- 1. Read up on the Sylow theorems (the wikipedia is fine).
  - (a) Find all Sylow 3-subgroups of  $A_5$ .
  - (b) Show that every group of order 56 has a proper nontrivial normal subgroup.
  - (c) How many Sylow 5-subgroups of  $S_5$  are there. Exhibit two.
  - (d) Prove that every group of order 175 is abelian. (Theorems 22.11 and 23.3 are useful, in addition to the Sylow theorems.)
- 2. For a commutative ring with unity, R, let U(R) be the set of units in R. Suppose R and  $R_1, \ldots, R_n$  are commutative rings with unity.
  - (a) Prove that U(R) is a multiplicative group.
  - (b) If  $R_1, \ldots, R_n$  are commutative rings with unity, show that

$$U(R_1 \oplus \cdots \oplus R_n) \approx U(R_1) \oplus \cdots \oplus U(R_n).$$

- (c) If  $a, b \in R$ , with a a unit and  $b^2 = 0$ , prove that a + b is a unit.
- 3. Describe a noncommutative ring with exactly 16 elements.
- 4. Let I and J be ideals in a ring R. (You may assume R is commutative with unity, although that is not necessary.)
  - (a) Prove that  $I \cap J$  is an ideal.
  - (b) Prove that  $I + J := \{i + j : i \in I, j \in J\}$  is an ideal.
  - (c) The product IJ is the ideal generated by all products ij with  $i \in I$  and  $j \in J$ . Give examples of ideals  $I, J \subset \mathbb{Q}[x, y]$  for which  $\{ij : i \in I, j \in J\}$  is not an ideal. (Proof required.)
  - (d) If R is a commutative ring with unity and I + J = R, prove that  $I \cap J = IJ$ .
- 5. Let R be a commutative ring, and let X be any subset of R. The annihilator of X is  $Ann(X) := \{r \in R : rx = 0 \text{ for all } x \in X\}$ . Show that it is an ideal.
- 6. This problem was removed.