
Math 322 lecture for Friday, Week 11

Recall the notation from last time. We are studying a planar system

x′ = P (x, y) (1)

y′ = Q(x, y) (2)

where P and Q are polynomials. We embedded our system in the plane z = 1
in R3 and projected the flow along lines centered at the origin onto the unit sphere S
centered at the origin. This flow induced a flow along the equator of the sphere. We
are interested in critical points of this flow along the equator, where z = 0. To find
those we saw that we should . . .

Step 1. Clear denominators in the equation

yP
(x
z
,
y

z

)
− xQ

(x
z
,
y

z

)
= 0,

and then set z = 0.

The result is several points of the form (a, b, 0) on the equator of the sphere.

Step 2. To analyze these, we will project the flow on the sphere to either the
plane x = 1 or the plane y = 1. If a, b are both nonzero, then either plane will
do. If a = 0, then the point in question is (0, 1, 0), and we’d need to project to the
plane y = 1, and if b = 0, the point is (1, 0, 0), and we’d need to project to x = 1.
We’ll consider these cases separately:

Projection to the plane x = 1. We project the point (x, y, 1) along a line through
the origin, i.e., we scale this point, to get a point on the plane x = 1:

(x, y, 1) 

(
1,

y

x
,

1

x

)
.

Let

u :=
y

x
and v :=

1

x
.

We use the coordinates to identify the plane x = 1 with the ordinary plane R2. It
follows that

x =
1

v
and y =

u

v
.
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Plug these into system 1:

x′ = P (x, y) ⇒
(

1

v

)′
= P

(
1

v
,
u

v

)

⇒ v′ = −v2P
(

1

v
,
u

v

)
Similarly,

y′ = Q(x, y) ⇒
(u
v

)′
= Q

(
1

v
,
u

v

)

⇒ u′v − uv′ = v2Q

(
1

v
,
u

v

)

⇒ u′v = v2Q

(
1

v
,
u

v

)
+ uv′

⇒ u′v = v2Q

(
1

v
,
u

v

)
− uv2P

(
1

v
,
u

v

)

⇒ u′ = v

(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

))
.

So the system in the u, v-plane is

u′ = v

(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

))
(3)

v′ = −v2P
(

1

v
,
u

v

)
.

The problem is that it is likely this system is not defined where v = 0 (at the equator).
To get the induced flow on the equator, we need to clear denominators (thus, scaling
the vector field but not changing its direction at any point). Define

d := max {degP, degQ}
To clear denominators we scale the vector field in (3) by vd−1 to get the system

u′ = vd
(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

))

v′ = −vd+1P

(
1

v
,
u

v

)
.
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We analyze the point
(
b
a
, 0
)
, since this is the point corresponding to (a, b, 0) in the u, v-

plane.

Important points: The right side of the system (3) defines the vector field whose
trajectories we would like to determine. What effect does scaling that vector field
by vd−1 have on the solution trajectories? The vector field gives the tangent vector
for a solution trajectory. So one effect is to scale the speed of the trajectory by
the magnitude |v|d−1. Note that v = 1/x where x comes from the point (x, y, 1) in
the z = 1 plane. As we go “out to infinity” in the z = 1 plane, by taking x larger,
the scaling factor |vd−1| decreases in magnitude. We have chosen d just write so that
the resulting vector field does not blow up on the equator and is also not identically
the zero on the equator.

What about the direction of the trajectory? Since both components of the vector
field are scaled the same amount, there are two choices: (i) if vd−1 > 0, the direction
is the same, and (ii) if vd−1 < 0, the direction is reversed. Next, what significance
does this have for analyzing critical points at the equator? Suppose we are interesting
in a trajectory corresponding containing a point (x, y, 1) in the original z = 1 plane.
If x > 0, then since v = 1/x > 0, it follows that vd−1 > 0, and the direction does not
change. On the other hand, if x < 0, then v = 1/x < 0. If d is odd, then vd−1 > 0,
and if d is even, then vd−1 < 0. So in the latter case, in which d is even, the direction
of the vector field and hence the direction of it solution trajectories is reversed.

Projection to the plane y = 1. By a similar analysis (which will be assigned for
homework), if b 6= 0, we can project to the y = 1 plane and derive an analogous
system of equations:

u′ = vd
(
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

))

v′ = −vd+1Q

(
u

v
,

1

v

)
.

We are interested in the point
(
a
b
, 0
)

in this plane.

Global phase portrait A couple of lectures ago, we introduced the global phase
portrait of a planar system. It is the central projection of the flow of the vector field
onto the top half of the sphere. In order to compute it, find and analyze all critical
points of the planar system. Next, find all critical points of the system at infinity.
These come in antipodal pairs: (a, b, 0) and (−a,−b, 0). Without loss of generality,
suppose a > 0. Then we analyze the scaled system, scaling by vd−1 with v = 1/x
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in the plane x = 1 at the point
(
b
a
, 0
)
. At the antipodal point, we analyze the same

system but scaled by (−1/x)d−1 and at the point
(−b
−a , 0

)
, i.e., at the same point.

This means the systems at antipodal points are either the same when projected to
the x = 1 plane up to a possible reversal of directions (which happens exactly in the
case d is even.
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Exercises

In the following exercises, we will analyze the critical points, both finite and at∞ for
the system

x′ = x2 + y2 − 1 (4)

y′ = 5xy − 5.

Problem 1. Find all critical points of the system, including critical points at ∞.

Problem 2. Analyze each point at ∞ by projecting to the plane x = 1. Draw the
flow in the plane x = 1.

Problem 3. Try to reconcile your results from Problem 2 with the flow of the original
system displayed below:

Try to draw a global phase portrait.
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