
Math 322 lecture for Monday, Week 9

Liapunov functions and stability

Definition. An equilibrium point x0 for a system x′ = f(x) is stable if for each open
neighborhood U of x0, there exists another open neighborhood W of x0 such that
if p ∈ W , then φ(t, p) ∈ U for all t ≥ 0. Otherwise, x0 is unstable. We say x0 is
asymptotically stable if it has an open neighborhood W such that

lim
t→∞

φt(p) = x0

for all p ∈ W .

Facts.

(a) Surprisingly, an equilibrium point can be both unstable and asymptotically sta-
ble! We’ll see an example in the homework.

(b) Suppose x0 is a hyperbolic equilibrium point, i.e., it’s linearized system has no
eigenvalues with real part equal to 0. To analyze the stability of x0, we use
Hartman-Grobman to replace the system x′ = f(x) with its linearization x′ =
Dfx0(x) at x0. If all eigenvalues of Dfx0 have negative real part, then x0 is stable
and asymptotically stable, and the approach of a trajectory to x0 is exponential
in time. Otherwise, some eigenvalue has positive real part, and x0 is unstable.

(c) In any case, it turns out that if an equilibrium point x0 is stable, then no eigen-
value of Dfx0 has positive real part (even in the non-hyperbolic case).

Liapunov functions. Let x0 be an equilibrium point. Suppose there is a way to
assign a smoothly changing “temperature” to each point in E such that: (i) the
temperature at x0 is 0, (ii) the temperature at every other point is positive. Could
we determine stability only knowing the temperatures along trajectories? This is the
idea behind the notion of a Liapunov function. (Below, we label the temperature
function by V .)

Given V : E → R and p ∈ E, we define

V̇ (p) =
d

dt
V (φt(p))

∣∣∣∣
t=0

.

Thus V̇ (p) tells us how fast the temperature is changing along the solution trajectory
as it passes through p.

Theorem. Let f ∈ C1(E) and f(x0) = 0. Let V : E → R also be C1 (continuously
differentiable). Suppose that V (p) ≥ 0 and V (p) = 0 if and only if p = x0. Then:
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(a) If V̇ is negative semidefinite (V̇ (p) ≤ 0 for all p ∈ E \ {x0}) then x0 is stable.

(b) If V̇ is negative definite (V̇ (p) < 0 for all p ∈ E \{x0}) then x0 is asymptotically
stable.

(c) If V̇ is positive definite (V̇ (p) > 0 for all p ∈ E \ {x0}), then x0 is unstable.

Definition. A function satisfying the hypotheses of the previous theorem is called a
Liapunov function.

Happily, thanks to the chain rule, the conditions on V̇ in the theorem can be verified
without solving the system:

Proposition. With V as above,

V̇ (p) = ∇V (p) · f(p).

Proof. Let ψ(t) := φt(p). Apply the chain rule:

J(V ◦ ψ)(0) = JV (ψ(0))Jψ(0)

= JV (p)Jψ(0)

=
(

∂V
∂x1

(p) . . . ∂V
∂xn

(p)
) ψ′1(0)

...
ψ′n(0)


= ∇V (p) · ψ′(0).

Now, ψ is the solution to the system x′ = f(x) with initial condition p. There-
fore, ψ′(t) = f(ψ(t)), and ψ′(0) = f(ψ(0)) = f(p). The result follows.

Example. Consider the system

x′ = −y3

y′ = x3.

The origin is a non-hyperbolic equilibrium point and

V (x, y) = x4 + y4

is a Liapunov function for that point. (Clearly, V is smooth and V (x, y) ≥ 0 with
equality only at the origin.) For any trajectory (x, y) = (x(t), y(t)), we have

V̇ (x, y) = 4x3x′ + 4y3y′ = 4x3(−y3) + 4y3(x3) = 0.
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Hence, the origin is stable. In fact, our calculation shows that V (φt(p)) is a constant
as a function of t. In other words, trajectories (solutions) sit on level sets for V , as
seen in the following:

Proof of theorem. We may assume x0 = 0 ∈ Rn is the equilibrium point.

(1) Suppose that V̇ (p) ≤ 0 for all p ∈ E \ {x0}. Choose ε > 0 such that the open
ball Bε(x0) of radius ε centered at x0 is contained in E. Let

Bε(x0) := {x ∈ Rn : |x− x0| ≤ ε} .

Replacing ε by ε/2, if necessary, we may assume Bε(x0) ⊂ E. Let

α := min
|x|=ε

V (x),

the minimum of V on the boundary of Bε(x0). The function V achieves its minimum
on the boundary since V is continuous and the boundary is compact (closed and
bounded). Since the minimum is achieved at some point on the boundary and V is
strictly greater than 0 away from the origin, we have α > 0.

Define
W := {x ∈ Bε(x0) : V (x) < α} .

We think of W as the set of points in Bε whose “temperature” is less that α, the
minimum temperature on the boundary of Bε. Then W is an open1 neighborhood
of the origin, and no solution starting at a point in W can leave W since V is
nonincreasing on solution curves. Thus x0 is stable.

