HW 9, due Tuesday, April 7

- 1. Verify the following basic properties:
 - (a) If $S \subseteq R$ and I is the ideal generated by S, then Z(S) = Z(I).
 - (b) If $S \subseteq T \subseteq R$, then $Z(S) \supseteq Z(T)$.
 - (c) If $X \subseteq Y \subseteq \mathbb{A}^n$, then $I(X) \supseteq I(Y)$.
 - (d) For S ⊆ R and X ⊆ Aⁿ, we have
 i. I(Z(S)) ⊇ S;
 ii. Z(I(X)) ⊇ X;
- 2. (a) Show that if X and Y are algebraic subsets of \mathbb{A}^n , then X = Y iff I(X) = I(Y). (You may use the facts that I(Z(I(X))) = I(X) and Z(I(Z(J))) = Z(J) from class.)
 - (b) Let $X \subset \mathbb{A}^n$ be an algebraic set and let $p \in \mathbb{A}^n \setminus X$. Show there exists $f \in R$ such that f(q) = 0 for all $q \in X$ and f(p) = 1. (Hint: let $Y = X \cup \{p\}$ and apply the first part of this problem. By the problems below, you may use that Y is an algebraic set.)
- 3. Show that the following are algebraic sets:
 - (a) $\{(t, t^2, t^3) : t \in k\}.$
 - (b) $\{(\cos t, \sin t) : t \in \mathbb{R}\}.$

4. Radical ideals.

- (a) Show that the radical of an ideal is an ideal. (Hint: Show that if f^s and g^t are elements of an ideal $I \subseteq R$, then $(f+g)^{s+t} \in I$.)
- (b) Show that I(X) is a radical ideal for all $X \subseteq \mathbb{A}^n$.
- (c) An ideal $I \subset R$ is a *prime ideal* if $fg \in I$ implies f or g is an element of I. Show that a prime ideal is radical.
- (d) For any ideal $J \subseteq R$, we have Z(J) = Z(rad(J)) and $rad(J) \subseteq I(Z(J))$.
- 5. Zariski topology.

Let M be any set. A topology on M is a collection τ of subsets of M such that

- (a) $\emptyset \in \tau$;
- (b) $M \in \tau;$

- (c) τ is closed under arbitrary unions: if $U_{\alpha} \in \tau$ for α in some index set A, then $\bigcup_{\alpha \in A} U_{\alpha} \in \tau$;
- (d) τ is closed under finite intersections: if $U_1, \ldots, U_s \in \tau$ for some integer s, then $\bigcap_{i=1}^{s} U_i \in \tau$.

If τ is a topology on M, then the elements of τ are called the *open sets* of the topology. A subset of M is *closed* if its complement is open.

For example, the usual topology on \mathbb{R}^n is formed by calling a set open if it contains an open ball about each of its points.

- (a) Show that \emptyset and \mathbb{A}^n are algebraic sets.
- (b) Show that an arbitrary intersection of algebraic sets is an algebraic set.
- (c) Show that a finite union of algebraic sets is an algebraic set. (Hint: show $Z(I) \cup Z(J) = Z(\{fg : f \in I, g \in J\})$.)
- (d) Explain why it follows that the collection of complements of algebraic sets forms a topology on \mathbb{A}^n .
- (e) The topology \mathbb{A}^n described above is called the *Zariski topology*. It is the usual topology of interest to algebraic geometers. Draw some examples of (Zariski) open sets in $\mathbb{A}^2_{\mathbb{R}}$.
- (f) Show that the Zariski topology is not Hausdorff in general. That is, give an example of points $p, q \in \mathbb{A}^n$ such that there are no open sets U containing p and V containing q with $U \cap V = \emptyset$. In other words, we cannot necessarily surround distinct points by disjoint open sets. This is quite a difference with the usual topology on \mathbb{R}^n .
- 6. Show that if $p = (a_1, \ldots, a_n) \in \mathbb{A}^n$, then $\{p\}$ is an algebraic set. Show that finite subsets of \mathbb{A}^n are algebraic sets.