
Math 322 lecture for Wednesday, Week 11

global phase portraits

Consider a planar polynomial system:

x′ = P (x, y) (1)

y′ = Q(x, y)

where P and Q are polynomials. Our goal not is to look at critical points of this
system “at infinity”.

Induced flow on the sphere. Imagine our plane as being the z = 1 plane in R3,
which we will denote by Πz, and then project the flow from the plane to the unit
sphere S centered at the origin using a line through the center of the sphere:

This will produce a flow on the sphere that naturally extends to its equator. We
think of the points on the equator as points at infinity at our plane, and our goal is
to examine the critical points there.

To project (x, y, 1) ∈ Πz to the sphere, we scale it by Z ∈ R

Z(x, y, 1) = (Zx,Zy, Z) =: (X, Y, Z)

to get a point on S. The condition is

(Zx)2 + (Zy)2 + Z2 = 1.

This means

Z =
1√

x2 + y2 + 1
.

1



Therefore, the corresponding point on the sphere is

(X, Y, Z) =
1√

x2 + y2 + 1
(x, y, 1).

Since

x =
X

Z
and y =

Y

Z
,

we may use (1) to get

0 = QP − PQ
= Qx′ − Py′

= Q

(
X

Z

)′
− P

(
Y

Z

)′

= Q

(
X ′Z −XZ ′

Z2

)
− P

(
Y ′Z − Y Z ′

Z2

)
.

Clearing denominators and regrouping, gives

QZX ′ − PZY ′ + (PY −QX)Z ′ = 0

To think about this geometrically, we’ll write this equation as

(QZ,−PZ, PY −QX) · (X ′, Y ′, Z ′) = 0.

The solution curve γ(t) = (X(t), Y (t), Z(t)) has velocity vector

γ′(t) = (X ′(t), Y ′(t), Z ′(t)),

and the above equation says that this curve is perpendicular to the vector

N = (QZ,−PZ, PY −QX).

In preparation for taking a limit as Z → 0, we consider the functions

P (x, y) = P

(
X

Z
,
Y

Z

)
and Q(x, y) = Q

(
X

Z
,
Y

Z

)
.

As functions of X, Y , and Z, these functions now contain powers of Z as denomina-
tors. To clear these denominators, let d be the maximum of the degrees of P and Q,
and multiply through by Zd to get new polynomials:

P ∗ := ZdP, Q∗ := ZdQ, and N∗ := ZdN = (Q∗Z,−P ∗Z, P ∗Y −Q∗X).
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Since we have only scaled N to get N∗, we still have

N∗ · γ′(t) = (Q∗Z,−P ∗Z, P ∗Y −Q∗X) · γ′(t) = 0.

What happens as we approach the equator, i.e., as Z → 0? If P ∗Y − Q∗Z 6→ 0,
then N∗ → (0, 0, a) for some nonzero a. In other words, the vector N∗ gets closer
and closer to pointing straight up. In turn that means that our trajectory gets closer
and closer to running parallel to the equator. So at these points, the induced flow on
the equator is just a flow along the equator (not across the equator). This says that
the place to look for critical points along the equator are the points (X, Y, 0), where

P ∗Y −Q∗X = 0. (2)

Analyzing critical points at ∞. Suppose that using equation (2), we find a
point (a, b, 0) of interest. Since the point sits on the sphere, at least one of a and b
is nonzero. Say a 6= 0. We now use central projection to project our flow onto the
plane x = 1 in R3, which we denote by Πx. Taking a point (x, y, 1) ∈ Πz, we scale it
to get (

1,
y

x
,

1

x

)
∈ Πx,

which we identify with the point (
y

x
,

1

x

)
∈ R2.

In other words, we are identifing Πx with R2 using these coordinates. Let

u :=
y

x
and v :=

1

x
.

From (1),

x′ =

(
1

v

)′
= − v

′

v2
= P (x, y) = P

(
1

v
,
u

v

)

y′ =
(u
v

)′
=
u′v − uv′

v2
= Q(x, y) = Q

(
1

v
,
u

v

)
.

Projecting our point of interest, (a, b, 0) into the plane x = 1 gives the point(
1,
b

a
, 0

)
.
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So in the u, v-plane representing Πx, our job is to analyze the point(
b

a
, 0

)
for the system defined by

− v
′

v2
= P

(
1

v
,
u

v

)
u′v − uv′

v2
= Q

(
1

v
,
u

v

)
.

Example. Consider the saddle

x′ = −x (3)

y′ = y. (4)

So P (x, y) = −x and Q(x, y) = y. To find the interesting points on the equator, we
consider

PY −QX = P

(
X

Z
,
Y

Z

)
Y −Q

(
X

Z
,
Y

Z

)
X

= −X
Z
Y − Y

Z
X = −2

XY

Z
= 0.

Clearing denominators gives
2XY = 0.

So either X = 0 or Y = 0. The corresponding points on the equator are

(0, 1, 0) and (1, 0, 0).

Let’s look at (1, 0, 0), first. We want to project to the x = 1 plane. The mapping of
interest is

(x, y, 1) 

(
1,
y

x
,

1

x

)
.

Let u = y
x

and v = 1
x

and substitute into our system. The first equation in the system
says

x′ =

(
1

v

)′
= − v

′

v2
= −x = −1

v
.
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Therefore,
v′ = v.

Continuing with the second equation in the system:

y′ =
(u
v

)′
=
u′v − uv′

v2

=
u′v − uv

v2
(since v′ = v)

=
u′ − u
v

= y =
u

v
.

Therefore, u′ − u = u, and so
u′ = 2u.

Thus, at the point (1, 0, 0) on the equator, our system looks like the system

u′ = 2u

v′ = v,

which is a source.

Now let’s look at the other interesting point on the equator, (0, 1, 0). The relevant
mapping is

(x, y, 1) 

(
x

y
, 1,

1

y

)
.

Now let u = x
y

and v = 1
y

and consider the point (1, 0). Plug these into the system:

y′ =

(
1

v

)′
= − v

′

v2
= y =

1

v
.

Thus,
v′ = −v.

Next,

x′ =
(u
v

)′
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=
u′v − uv′

v2

=
u′v + uv

v2
(since v′ = −v)

=
u′ + u

v

= −x = −u
v
.

It follows that u′ = −2u. So the system becomes

u′ = −2u

v′ = −v,

a sink.

Global phase portrait. To get the global phase portrait for a planar system, project
the flow onto the upper-hemisphere of the unit sphere, using the process described
above, then position yourself way above the north pole, and look down. For the
saddle we just considered this looks like:

(If we identify antipodal points on the boundary, we’d get a flow on P2, the projective
plane.)
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