1The set W is open since W = V −1((−∞, α)), and by definition of continuity, the inverse image
of an open subset under a continuous function is continuous.
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(2) Suppose now that V̇ (p) < 0 for all p ∈ E \ {x0}. As in the proof for part (1), we
choose ε > 0 so that Bε(x0) ⊂ E. We let

α := min
|x|=ε

V (x),

and take
W := {x ∈ Bε(x0) : V (x) < α} .

Since V̇ (p) < 0 for all p ∈ E \ {x0}, we saw in the proof of part (1) that solution
trajectories starting inW never leaveW . We would like to show that limt→∞ φt(p) = 0
for all p ∈ W . Pick any sequence t1 < t2 < . . . such that tn → ∞, and consider the
sequence

{φ(tn, p)} .
By part (1), this sequence never leavesW , and hence it is contained in the closureW ⊆
Bε(x0), which is compact. So by the Bolzano-Weierstrass theorem, there exists a
convergent subsequence. This means that there is a subsequence tnk

such that

lim
k→∞

φ(tnk
, p) = q

for some q ∈ W . For ease of writing, replace our original sequence with the subse-
quence {tnk

}k. We then have
lim
n→∞

φ(tn, p) = q.

We would like to show that q = x0 = 0, and we will do this by contradiction. Suppose
that q 6= 0. Then V (q) > 0. Also since V is strictly decreasing along trajectories, we
have

V (q) > V (φ(1, q)).

Since limn→∞ φ(tn, p) = q, by continuity of solutions with respect to both time and
initial conditions, and by continuity of V , there exists an integer N large enough so
that φ(tN , p) is close enough to q so that V (φ(1, φ(tN , p))) is close enough to V (φ(1, q))
so that

V (φ(1 + tN , p)) = V (φ(1, φ(tN , p)) < V (q).

Since tn → ∞, we can find M such that tM > 1 + tN . Then, since V is strictly
decreasing along trajectories, we have

V (q) > V (φ(1 + tN , p)) > V (φ(tM , p))

This is a problem: since V stricty decreases along trajectories and V is continuous,
we have that the sequence {V (φ(tn, p)} is strictly decreasing and converges to V (q).
So in contradiction to the inequalities displayed above,

V (φ(tM , p) > V (q).
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We have shown that q = 0 and that there is a sequence {tn} such that limn→∞ φ(tn, p) =
q = 0. We now need to show limt→∞ φ(t, p) = x0 = 0. If not, there exists an η > 0
such that for all n, there exists sn > n such that

|φ(sn, p)| ≥ η > 0. (1)

We may assume that the sequence sn is increasing. However, by Bolzano-Weierstrass,
there again exists a subsequence {snk

} of {sn} such that φ(snk
, p) converges, and as

we have seen, it must converge to 0. But that’s impossible in light of (1).

(3) Finally, now suppose that V̇ (p) > 0 for all p ∈ E \ {x0}. Choose ε > 0 such
that Bε(0) ⊂ E. We’ll show that given any point p ∈ E, we have that φt(p)
leaves Bε(0) at some point, i.e., there exists t ≥ 0 such that |φt(p)| > ε. Hence, x0 is
unstable.

Given p ∈ E \ {0}, since V is strictly increasing on trajectories,

V (φt(p)) > V (φ0(p)) = V (p) > 0

for all t > 0. Thus, φt(p) is bounded away from 0. Say |φt(p)| ≥ η > 0 for all t ≥ 0.
If η ≥ ε, then we are done since |p| = |φ0(p)| ≥ η > ε, which says p is already out
of Bε(x0). Otherwise, define

m := min
y:η≤|y|≤ε

V̇ (y),

which exists since V̇ is continuous and y is restricted to a compact set. In fact, for
that same reason, m = V̇ (q) for some point in the set over which we are minimizing.
Therefore, m > 0. Supposing for contradiction that φt(p) stays inside Bε(x0) for
all t ≥ 0, we have V̇ (φt(p)) ≥ m for all t ≥ 0. Hence,

V (φt(p))− V (p) = V (φt(p))− V (φ0(p)) =

∫ t

s=0

V̇ (φs(p)) ds ≥ mt→∞

as t → ∞. But since V is continuous, it achieves a maximum on Bε(x0)—a contra-
diction. �

Example. Consider the system

x′ = −2y + yz

y′ = x− xz
z′ = xy.
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The Jacobian at the origin is

J(0) =

 0 −2 0
1 0 0
0 0 0

 .

The characteristic polynomial is

det

 −x −2 0
1 −x 0
0 0 −x

 = −x3 − 2x = −x(x2 + 2).

So the eigenvalues are 0,±
√

2i. So the origin is a nonhyperbolic equilibrium point.
To determine stability, we look for a suitable Liapunov function. We guess a function
of the form

V = ax2 + by2 + cz2

with positive constants a, b, c. We have

V̇ = 2axx′ + 2byy′ + 2czz′

= 2ax(−2y + yz) + 2by(x− xz) + 2cz(xy)

= 2(−2a+ b)xy + 2(a− b+ c)xyz.

Take a = c = 1 and b = 2, and we get V = x2 + 2y2 + z2 with V̇ = 0. This means
that trajectories stay on the ellipsoids that are level sets of V .
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