(3) Abelian, non-cyclic
D2=CyclicPermutationGroup(3)
G=direct product permgroups([D1,D2])

10 | CyclicPermutationGroup(10) Cyclic

10 | DihedralGroup(5) Non-abelian

11 | CyclicPermutationGroup(11) \ Prime order

12 | CyclicPermutationGroup(12) Cyclic

12 | D1=CyclicPermutationGroup(6) Abelian, non-cyclic
D2=CyclicPermutationGroup(2)
G=direct product permgroups([D1,D2])

12 | DihedralGroup(6) Non-abelian

12 | AlternatingGroup(4) Non-abelian, symmetries of tetrahedron

12 PermutationGroup(["(1,2,3)(4,6)(5,7)", Non-abelian

"(1,2)(4,5,6,7)"]) Semi-direct product Z3 x Z,

13 ‘ CyclicPermutationGroup(13) ‘ Prime order

14 | CyclicPermutationGroup(14) Cyclic

14 | DihedralGroup(7) Non-abelian

15 ‘ CyclicPermutationGroup(15) ‘ Cyclic
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