
Math 322 lecture for Friday, Week 12

hamiltonian systems

Let E ⊆ R2n be an open subset, and let H : E → R be a function in C2(E), i.e., a
function whose second partials exist and are continuous. We will write H = H(x, y)
where x, y ∈ Rn. The system

x′ = (x′1, . . . , x
′
n) = Hy :=

∂H

∂y
=

(
∂H

∂y1
, . . . ,

∂H

∂yn

)

y′ = (y′1, . . . , y
′
n) = −Hx := −∂H

∂x
= −

(
∂H

∂x1
, . . . ,

∂H

∂xn

)
,

is called a Hamiltonian system with n degrees of freedom. The function H is called
the Hamiltonian or total energy of the system.

Theorem 1. (Conservation of energy.) For a Hamiltonian system, the total energy H
is constant along trajectories.

Proof. Consider a solution trajectory γ(t) = (x(t), y(t)) in R2n. By the chain rule,

d

dt
H(γ(t)) = ∇H · γ′

=
∂H

∂x
· x′ +

∂H

∂y
· y′

=
∂H

∂x
· ∂H
∂y
− ∂H

∂y
· ∂H
∂x

= 0.

This result means that the solutions lie on level sets for H.

Example. Let H(x, y) := y sin(x), and consider the Hamiltonian system with one
degree of freedom

x′ = Hy = sin(x)

y′ = −Hx = −y cos(x),
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where the x and y subscripts on H denote partial derivatives. We find the critical
points:

x′ = y′ = 0 ⇒ sin(x) = y cos(x) = 0 ⇒ x = nπ and y = 0,

for n ∈ Z. Letting f(x, y) = (sin(x),−y cos(x)), the linearizations at these critical
points are(

x′

y′

)
= Df(nπ, 0)

(
x
y

)
=

(
cos(x) 0
y sin(x) − cos(x)

) ∣∣∣∣
(nπ,0)

(
x
y

)

= (−1)n
(

1 0
0 −1

)(
x
y

)
.

Therefore, the critical points are all topological saddles. Here are pictures of the flow
of the system, a contour plot of H (which shows the level sets), and a graph of H:

Critical points. The critical points of a Hamiltonian system x′ = Hx, y
′ = Hy

occur where where all of the partials of H vanish, i.e., at the critical points for the
function H. These are the points where the graph of H,

graph(H) :=
{

(x, y,H(x, y)) ⊂ R2n+1 : (x, y) ∈ E
}
,

has a “horizontal tangent space”, i.e., where the tangent space is given by setting the
last coordinate equal to zero. (To parametrize the tangent space, imagine the Jacobian
of (x, y) → (x, y,H(x, y)). It is the 2n × 2n identity matrix with an appended row
consisting of the partials of H. The columns of this matrix span the tangent space.)

At a critical point p, the geometry of H is determined by its second partials (if these
don’t also vanish). For the purpose of determining this geometry, by translation,
we may assume p = 0, the origin, and H(0) = 0. Then the second-order Taylor
polynomial for H will be

Q(x, y) =
1

2

∂2H

∂x21
(0)x21 +

∂2H

∂x1∂x2
(0)x1x2 + · · ·+ 1

2

∂2H

∂y2n
(0)y2n.
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By completing squares and making a linear change of coordinates (or appealing to the
spectral theorem for real symmetric matrices), we can transform Q into a function of
the form:

Q̃ = v21 + · · ·+ v2k − v2k+1 − · · · − v2r
where the new coordinates are v1, . . . , vr, . . . , v2n. The number of pluses and minuses
turns out to not depend on the choice of change of coordinates and is the crucial
geometric information.

Example. In our earlier example, H(x, y) = y sin(x), the critical points were found
to be (nπ, 0) for n ∈ Z. To compute the second-order Taylor polynomial at each of
these points, we first compute

Hxx = −y sin(x), Hxy = cos(x), Hyy = 0.

So the second-order approximation of H is

T (x, y) = H(nπ, 0) +
1

2
Hxx(nπ, 0)(x− nπ)2 +Hxy(nπ, 0)(x− nπ)y +

1

2
Hyy(nπ, 0)y2

= (−1)n(x− nπ)y.

Letting

u :=
1

2
(y + (x− nπ)) and v :=

1

2
(y − (x− nπ)),

we get
u− v = x− nπ and u+ v = y.

Using this change of coordinates, the Taylor polynomial becomes

T̃ := (−1)n(u− v)(u+ v) = ±(u2 − v2),

and the graph of T̃ is a saddle.

