HW 7, due Tuesday, March 24

1. Let G be a group.

(a) Show that

$$\begin{array}{rccc} G \times G & \to & G \\ (h,g) & \mapsto & hgh^{-1} \end{array}$$

defines an action of G on itself.

(b) Show that

$$\begin{array}{rccc} G \times G & \to & G \\ (h,g) & \mapsto & h^{-1}gh \end{array}$$

does not define an action of G on itself, in general. Give an concrete counterexample.

- (c) Fix $h \in G$. Show that $g \mapsto hgh^{-1}$ and $g \mapsto h^{-1}gh$ both define automorphisms of G.
- 2. Consider the dihedral group $D_n = \langle \rho, \phi : \rho^n = \phi^2 = 1, \rho \phi = \phi \rho^{n-1} \rangle$. Let $N = \langle \rho \rangle$ and $H = \langle \phi \rangle$.
 - (a) Prove that N is a normal subgroup of D_n . (There is a really quick solution to this one!)
 - (b) Show that $D_n = N \rtimes H$ by exhibiting a split exact sequence.
 - (c) Describe the corresponding homomorphism $H \to \operatorname{Aut}(N)$.
 - (d) Compute the products $(\rho^i, \phi)(\rho^j, \phi)$, $(\rho^i, 1)(\rho^j, \phi)$, $(\rho^i, \phi)(\rho^j, 1)$ in $N \rtimes H$. As a special case, compute $(\rho, 1)(1, \phi)$ and compare it to $(1, \phi)(\rho, 1)$.
 - (e) Prove that D_4 is not the direct product of two of its proper subgroups.
- 3. Prove that if

$$1 \to N \xrightarrow{\phi} G \xrightarrow{\psi} H \to 1$$

is split exact, then $G \approx N \rtimes H$. (Hint: if $j: H \to G$ is a splitting, then

$$g \cdot j(\psi(g))^{-1} \in N.)$$

- 4. Exhibit a composition series and composition factors for the following groups. Identify the composition factors as well-known groups.
 - (a) D_4
 - (b) S_4
 - (c) S_n for $n \ge 5$
 - (d) $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}$.

Feel free to use Sage. You do not have to prove your results.

- 5. Let $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group. The multiplication is determined by $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j. Multiplication by -1 works as expected.
 - (a) Make a multiplication table for Q_8 .
 - (b) Describe the five groups of order 8 and construct their subgroup lattices.
 - (c) Decide which subgroups of Q_8 are or are not normal (with proof).
 - (d) (i) Give a composition series for Q_8 . (ii) What are the composition factors?
 - (e) Is Q_8 a semidirect product of any of its proper subgroups (with proof)?