
Differential Equations Recipes

I. Separable.

A. p(y)
dy

dt
= q(t)

Solution:
∫
p(y) dy =

∫
q(t) dt+ c.

B.
dy

dt
= F

(
y

t

)

Solution: Let v = y
t
. Then dy

dt
= d(vt)

dt
= tdv

dt
+ v. Hence, dy

dt
= F

(
y
t

)
⇒ tdv

dt
+ v = F (v) ⇒∫ dv

F (v)−v =
∫ dt

t
.

II. Exact.

A. M(t, y) +N(t, y)dy
dt

= 0, ∂M
∂y

= ∂N
∂t

Solution: Suppose we have a function of two variables, Φ, such that Φ(t, y) = 0. Then by
the chain rule:

dΦ

dt
=
∂Φ

∂t
+
∂Φ

∂y

dy

dt
= 0.

If it turned out that ∂Φ
∂t

= M(t, y) and ∂Φ
∂y

= N(t, y), we would be in luck because Φ(t, y) = 0

would give the solution y (at least implicitly). To find such a Φ we should integrate M with
respect to t, then take its partial with respect to y and set it equal to N .

Here is an example: Solve 3t2−2y2 + (1−4ty)dy
dt

= 0. This equation is exact with M(t, y) =
3t2 − 2y2 and N(t, y) = 1− 4ty. Integrate M with respect to t:∫

M(t, y) dt =
∫

3t2 − 2y2 dt = t3 − 2ty2 + f(y).

This is our candidate for Φ. We need to find the appropriate function f . Take the partial
with respect to y to get −4ty + f ′(y). Setting this equal to N , we find that f ′(y) = 1; so
f(y) = y + c. The solution is t3 − 2ty2 + y = −c. Of course, this is cheating a little since y
is only defined implicitly as a function of t.

B. M(t, y) +N(t, y)
dy

dt
= 0

Solution: Sometimes an equation can be made exact by multiplying through by an integrating
factor ρ(t, y): ρ(t, y)M(t, y) + ρ(t, y)N(t, y)dy

dt
= 0.

Example: Solve ty2 + 4t2y + (3t2y + 4t3)dy
dt

= 0. This equation is not exact. Look for an
integrating factor of the form ρ(t, y) = tmyn. We want

∂

∂y
(tm+1yn+2 + 4tm+2yn+1) =

∂

∂t
(3tm+2yn+1 + 4tm+3yn).

Equating coefficients shows that m = −1, n = 1. So ρ(t, y) = y
t

is the integrating factor.

The problem now is to solve y3 + 4ty2 + (3ty2 + 4t2y)dy
dt

= 0, which is exact.
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III. Linear, first order.

A.
dy

dt
+ p(t)y = q(t) (or a(t)dy

dt
+ b(t)y = c(t))

Solution: Use the integrating factor e
∫

p(t) dt:

e
∫

p(t) dt

(
dy

dt
+ p(t)y

)
= e

∫
p(t) dtq(t).

The left-hand side of the above equation is
d(e

∫
p(t) dty)

dt
. Hence,

e
∫

p(t) dty =
∫
q(t)e

∫
p(t) dt dt+ c.

B. (Bernoulli)
dy

dt
+ p(t)y = q(t)yn

Solution: Substitute u = y1−n and solve using the preceding method.

IV. Linear, homogeneous, constant coefficients.

P (D)y = 0 D = differential operator, P = polynomial

Solution: The main idea is to look for solutions of the form y = ert. One finds 0 = P (D)ert =
P (r)ert iff P (r) = 0. In this context, P (r) is called the characteristic polynomial of the
equation. Examples follow.

1. y′′ − y′ − 2y = 0 = (D2 −D − 2)y

r2 − r − 2 = (r − 2)(r + 1)⇒ r = 2 or r = −1.

Solution: y = Ae2t +Be−t

2. y′′ − 2y′ + 5y = 0 = (D2 − 2D + 5)y

r2 − 2r + 5 = 0⇒ r = 1 + 2i or r = 1− 2i.

Solution: y = Ae(1+2i)t +Be(1−2i)t.

Recalling that e(a+bi)t = eat cos bt+ eat i sin bt and adjusting the constants we get the real
solution: y = Aet cos 2t+Bet sin 2t

3. y′′ + 4y′ + 4y = 0 = (D2 + 4D + 4)y

r2 + 4r + 4 = 0 = (r + 2)2 ⇒ r = −2 (multiplicity 2).

Solution: y = Ae−2t +Bte−2t
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4. D2(D + 2)3(D − 3)y = 0

Solution: y = A+Bt+ Ce−2t +Dte−2t + Et2e−2t + Fe3t.

V. Method of undetermined coefficients. (Linear, constant coefficients, non-homogeneous)

P (D)y = f(t)

Solution: If we can find a particular solution, yp, the general solution is then the sum of the
general solution to the associated homogeneous equation, P (D)y = 0, and yp. (Clearly, if y is
a solution to the associated homogeneous equation, then P (D)(y+yp) = P (D)y+P (D)yp =
P (D)yp. Thus, we get another solution. There is a theorem that says all solutions have this
form.)

Depending on the form of f , the solution will have the form given in the following list:

• If f(t) = ert, guess y = aert.

• If f(t) is a polynomial, guess y = p(t) =
∑n

i=0 ait
i where p is a general polynomial of

the same degree as f .

• If f(t) = cosωt or f(t) = sinωt, guess y = a cosωt+ b sinωt.

