1. The Nullstellensatz.

For the following problems, assume that k is algebraically closed.

(a) Let $f_1, \ldots, f_m \in R$. Show that the system of equations $f_1 = \cdots = f_m = 0$ has no solutions iff 1 is an R-linear combination of the f_i :

$$1 = \sum_{i=1}^{m} g_i f_i$$

for some polynomials $g_i \in R$. The implication still runs in one direction, even if k is not algebraically closed. Which one?

- (b) (This one might be difficult. Can you show that R/I is a field? How does that help?) Show that an ideal $I \subset R$ is maximal iff $I = (x_1 a_1, \dots, x_n a_n)$ for some $(a_1, \dots, a_n) \in \mathbb{A}^n_k$. Show by example that this result does not hold if k is not algebraically closed.
- (c) If I is an ideal of R, not equal to R, show $Z(I) \neq \emptyset$. (This result is called the "weak Nullstellensatz".) Again, show this result does not hold if k is not algebraically closed.
- 2. Is 1 in the ideal $(x^2 + y 3, xy^2 + 2x, y^3)$? Does the answer depend on k?
- 3. (a) Show that it is possible for $I(\mathbb{A}_k^n) \neq (0)$.
 - (b) Show that $I(\mathbb{A}^n_k) = (0)$ if k is infinite. (Hint: induction on n and use that fact that a nonzero $f \in k[x]$ has a finite number of roots.)
- 4. For each of the polynomial mappings $X \to Y$, describe corresponding ring homomorphisms, $A(Y) \to A(X)$, using the notation of problem 5.

(a)

$$\begin{array}{ccc} \phi: \mathbb{A}^2 & \to & \mathbb{A}^3 \\ (x,y) & \mapsto & (y-x^2,xy,x^3+2y^2) \end{array}$$

(b) $X = \mathbb{A}^1$ and $Y = Z(y - x^3, z - xy) \subset \mathbb{A}^3$

$$\phi: X \to Y$$

$$t \mapsto (t, t^3, t^4)$$

5. For each of the ring homomorphisms $A(Y) \to A(X)$, describe the corresponding morphism of algebraic sets, $X \to Y$, using the notation of problem 4.

$$\begin{array}{ccc} \sigma: k[x,y] & \to & k[t] \\ & x & \mapsto & t^2-1 \\ & y & \mapsto & t(t^2-1) \end{array}$$

$$\sigma: k[s,t,u,w]/(s^2-w,sw-tu) \rightarrow k[x,y,z]/(xy-z)$$

$$s \mapsto xy$$

$$t \mapsto yz$$

$$u \mapsto xz$$

$$w \mapsto z^2$$

The morphism constructed here is a mapping of the saddle surface to a surface in \mathbb{A}^4 .

- 6. Show that the mapping in 4b, above, is an isomorphism by showing that the induced mappings of coordinate rings is an isomorphism of rings.
- 7. Zariski closure.

In a previous problem set, we discussed the Zariski topology on \mathbb{A}^n . The closed sets of the topology are taken to be algebraic sets, i.e., sets of the form Z(I) where I is an ideal of $R = k[x_1, \ldots, x_n]$. Consider \mathbb{A}^n with the Zariski topology.

- (a) Let $X \subseteq \mathbb{A}^n$. Show that Z(I(X)) is the *closure* of set X. This means that Z(I(X)) smallest closed set containing X. (Show that if Y is a closed set containing X, then $Y \supseteq Z(I(X))$.)
- (b) Suppose k is algebraically closed (or just infinite). Show that the closure of any nonempty (Zariski) open set of \mathbb{A}^n is \mathbb{A}^n , i.e., every nonempty open set is dense. (Again, this is quite a difference from the usual topology in the case of $k = \mathbb{R}$ or \mathbb{C} .) (Hint: Since the ideal for \mathbb{A}^n is (0), which is prime, we know \mathbb{A}^n is irreducible.)
- (c) What is the closure of the set $\{(n,n): n \in \mathbb{Z}\}$ in $\mathbb{A}^2_{\mathbb{Q}}$?
- (d) What is the closure (in the Zariski topology) of the set

$$U = \{(a, b) \in \mathbb{R}^2 : a^2 + b^2 < 1\}$$

in \mathbb{R}^2 ?