
Math 322 lecture for Friday, Week 9

liapunov functions

Theorem. Let f ∈ C1(E) and f(x0) = 0. Let V : E → R also be C1 (continuously
differentiable). Suppose that V (p) ≥ 0 and V (p) = 0 if and only if p = x0. Then:

1. If V̇ is negative semidefinite (V̇ (p) ≤ 0 for all p ∈ E \ {x0}) then x0 is stable.

2. If V̇ is negative definite (V̇ (p) < 0 for all p ∈ E \ {x0}) then x0 is asymptotically
stable.

3. If V̇ is positive definite (V̇ (p) > 0 for all p ∈ E \ {x0}), then x0 is unstable.

Proof. As before, we may assume x0 = (0, 0) is the equilibrium point. Part (1) was
proved in the last lecture.

(2) Last time, we were in the midst of proving part (2). Using the notation from
last time, so far, we have shown that for every sequence t1 < t2 < · · · such that
limn→∞ tn =∞, there exists a subsequence {tnk

} such that limk→∞ φ(tnk
, p) = 0 ∈ Rn.

We now need to show limt→∞ φ(t, p) = x0 = 0. If not, there exists an η > 0 such that
for all n, there exists tn > n such that

|φ(tn, p)| ≥ η > 0. (1)

We may assume that the sequence tn is increasing. However, by Bolzano-Weierstrass,
there again exists a subsequence {tnk

} of {tn} such that φ(tnk
, p) converges, and as

we have seen, it must converge to 0. But that’s impossible in light of (1).

(3) Finally, now suppose that V̇ (p) > 0 for all p ∈ E \ {x0}. Choose ε > 0 such
that Bε(0) ⊂ E. We’ll show that given any point p ∈ Bε(0) \ {0}, we have that φt(p)
leaves Bε(0) at some point, i.e., there exists t ≥ 0 such that |φt(p)| ≥ ε.

Given p ∈ Bε(0) \ {0}, since V is strictly increasing on trajectories,

V (φt(p)) > V (φ0(p)) = V (p) > 0

for all t > 0. Thus, φt(p) is bounded away from 0. Say |φt(p)| ≥ η > 0 for all t ≥ 0.
Since η ≤ |φ0(p)| = |p| < ε, it follows that η < ε. Define

m := min
y:η≤|y|≤ε

V̇ (y),

which exists since V̇ is continuous and y is restricted to a compact set. In fact, for
that same reason, m = V (q) for some point in the set over which we are minimized.
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Therefore, m > 0. Supposing for contradiction that φt(p) stays inside Bε(x0) for
all t ≥ 0, we have V̇ (φt(p) ≥ m for all t ≥ 0. Hence,

V (φt(p))− V (p) = V (φt(p))− V (φ0(p)) =

∫ t

s=0

V̇ (φs(p)) ds ≥ mt→∞

as t → ∞. But since V is continuous, it achieves a maximum on Bε(x0)—a contra-
diction. �

Example. Consider the system

x′ = −2y + yz

y′ = x− xz
z′ = xy.

and the Jacobian at the origin is

J(0) =

 0 −2 0
1 0 0
0 0 0

 .

The characteristic polynomial is

det

 −x −2 0
1 −x 0
0 0 −x

 = −x3 − 2x = −x(x2 + 2).

So the eigenvalues are 0,±
√

2i. So the origin is a nonhyperbolic equilibrium point.
To determine stability, we look for a suitable Liapunov function. We guess a function
of the form

V = ax2 + by2 + cz2

with positive constants a, b, c. We have

V̇ = 2axx′ + 2byy′ + 2czz′

= 2ax(−2y + yz) + 2by(x− xz) + 2cz(xy)

= 2(−2a+ b)xy + (a− b+ c)xyz.

Take a = c = 1 and b = 2, and we get V = x2 + 2y2 + z2 with V̇ = 0. This means
that trajectories stay on the ellipsoids that are level sets of V .
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