• if f(t) = q(t)ert where q is a polynomial, guess y = p(t)ert where p is a general
polynomial of the same degree as q.

• If f(t) = q(t)ert cosωt or f(t) = q(t)ert sinωt, guess y = ert(u(t) cosωt + v(t) sinωt)
where u(t) and v(t) are general polynomials of the same degree as q.

If the form you use happens to be a solution of the corresponding homogeneous equation,
try multiplying it by t.

Examples:

1. y′′ − y′ − 2y = 20e4t

We look for a solution of the form ae4t:

(ae4t)′′ − (ae4t)′ − 2ae4t = 10ae4t.

Letting a = 2, we find the particular solution y = 2e4t. The corresponding homogeneous
equation, y′′ − y′ − 2y = 0 had characteristic polynomial r2 − r− 2 = (r− 2)(r + 1) with
roots 2 and −1. So the general solution to the non-homogeneous equation is

y = 2e4t +Be2t + Ce−t.

2. y′′ − 2y′ + y = 6 sin 2t
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We guess a solution of the form y = a cos 2t+ b sin 2t:

(a cos 2t+ b sin 2t)′′ − 2(a cos 2t+ b sin 2t)′ + (a cos 2t+ b sin 2t)

= (−3a− 4b) cos 2t+ (4a− 3b) sin 2t.

We want this to equal 6 sin 2t, so we solve the system of equations

−3a− 4b = 0

4a− 3b = 6

and find a = 24/25 and b = −18/25. The corresponding homogeneous equation has
characteristic polynomial r2 − 2r + 1 = (r − 1)2 having one root, 1, with multiplicity 2.
So the general solution to the original non-homogeneous equation is

y =
24

25
cos 2t− 18

25
sin 2t+ Cet +Dtet.

3. y′′ + 5y′ + 6y = 4− t2

We guess a solution of the form a+ bt+ ct2:

(a+ bt+ ct2)′′ + 5(a+ bt+ ct2)′ + 6(a+ bt+ ct2) = (2c+ 5b+ 6a) + (10c+ 6b)t+ 6ct2,

forcing c = −1/6, b = 5/18, and a = 53/108. Combining this particular solution with
the general solution to the corresponding homogeneous system gives the most general
solution to the original equation:

y =
58

108
+

5

18
t− 1

6
t2 + Ae−2t +Be−3t.

4. y′′ − y′ − 2y = 5e−t

We guess a solution of the form ae−t. However, plugging this into the equation gives

(ae−t)′′ − (ae−t)− 2ae−t = 0

and there is no way to adjust the constant a to get 5e−t. The problem is that our guess
is a solution to the associated homogeneous system. So our next guess is ate−t:

(ate−t)′′ − (ate−t)− 2ate−t = −3ae−t,

and let a = −5/3. Adding the general solution to the associated homogeneous system
gives the general solution to the original problem:

y = −5

3
te−t + Ae−t +Be2t.
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VI. Second order.

A. H(t, y′, y′′) = 0

Solution: Substitute
dy

dt
= v,

d2y

dt2
=
dv

dt
.

B. H(y, y′, y′′) = 0

Solution: Substitute
dy

dt
= v,

d2y

dt2
=
dv

dt
=
dy

dt

dv

dy
= v

dv

dy
.

Example:
d2y

dt2
= −gR

2

y2
.

After substitution, the equation becomes v
dv

dy
+
gR2

y2
= 0, which is separable.

VII. Duh.

If you find a solution to a differential equation using one of the methods in these notes but
cannot fix a constant so that the initial condition is satisfied, first check to see if the initial
condition is even possible to satisfy (by sticking the initial time into the equation). If it is,
there is a good chance that your method involved integrating over some interval in which a
function blows up. In this case, you try to use pure thought to eyeball a solution. A good
thing to try is y(t) = y0, a constant function.

Existence and uniqueness.

There are many versions of existence and uniqueness theorems for differential equations.
Here is one.

Theorem. Let f(t, y) be a continuous function on a rectangle R in the ty-plane. Given a
point (t0, y0) ∈ R, the initial value problem

y′ = f(t, y), y(t0) = y0

has a solution y(t) defined in an open interval containing t0. The solution is defined for at
least until the curve t 7→ (t, y(t)) leaves R. Further, if ∂f/∂y exists and is continuous on R,
then the solution is unique: if y1 and y2 are solutions then as long as (t, y1(t)) and (t, y2(t))
stay in R, we have y1(t) = y2(t).

Example: Consider the differential equation

ty′ = 2y − t3y2, y(t0) = y0. (1)

To apply the existence/uniqueness theorem we need to put the equation in standard form:

y′ =
2

t
y − t2y2, y(t0) = y0.

The theorem applies on any rectangle where the function 2y/t− t2y2 is continuous, hence on
any rectangle not containing a point with t-coordinate equal to 0. In fact, assuming t0 6= 0,
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the equation is a Bernoulli-type first-order linear equation with solution

y(t) =
5t2

t5 + 5c
, c =

t20
y0

− 1

5
t50

provided y0 6= 0. If y0 = 0, the solution is y = 0. Below are graphs of the solutions, (t, y(t)
for various initial conditions.
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Our existence/uniqueness theorem says nothing about solutions to problem 1 in the case
where t = 0. In fact, letting t = 0 in the equation forces y = 0. Thus, for instance, there are
no solutions satisfying the initial condition y(0) = 1. On the other hand, there are infinitely
many solutions satisfying the initial condition y(0) = 0. All of the solutions given above
have that property.
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