HW 11, due Tuesday, April 21

- 1. Let k be a field.
 - (a) Let a_1, \ldots, a_{n+1} be distinct elements of k, and let b_1, \ldots, b_{n+1} be any elements of k. Define

$$f(x) = \sum_{i=1}^{n+1} \left(b_i \prod_{j \neq i} \frac{(x-a_j)}{(a_i - a_j)} \right).$$

Show that f is the unique polynomial of degree n in k[x] such that $f(a_i) = b_i$ for i = 1, ..., n + 1.

- (b) Find a polynomial $f \in \mathbb{R}[x]$ of degree 3 whose graph goes through the points (1,0), (2,-1), (3,0), and (4,1).
- 2. Let $p \in \mathbb{Z}$ be prime.
 - (a) Prove that $x^{p-1} 1 = \prod_{i=1}^{p-1} (x-i)$ in $\mathbb{Z}_p[x]$.
 - (b) Prove that $(p-2)! = 1 \mod p$.
- 3. Let R be an integral domain.
 - (a) Show that $p \in R$ is prime iff (p) is a prime ideal.
 - (b) Elements $a, b \in R$ are associates if a = ub for some unit $u \in R$. Prove that $a, b \in R$ are associates iff they generate the same ideals: (a) = (b).
- 4. Find all maximal ideals I = (f) in $\mathbb{Z}_5[x]$ where $f = x^2 + ax + b$ for some a, b.
- 5. Factor $f = x^3 + x^2 + x + 1$ completely over \mathbb{Z}_5 , over \mathbb{Q} , and over \mathbb{C} .
- 6. Indicate, with justification, whether the following polynomials are reducible over \mathbb{Q} .
 - (a) $f(x) = 23x^8 + 12x^5 24x^2 + 18x 12$.
 - (b) $f(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1.$
 - (c) $f(x) = 3x^4 + 5x + 1$.
 - (d) $f(x) = x^6 + 2x^3 3x^2 + 1.$
- 7. (a) Show that $x^4 + 1$ is irreducible over \mathbb{Q} . (Finding the polynomials zeros in \mathbb{C} does not count as a proof. You might try Eisenstein.)
 - (b) Show that for every prime $p \in \mathbb{Z}$, either -1, 2, or -2 is a perfect square in \mathbb{Z}_p . (Hint: The set of squares in \mathbb{Z}_p^* forms a multiplicative subgroup of index 2. Hence, \mathbb{Z}_p^* modulo the squares is a group of order 2. Use this to show that if -1 and 2 are not perfect squares, then -2 is a perfect square.)

- (c) Show that $x^4 + 1$ is reducible modulo each prime $p \in \mathbb{Z}$.
- (d) Factor $x^4 + 1$ completely over \mathbb{Z}_2 and over \mathbb{Z}_3 .
- (e) Why don't 7a and 7c contradict Theorem 35.8 in the notes?
- 8. Generalized Euclidean algorithm.
 - (a) Let R be a PID, and $a_1, \ldots, a_n \in R$. Show that $(a_1, \ldots, a_n) = (\text{gcd}(a_1, \ldots, a_n))$. (For the definition of gcd, see page 59 of the notes. It follows that $\text{gcd}(a_1, \ldots, a_n)$ can be written as an R-linear combination of a_1, \ldots, a_n .)
 - (b) In the case of R = k[x], k a field, we have the division algorithm, as we do in \mathbb{Z} . And just like the case of \mathbb{Z} , keeping track of remainders in the division algorithm allows us to write the gcd of a set of elements as an R-linear combination of those elements.

Let $f = x^4 + 5x^3 + 5x^2 - 5x - 6$ and $g = x^3 + 4x^2 - 9x - 36$.

- i. Calculate gcd(f, g) in $R = \mathbb{R}[x]$.
- ii. Write gcd(f,g) as an *R*-linear combination of f and g.