1. Let k be a field.
(a) Let a_{1}, \ldots, a_{n+1} be distinct elements of k, and let b_{1}, \ldots, b_{n+1} be any elements of k. Define

$$
f(x)=\sum_{i=1}^{n+1}\left(b_{i} \prod_{j \neq i} \frac{\left(x-a_{j}\right)}{\left(a_{i}-a_{j}\right)}\right) .
$$

Show that f is the unique polynomial of degree n in $k[x]$ such that $f\left(a_{i}\right)=b_{i}$ for $i=1, \ldots, n+1$.
(b) Find a polynomial $f \in \mathbb{R}[x]$ of degree 3 whose graph goes through the points $(1,0),(2,-1),(3,0)$, and $(4,1)$.
2. Let $p \in \mathbb{Z}$ be prime.
(a) Prove that $x^{p-1}-1=\prod_{i=1}^{p-1}(x-i)$ in $\mathbb{Z}_{p}[x]$.
(b) Prove that $(p-2)!=1 \bmod p$.
3. Let R be an integral domain.
(a) Show that $p \in R$ is prime iff (p) is a prime ideal.
(b) Elements $a, b \in R$ are associates if $a=u b$ for some unit $u \in R$. Prove that $a, b \in R$ are associates iff they generate the same ideals: $(a)=(b)$.
4. Find all maximal ideals $I=(f)$ in $\mathbb{Z}_{5}[x]$ where $f=x^{2}+a x+b$ for some a, b.
5. Factor $f=x^{3}+x^{2}+x+1$ completely over \mathbb{Z}_{5}, over \mathbb{Q}, and over \mathbb{C}.
6. Indicate, with justification, whether the following polynomials are reducible over \mathbb{Q}.
(a) $f(x)=23 x^{8}+12 x^{5}-24 x^{2}+18 x-12$.
(b) $f(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$.
(c) $f(x)=3 x^{4}+5 x+1$.
(d) $f(x)=x^{6}+2 x^{3}-3 x^{2}+1$.
7. (a) Show that $x^{4}+1$ is irreducible over \mathbb{Q}. (Finding the polynomials zeros in \mathbb{C} does not count as a proof. You might try Eisenstein.)
(b) Show that for every prime $p \in \mathbb{Z}$, either $-1,2$, or -2 is a perfect square in \mathbb{Z}_{p}. (Hint: The set of squares in \mathbb{Z}_{p}^{*} forms a multiplicative subgroup of index 2. Hence, \mathbb{Z}_{p}^{*} modulo the squares is a group of order 2 . Use this to show that if -1 and 2 are not perfect squares, then -2 is a perfect square.)
(c) Show that $x^{4}+1$ is reducible modulo each prime $p \in \mathbb{Z}$.
(d) Factor $x^{4}+1$ completely over \mathbb{Z}_{2} and over \mathbb{Z}_{3}.
(e) Why don't 7 a and 7 c contradict Theorem 35.8 in the notes?
8. Generalized Euclidean algorithm.
(a) Let R be a PID, and $a_{1}, \ldots, a_{n} \in R$. Show that $\left(a_{1}, \ldots, a_{n}\right)=\left(\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)\right)$. (For the definition of gcd, see page 59 of the notes. It follows that $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ can be written as an R-linear combination of $a_{1} \ldots, a_{n}$.)
(b) In the case of $R=k[x], k$ a field, we have the division algorithm, as we do in \mathbb{Z}. And just like the case of \mathbb{Z}, keeping track of remainders in the division algorithm allows us to write the gcd of a set of elements as an R-linear combination of those elements.
Let $f=x^{4}+5 x^{3}+5 x^{2}-5 x-6$ and $g=x^{3}+4 x^{2}-9 x-36$.
i. Calculate $\operatorname{gcd}(f, g)$ in $R=\mathbb{R}[x]$.
ii. Write $\operatorname{gcd}(f, g)$ as an R-linear combination of f and g.

