Math 322 Practice for Wednesday, Week 1

These are practice problems. They will not be collected, but solutions will be posted. In the following $y=y(t)$.

1. Solve the differential equation $y^{\prime}=t y^{2}$ with the initial condition $y(0)=3$.

SOLUTION:

$$
\begin{aligned}
y^{\prime}=t y^{2} & \Rightarrow \frac{y^{\prime}}{y^{2}}=t \\
& \Rightarrow \int \frac{d y}{y^{2}}=\int t d t \\
& \Rightarrow-y^{-1}=\frac{1}{2} t^{2}+c \\
& \Rightarrow y=-\frac{2}{t^{2}+a} .
\end{aligned}
$$

For the initial condition, we have

$$
3=y(0)=-\frac{2}{a} \quad \Rightarrow \quad a=-\frac{2}{3} .
$$

So the solution is:

$$
y=-\frac{6}{3 t^{2}-2}
$$

Graph of $y(t)=-6 /\left(3 t^{2}-2\right)$.

The largest interval about $t=0$ for which the solution is defined is $(-\sqrt{2 / 3}, \sqrt{2 / 3})$.
2. Solve the differential equation $y^{\prime}=4 t e^{-y}$ with initial condition $y(0)=-1$.

SOLUTION:

$$
\begin{aligned}
y^{\prime}=4 t e^{-y} & \Rightarrow \quad e^{y} y^{\prime}=4 t \\
& \Rightarrow \quad \int e^{y} d y=\int 4 t d t \\
& \Rightarrow \quad e^{y}=2 t^{2}+c \\
& \Rightarrow y=a e^{2 t^{2}} .
\end{aligned}
$$

Initial condition:

$$
-1=y(0)=a
$$

The solution is:

$$
y=-e^{2 t^{2}}
$$

The solution is defined for all $t \in \mathbb{R}$.

$$
\text { Graph of } y(t)=-e^{2 t^{2}}
$$

3. Consider the differential equation $y^{\prime}=r(S-y)$ where r and S are positive constants. In the lecture notes for Monday, Week 1, we found that if we assume $y<S$, the solution is

$$
y=S-(S-I) e^{-r t}
$$

where $I=y(0)$.
(a) What is the solution if we assume $y>S$? (Express you solution as close to the solution for the $y<S$ case as you can.)
solution: Assume $y>S$. Then

$$
\begin{aligned}
\int \frac{d y}{S-y}=\int r d t & \Rightarrow-\ln |S-y|=r t+c \\
& \Rightarrow|S-y|=a e^{-r t} \\
& \Rightarrow y-S=a e^{-r t} \\
& \Rightarrow y=S+a e^{-r t}
\end{aligned}
$$

For the initial condition, we have

$$
I:=y(0)=S+a \quad \Rightarrow \quad a=-(S-I) .
$$

The solution is

$$
y=S-(S-I) e^{-r t}
$$

(b) What is the solution if $y=S$?
solution: We get the constant solution: $y(t)=S$ for all t.