Corollary. Let p ∈ R2n. Suppose there is a solution γ(t) = (x(t), y(t)) such
that γ(0) 6= p but such that γ(t)→ p ∈ R2n as either t→∞ or t→ −∞. Then p is
not a strict minimum or maximum of H.

Proof. Suppose limt→∞ γ(t) = p. Using Theorem 1, we know that H(γ(t)) is constant.
Therefore, for all t, we have H(γ(0)) = H(γ(t)). Taking the limit at t→∞ and using
the fact that H is continuous, we get

H(γ(0)) = lim
t→∞

H(γ(t)) = H( lim
t→∞

γ(t)) = H(p).

Thus, in any neighborhood of p, there is a path along which H is constant with
value H(p). A similar argument holds in the case γ(t)→ p as t→ −∞.
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Theorem 2. Consider a Hamiltonian system with one degree of freedom and total
energy function H(x, y). Suppose that H is analytic (i.e., it can be written as a con-
vergent power series at every point in its domain). Then every nondegenerate critical
point of the system (points where the linearization has two nonzero eigenvalues) is
either a topological saddle or a center. It’s a topological saddle if and only if its a
saddle for H and it’s a center if and only if it’s a strict local minimum or maximum
for H.

Proof. We classified possible nongenerate critical points earlier in the semester. The
above corollary rules out all possibilities except for those listed above. In detail, the
linearization of

x′ = Hy

y′ = −Hx.

is (
x′

y′

)
=

(
Hyx Hyy

−Hxx −Hxy

)
︸ ︷︷ ︸

A

(
x
y

)
.

The trace of A, i.e., the sum of its eigenvalues is τ = tr(A) = 0, and the determinant
of A, i.e., the product of its eigenvalues is δ = det(A) = HxxHyy − H2

yx. Recall our
earlier analysis of linear systems in R2:

τ

δ

unstable
focus

stable
focus

stable
node

unstable
node

saddle

degeneratedegenerate degenerate

ce
n
te

r

In our case, τ = 0, and we see that if δ(A) < 0, the linearized system is a saddle. By
Hartman-Grobman, the critical point in the original system is then a (topological)
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saddle. In the case det(A) > 0, the linearized system is a center. As presented earlier
in the course, that means that the critical point in the original system is either a
center or a focus. However, the corollary to conservation of energy, proved above,
rules out the latter case: by the second derivative test, if det(A) > 0, then H has a
strict local maximum or minimum. So the critical point cannot be a focus.

Newtonian system with one degree of freedom. Consider the equation

x′′ = f(x)

where f ∈ C1(I) for some open interval I. We can think of x′′ as the acceleration of
a particle of mass 1 moving along a line under a force given by f . We can change this
into a planar first-order system with the substitution y = x′:

x′ = y

y′ = f(x).

To see that this is a Hamiltonian system, we need to find a function H(x, y) such
that Hy = y and Hx = −f(x). Integrating the first equation with respect to y gives

H(x, y) =
1

2
y2 + U(x),

for some function U . Taking the partial with respect to x then gives

Hx(x, y) =
d

dx
U(x) = −f(x),

and hence,

U(x) = −
∫ x

x0

f(s) ds.

We call

T (y) :=
1

2
y2 =

1

2
(x′)

2

the kinetic energy and U(x) the potential energy, and we see the total energy is the
sum of the two:

H(x, y) = T (y) + U(x).

Theorem 3. The critical points of this Newtonian system lie on the x-axis. The
point (x0, 0) is a critical point iff x0 is a critical point of the function U(x), i.e.,
iff U ′(x0) = 0. Suppose that H is analytic. Then,
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1. If x0 is a strict local maximum for U , then (x0, 0) is a saddle for the system.

2. If x0 is a strict local minimum for U , then (x0, 0) is a center for the system.

3. If x0 is a horizontal inflection point for U (which means its first nonzero derivative
at x0 of positive order is of an odd order), then (x0, 0) is a cusp (i.e., two hyperbolic
sectors and two separatrices).

Proof. Exercise.

Example. Consider the case of the undamped pendulum:

x′′ = − sin(x).

The corresponding first-order planar system is

x′ = y

y′ = − sin(x).

The potential energy function is

U(x) =

∫ x

0

sin(s) ds = 1− cos(x).

On the next page, we have pictures of both the potential energy and the phase
portrait. Try to see how they reflect Theorem 3. Also note the physical meaning of
the phase portrait. The x-axis shows the motion of the pendulum. The y-coordinate
gives the velocity. The critical points are nπ for n ∈ Z and occur when the pendulum
is balanced vertically or hanging straight down. If the velocity is high enough, the
pendulum is continuously spinning around in a circle.
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Graph of U(x).

Phase portrait.

Graph of H.
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