Problems from our text:

- 12.14
- 12.23
- 13.5
- 13.7

More problems:

1. Let H be a subgroup of a group G, and suppose $g \in G$ has order n. If $g^{m} \in H$ and $\operatorname{gcd}(m, n)=1$, show that $g \in H$.
2. Draw the subgroup lattice for \mathbb{Z}_{100}.
3. What is the order of 35 in \mathbb{Z}_{100} ?
4. Show that A_{8}, the alternating group of even permutations in S_{8} has an element of order 15.
5. What is the maximum order of any element in A_{10} ?
6. Use Sage to find the order of the permutation group generated by $(1, k)$ and $(1,2, \ldots, n)$ for various n and $1 \leq k \leq n$. Conjecture a necessary and sufficient condition on k and n so that they generate S_{n}. Sample code:
```
sage: PermutationGroup([[(1,3)], [(1,2,3,4)]]).order()
8
sage: factorial(4)
24
```

(I find the huge number of brackets involved here to be an easy source of syntax errors.)
7. Challenge problem: Suppose G is a group with exactly one nontrivial proper subgroup. Prove that G is cyclic of order p^{2} for some prime p. (Nontrivial means not the identity subgroup, and proper means not the whole group.)

