Galois Theory

Math 332 A Brief Introduction to Galois Theory

David Perkinson

Reed College Portland, OR

Spring 2009

An algebraic extension $E \supset F$ is a Galois extension if it is normal and separable.

normal: Every irreducible $p \in F[x]$ having a root in *E* splits into linear factors over *E*. separable: No irreducible $p \in F[x]$ has repeated roots in an algebraic closure of *F*. (Separability is automatic if char(F) = 0, e.g. $F = \mathbb{Q}$.) Suppose $E \supset F$ is a Galois extension. Then the Galois Group for E/F is

$$Gal(E/F) = Aut_F E$$

= {invertible $\sigma: E \to E \mid \sigma(x) = x$ for all $x \in F$ }

The Galois group is the group of field automorphisms of E fixing the base field, F.

Galois Theory

Galois Correspondence

Let $E \supset F$ be a Galois extension.

Fields		Groups
$E \supseteq K \supseteq F$	\longrightarrow	$\operatorname{Gal}(E/K) \leq \operatorname{Gal}(E/F)$
Fix(<i>H</i>)	<i>~</i>	$H \leq \operatorname{Gal}(E/F)$

where $Fix(H) = \{x \in E : \sigma(x) = x \text{ for all } \sigma \in H\}.$

Fundamental Theorem of Galois Theory

Theorem. The Galois correspondence is an inclusion reversing 1-1 correspondence.

Facts:

- [E:K] = |Gal(E/K)|.
- $E \supseteq K$ is a normal extension iff $Gal(E/K) \lhd Gal(E/F)$.
- If $H \leq \text{Gal}(E/F)$ and $\sigma \in \text{Gal}(E/F)$, then $\text{Fix}(\sigma H \sigma^{-1}) = \sigma(\text{Fix}(H))$.
- There are finitely many intermediate fields $E \supseteq K \supseteq F$.

Radical Extensions

 $E \supseteq F$ is a simple radical extension if $E = F(\alpha)$ where $\alpha^n \in F$ for some n > 0. Thus, α satisfies on equation of the form $x^n - \beta$ for some $\beta \in F$.

 $E \supseteq F$ is a radical extension if there exist intermediate fields

$$E = F_n \supset F_{n-1} \supset \cdots \supset F_0 = F$$

where $F_i \supset F_{i-1}$ is a simple radical extension for all *i*.

Solvablility

 $f \in F[x]$ is solvable by radicals if the field generated by its roots in an algebraic closure of *F* is contained in a radical extension of *F*.

A finite group *G* is solvable if its composition series

$$G_0 \lhd G_1 \lhd \cdots \lhd G_n = G$$

has cyclic factors, G_i/G_{i-1} .

Galois' Theorem

Theorem. Suppose char(F) = 0. Let $f \in F[x]$, and let E be the field generated by the roots of f in some algebraic closure of F. Then f is solvable by radicals iff Gal(E/F) is a solvable group.